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the requirement for the degree of Doctor of Philosophy 

ABSTRACT 

MODIFICATION OF SCREEN PRINTED ELECTRODE USING REDUCED 
GRAPHENE OXIDE-GOLD NANOPARTICLES FOR VOLTAMMETRIC 

DETECTION OF DIURON AND FENITROTHION 

By

NAFISEH SHAMS

November 2016

Chair: Hong Ngee Lim, PhD
Faculty: Institute of Advanced Technology

In recent years, increasing attention has been given to the distortion of the aquatic 
ecosystem around the world. The risk of chemical pollution in water bodies is getting 
worst day by day. One of the possible sources of these pollutants is pesticides. Thus, 
the development of an on-line selective and sensitive monitoring system needs to be 
given priority. The use of electrochemical sensor is the most promising monitoring 
system due to its low instrumentation cost, simple operation, short response time, 
highly sensitivity and selectivity compared to other conventional monitoring systems. 
Recently, the use of nanomaterials such as reduced graphene oxide (rGO) and gold 
nanoparticles (AuNPs) have been given more attention among researchers around the 
world. They have been extensively used as sensing materials due to their outstanding 
properties in terms of conductivity, effective surface area, stability and catalytic effect.  
In this project, two different approaches have been used to fabricate the 
electrochemical sensor materials based on rGO/AuNPs nanocomposite for detection of 
diuron and fenitrothion as herbicide and insecticide respectively in natural waters.

In the first work, rGO/AuNPs nanocomposite was synthesized based on 
electrochemical co-reduction of graphene oxide and chloroauric acid via cyclic 
voltammetry technique on the surface of screen printed electrode (SPE). The fabricated 
sensor (rGO-AuNPs/SPE) showed higher sensitivity towards diuron and its cathodic 
peak current was directly correlated to the diuron concentration. The field emission 
scanning electron microscopy (FESEM) image shows the uniform distribution of 
AuNPs on the surface of rGO nanosheets. The presence of rGO nanosheets was further 
proven by Raman Spectroscopy. Under optimized conditions, the cathodic peak current 
was proportional to the diuron concentration over a wide range between 0.5 to 30.0 µg 
mL-1 with the detection limit of 0.125 µg mL-1 (S/N=3). The proposed diuron 
electrochemical sensor also exhibited a relative standard deviation of 4.25% for six 
replicate analysis of 10.0 µg mL-1 diuron and the response of the electrode was 
declined up to 20% after keeping for 30 days in ambient temperature. In addition, the 
sensor was successfully employed for the determination of diuron in real natural water 
samples including lake and sea water.
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In spite of the fact that rGO-AuNPs/SPE sensor (via electrochemical reduction of GO) 
is environmentally green technique, nevertheless, the modified substrate is polarized in 
a short potential range due to incomplete reduction of GO functional groups. Therefore, 
in the second study, a new synthesis procedure was reported for the preparation of 
rGO/AuNPs nanocomposite using ethylenediamine (en) as a cross- linker for chemical 
reduction of GO functional groups in order to fabricate a polarized sensor.  The 
constructed nanocomposite (AuNPs/rGO-en) was homogenized in dimethylformamide 
(DMF) and drop-casted on a SPE to fabricate an electrochemical sensor (AuNPs/rGO-
en/SPE) which was sensitive to fenitrothion. The nanocomposite electrode was 
characterized with FESEM, X-Ray diffraction (XRD) spectroscopy, Fourier transform 
infrared spectroscopy (FTIR), electrochemical impedance spectroscopy (EIS), Raman 
spectroscopy and cyclic voltammetry (CV). The anodic peak current at around 0.06 V 
was proportional to fenitrothion concentration over a wide range of 0.1 to 6.25 ng mL-1

with the limit of detection of 0.036 ng mL-1 (S/N=3). Moreover, in order to evaluate the 
repeatability of the AuNP/en-rGO/SPE, the peak currents of fenitrothion at two 
different concentrations (0.5 ng mL-1 and 4.0 ng mL-1) were determined successively 
under  optimum conditions for six times with the same modified sensor, and the RSD 
values were found to be 4.1% and 4.3%, respectively, exhibiting good repeatability. 
The stability study showed that the oxidation peak current of fenitrothion at 4.0 ng mL-

1 decreased 2.2% after recording 50 successivecyclic voltammograms. In addition, the 
proposed senor was successfully employed for the determination of fenitrothion residue 
in the natural water samples including tap and lake water. The validity of the response 
was checked with gas chromatography as a standard method and the result was in 
agreement with constructed sensor.
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ABSTRAK 

PENGUBAHSUAIAN ELEKTROD CETAK SKRIN MENGGUAN-
NANOBAHAN EMAS UNTUK PENGESANAN VOLTAMMETRIK DIURON 

DAN FENITROTHION 

Oleh

NAFISEH SHAMS

November 2016

Pengerusi : Hong Ngee Lim, PhD
Fakulti : Institut Teknologi Maju

 

Dalam tahun-tahun kebelakangan ini, peningkatan penumpuan terhadap herotan 
akuatik ekosistem diseluruh dunia telah diberikan. Risiko pencemaran kimia dalam 
badan-badan air telah menjadi teruk dari hari ke hari. Salah satu sumber utama 
pencemaran ini ialah racun perosak. Oleh itu, pekembangan secara dalam talian bagi 
pengawasan system yang memilih dan peka perlu diberikan keutamaan. Penggunaan 
sensor elektrokimia adalah pengawasan system yang lebih menjanjikan disebabkan 
oleh peralatan kos rendah, mudah untuk dikendalikan, sambutan masa yang singkat, 
lebih peka dan pemilihan berbanding pengawasan sistem konvensional yang lain. Baru-
baru ini, penggunaan bahan nano seperti grafin (rGO) dan nanopartikel emas (AuNPs) 
telah diberikan perhatian antara penyelidik diseluruh dunia. Ianya telah digunakan
secara meluas sebagai bahan pengesanan disebabkan sifatnya yang cemerlang dan had 
pengesanan sasaran analit yang rendah telah direkodkan. Dalam projek ini, dua 
pendekatan yang berbeza telah digunakan untuk membikin bahan sensor elektrokimia 
berasaskan rGO/AuNPs kompositnano untuk pengesanan diuron dan fenitrothion, 
masing-masing sebagai racun herba dan rerun serangga dalam air semula jadi.

Dalam kerja yang pertama, rGO/AuNPs kompositnano telah disintesis berasaskan 
elektrokimia bersama pengurangan grafin oksida (GO) dan acid chloroauric melalui 
teknik voltammetri berkitar pada skrin elektrod bercetak (SPE). Penghasilan sensor 
(rGO/AuNPs/SPE) menunjukkan  kepekaan yang tinggi cenderung terhadap diuron dan 
puncak arus katodenya adalah berkolerasi secara terus dengan kepekatan diuron. Imej 
mikroskop elektron pengimbas pancaran medan (FESEM) menunjukkan kehadiran 
AuNPs yang sama rata di atas permukaan nano kepingan rGO. Raman spektrometri 
membuktikan lagi pengurangan GO kepada nano kepingan rGO melalui pengurangan 
elektrokimia. Di bawah keadaan optimum, puncak arus katode adalah berkadaran 
dengan kepekatan diuron di atas julat yang luas di antara 0.5 dan 30.0 µg mL-1 dengan 
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had pengesanan 0.125 µg mL-1 (S/N=3). Sensor elektrokimia yang dicadangkan juga 
mempamirkan relatif sisihan piawai sebanyak 4.25% berdasarkan enam analisis yang 
direplikakan bagi 10.0 µg mL-1 diuron dan sambutan  bagi elektrod menurun 20% 
selepas disimpan selama 30 hari dalam keadaan sekitaran. Tambahan pula, sensor ini 
telah berjaya bekerja untuk penentuan diuron dalam air semula jadi nyata termasuk 
tasik dan air laut. 

Meskipun secara faktanya sensor rGO-AuNPs/SPE (melalui elektrokimia pengurangan 
GO) adalah kaedah hijau persekitaran, namun substrat yang diubah suai adalah 
berkutub dalam julat potensi yang pendek disebabkan oleh pengurangan yang tidak 
lengkap GO kumpulan berfungsi. Oleh itu, dalam kajian kedua, satu tatacara sintesis 
baru telah dilaporkan bagi penyediaan rGO-AuNPs kompositnano menggunakan 
ethylenediamin (en) sebagai pemaut silang untuk pengurangan kumpulan kefungsian 
GO secara kimia bagi pembikinan sensor berkutub. Penghasilan kompositnano 
(AuNPs/en-rGO) telah dihomogenkan dalam dimethylformamide (DMF) dan kaedah 
‘drop-casted’ di atas SPE bagi pembikinan sensor elektrokimia yang peka terhadap 
fenitrothion. Elecktrod kompositnano telah dicirikan dengan FESEM, EDX, 
Spektroskopi Pembiasan X-Ray (XRD), Spektroskopi inframerah transformasi 
Fourioer  (FTIR), Spektroskopi elektrokimia impedan (EIS), Spektroskopi Raman and 
voltammetri berkitar (CV). Puncak arus anodal pada kira-kira 0.06V adalah berkadaran 
pada kepekatan fenitrothion di atas julat yang luas di antara 0.1 to 6.25 ng mL-1, dengan 
had pengesanan 0.036 ng mL-1 (S/N=3). Tambahan pula, untuk menilai kebolehulangan 
AuNP/en-rGO/SPE, puncak arus fenitrothion pada dua kepekatan yang berbeza (0.5 ng 
mL-1 and 4.0 ng mL-1) telah berjaya ditentukan di bawah keadaan optimum enam kali 
dengan pengubah suaian sensor yang sama, dan nilai RSD didapati masing-masing 
4.1% dan 4.3%, mempamerkan kebolehulangan yang baik. Kajian kestabilan 
menunjukkan bahawa pengoksidaan puncak arus fenitrothion pada 4.0 ng mL-1

menurun 2.2% selepas mencatat 50 kitaran voltammetri berturut-urut. Tambahan pula, 
sensor ini telah berjaya bekerja untuk penentuan sisa fenitrothion dalam pelbagai 
sampel air termasuk air paip dan air tasik. Kesahan sambutan telah diperiksakan 
dengan gas chromatografi sebagai keadah piawaian dan keputusan adalah dalam 
persetujuan dengan sensor yang dihasilkan.
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CHAPTER 1 

CHAPTER 1 

INTRODUCTION 

1.1 Background of study 

Undoubtedly, human population around the world is increasing day by day. It is 
expected that by 2050 the population will reach more than 9 billion and still expected 
that our population will increase more than 2 billion within the next 40 years (Matlack, 
2010). As a result, we will need to double the amount of food we currently produce in 
order to feed everyone. This has resulted in the maximization of yields of many crops 
grown under conditions that reduce insect and disease pressure and on soils enriched 
with inorganic fertilizer. Therefore, the agriculture industry has changed a lot over the 
past century and too many efforts have been done to improve soil fertility to reach 
more quantitative and qualitative of agricultural products. One of the major problems in 
the agricultural sectors is the loss of crop products due to the insect pests, which 
targeted on the specific hosts and lead serious lesions on fruit and vegetables (Litz & 
Gray, 1995). Research has shown that since the 1940s, some of the chemicals such as 
pesticides helps in increasing the crop yield by preventing the destruction of food crops 
by pests or unpleasant plants and also provides a better plant quality (Grung et al.,
2015). Moreover, it was also been reported in the USA, by ceasing the use of pesticides 
can lead to the reduction of  the total output of the crops and livestock about 30% and 
therefore increase the price of farm products around 50 to 70% (Wolfenburger et al.,
2004). As a matter of fact, the pesticides industry has become one of the most 
important supporting industries in agriculture. For instance, just in Malaysia, the 
estimation value of herbicides imported in 1995 was 31,708 million Ringgit (Matlack, 
2010). Even though pesticides has been considered as the toxic and harmful chemical 
to the environment, but their contribution in controlling and monitoring the pests, and 
also deficit alternative, equivalent and effective methods available have made the use of 
pesticides the best candidate in controlling the pest and thus in overall increasing the 
crop production.The extensive use of pesticides for agricultural products has resulted in 
the presence of residues in numerous environmental media. Pesticide contamination on 
the water surface has been well documented worldwide and constitute a major issue 
that gives rise to concerns at local, regional, national and global scales (Cerejeira et al.,
2003; Huber et al., 2000; Planas et al., 1997).  However, since the use of pesticides is
necessary for agricultural industries, the environmental contamination of their residue 
need to be taken into consideration and appropriate measures should be put in place to 
prevent their environmental pollution (Hikita et al., 1977).

There has been a great deal of concern and argument for decades over pesticides and 
their toxicology to human and animals. However pesticide consumption is necessary to 
improve the agricultural products, but there is a large body of evidence claim that 
pesticides will cause too many side effects in human and animals due to direct and 
indirectly environmental contamination. Multiple organ cancer is one of the most 
crucial problems due to misuse of pesticides (Anwar, 1997). The endocrine 
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complication is another problem which is caused by the effects of pesticides (van der 
Werf, 1996). The potential side effect related to endocrine complication always 
affected on male hormones such as testosterone which are responsible for healthy male 
reproductive systems. In addition, infertility and sterility are other reported potential 
side effects, when an individual is vulnerable to pesticides. Most of these problems 
commonly affect people who are unprotected against pesticides such as workers in 
farms or daily consumers of sprayed products. It was reported that most of the 
gardeners and farmers have higher possibilities of being affected with brain damage, 
which may result in the lack of ability to talk smoothly, detect words or colours 
(Edwards, 2013). An even human embryo is also not safe if there is too much exposure 
to pesticide and this excessive vulnerable could lead to miscarriage and birth defects 
(van der Werf, 1996). Therefore, exposure to pesticides must be avoided for pregnant 
mothers. Besides, respiratory disorders such as wheezing, chronic bronchitis and 
asthma, and skin irritation are the other common diseases occur in humans who are 
frequently vulnerable to the pesticides in agricultural products (Ündeğer & Başaran, 
2005). Aforementioned exposures to pesticides have reported a shocking number of 
deaths correlated to either chronic kidney sickness or intestinal nephritis in India, and 
normally victims are persons who worked on farms and exposed to sprayed pesticides. 
Negative impacts of pesticides not only affecting human health but also affecting on 
animals, environmental and water as well and this phenomenon was observed to 
indirectly lead to many forthcoming problems to humans being. Therefore, the 
environmental monitoring and rapid sensing of these compounds have become 
important urgency in order to ensure the homeland security and health protection 
(Arduini et al., 2006; Corley, 2003; Fukata et al., 2005). In conclusion, the necessity to 
develop simple, selective and sensitive on-site monitoring systems need to be 
considered and given a major priority.  

1.2 Problem statement 

Diuron, N’-(3,4-dichlorophenyl)-N, N-dimethylurea (DCMU), is an herbicide derived 
from urea. It is considered to be highly toxic and persistent when applied in high 
dosages to the soil, with a half-life of over 300 days (Katsumata et al., 2009). In order 
to evaluate the impact of diuron on coral reefs, it is important to monitor its 
concentration in coastal and coral reef waters. Malaysia is the world’s second largest 
palm oil producer (Ong & Goh, 2002). Previous studies have shown that pesticides 
such as diuron have played an important role in controlling and preventing pests and 
harmful plants, and indirectly increase palm oil production (Sapozhnikova, Wirth, 
Schiff, Brown, & Fulton, 2007). As a result, it is often detected in ground water and 
surface water. However, it is considered to be a priority hazardous substance by the 
European Commission (Feng et al., 2009). Diuron kills plants by blocking electron 
transport at photosystem II, thus inhibiting photosynthesis (R. J. Jones & Kerswell, 
2003). Ecotoxicological studies show that diuron has significant impacts on the host 
and/or symbionts of corals and aquatics (R. Jones, 2005).Moreover, Fenitrothion [O,O-
dimethyl O-(4-nitro-m-tolyl) phosphor] is a contact organophosphate insecticide that 
has been used since 1959 in place of dichlorodiphenyltrichloroethane (DDT) for 
operational control of insects on rice, cereals, fruits, vegetables, stored grains, cotton, 
and in forests, and for fly, mosquito, and cockroach control in public health programs 
(Sreedhar et al. 2011). Generally, organophosphate compounds disrupt the 
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cholinesterase enzyme that regulates acetylcholine (Cremisini et al. 1995; Fennouh et 
al. 1997; Zhang et al. 2001). Although fenitrothion is useful for the treatment of 
agricultural products, its residue is reported to be very toxic to non-target species such 
as birds, mammals, and aquatic life (Sreedhar et al. 2015; Story et al. 2011).

Various quantitative analysis of pesticides have been carried out with different 
techniques such as high-performance liquid chromatography (HPLC) (Bester et al.,
2001; Leandro et al., 2006; Topuz et al., 2005), mass spectrometry (Dallüge et al., 
2002), molecular imprinting (Pardieu et al., 2009; Sánchez-Barragán et al., 2007), gas 
chromatography (Berijani et al., 2006; Eisert & Levsen, 1995; Lehotay et al., 2005),
enzyme-linked immunosorbent assay (ELISA) (Ferrer et al., 1997; Liang et al., 2007; 
Wengatz et al., 1998), biosensors (Liu et al., 2014; Sassolas et al., 2012; Zhang et al.,
2015) and electrochemical sensors (Bakas et al., 2014; Rapini & Marrazza, 2015). It is 
clear that chromatography and mass spectrometry equipment are expensive and require 
tedious sample treatment including extraction, as well as skilled technicians for 
operations. On the other hand, ELISA systems require long-time analysis, have low 
stability, disposable and sometimes have low precision due to the use of biological 
elements for detection. As a result, the development of rapid, inexpensive, sensitive and 
on-site analytical strategies for detection of pesticides is desirable. On the other hand, 
rGO-AuNPs nanocomposite films can generate synergy on electrocatalytic activity and 
improve the sensitivity of the sensors. The introduction of AuNPs can both improve the 
conductivity of rGO and prevent the agglomeration process.

In this respect, electrochemical sensors are adequate candidates for quantitative 
analysis of pesticides due to their great benefits including simplicity, portability and 
low cost. They give attractive sensing characteristics, accurate results and fast response 
time with little or no complications of pre-treatment steps, thereby opening up the 
possibilities of direct on-site analysis with intuitive devices. Hence, they are used as 
alternative analytical methods for pesticide’s control (Agüı et al., 2002; Kurzawa & 
Kowalczyk-Marzec, 2004; Ronkainen et al., 2010). In this sense rGO-AuNPs
nanocomposites based electrochemical sensors improve the performance of the 
electrochemical reactions, due to increasing on surface area, as well as achieving faster 
kinetics (Downard et al., 2006; Welch & Compton, 2006).

1.3 Hypothesis of study 

� The combination of rGO and AuNPs has a synergic effect in terms of surface 
area and conductivity to enhance the performance of electrochemical detection 
of pesticides. 

� Diuron and fenitrothion as two pesticide compounds can reduce/oxidize on the 
surface of modified electrodes. 
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1.4 Research objective 

The main objective of this study is to develop simple, rapid, stable, selective and 
sensitive electrochemical sensors based on reduced graphene oxide/gold nanoparticles 
for determination of some pesticides in natural water resources. The specific objectives 
of the research are summarized and listed as follows:  
 

i. To synthesizerGO/AuNPs nanocomposites based on two different reduction 
methods through electrochemical and chemical methods.

ii. To fabricate electrochemical sensors based on rGO/AuNPs without using any 
mediator.

iii. To optimize the electrochemical sensors towards diuron and fenitrothion 
detection. 

iv. To evaluate selectivity, stability and precision of the sensors. 

v. To evaluate the applicability of the fabricated electrochemical sensors in real
 natural water samples. 

vi. To validate accuracy of the electrochemical sensors with a standard test 
 method.  

1.5 Scope and limitation 

Electroanalytical sensors can play an important role in monitoring the environmental 
pollution and thus indirectly protect our green nature to become contaminate and 
extinct for the next century. The electroanalytical sensor devices have been satisfied 
many of the requirements for on-site monitoring of priority pollutants. They are 
inherently sensitive and selective towards electroactive species, fast and accurate, 
compact, portable and cheap. These advantages provide them to be used as ultra-
microelectrodes, highly sensitive chemicals, computerized instrumentations and flow 
detectors. On the other hand, electrochemical sensors have shown some limitations 
such as short-term stability, troublesome electron-transfer pathways and 
electrochemically active interferences in the sample. These kinds of problems become 
more serious in real sample analysis due to the unknown matrix and in this case, even 
standard addition method cannot be useful. So the improvement of these drawbacks 
must be given priority. 

1.6 Thesis outline 

This thesis contains five chapters including an introduction, literature review, 
methodology, result and discussion and finally conclusion and recommendation. A 
brief idea of each chapter is given as bellow. 
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Chapter One is divided into six sections. This chapter is started with the background of 
study and then, the toxicology of pesticide to human and environment is being 
introduced as the problem statement. In the third section, the hypotheses of the 
proposed research study are mentioned and the objectives of this research are described 
in the fourth section. Finally, scope and limitation and thesis outline are being 
explained in the fifth and sixth section of this chapter, respectively. 

Chapter Two highlights the basic principles of this work and detailed literature review 
of previous techniques based on electrochemical sensors. Diuron and fenitrothion are 
introduced and after an overview on the determination of diuron and fenitrothion in 
water through different methods, the classification of sensors is discussed. After that 
voltammetric techniques are explained as the most sensitive electrochemical 
techniques. This chapter is followed by an introduction on GO and AuNPs, its unique 
properties and synthesis methods. Finally, the voltammetric sensors have been 
reviewed separately for the determination of diuron and fenitrothion. 

Chapter Three describes the materials and methods of the diuron sensor. Synthesis of 
GO, rGO and rGO-AuNPs were illustrated.All instruments used for characterization of 
nanocomposites such asfield emission scanning electron microscopy (FESEM), and 
Raman spectrometry are introduced in this chapter. Moreover, electrochemical devices 
for quantitative analysis of diuron also described in this chapter. Finally, results and 
discussion were demonstrated and the details of the results are interpreted and 
discussed.  

Chapter Four describes the materials and methods of the fenitrothion sensor. Synthesis 
of GO, rGO-en and AuNPs/en-rGO were illustrated. All instruments used for 
characterization of nanocomposites such asfield emission scanning electron microscopy 
(FESEM), Fourier transform infrared microscopy (FTIR), X-ray diffraction (XRD), 
electrochemical impedance spectroscopy (EIS) and Raman spectrometry are introduced 
in this chapter. Moreover, electrochemical devices for quantitative analysis of 
fenitrothion also described in this chapter. Finally, results and discussion were 
demonstrated and the details of the results are interpreted and discussed.  

The conclusion of the research study is demonstrated in Chapter Five by summarizing 
the results of the study and given some suggestions for further research efforts. 

Some additional subjects are covered in Chapter Six as Appendices.
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