

UNIVERSITI PUTRA MALAYSIA

REMOVING REACTIVE AND ACID DYES FROM SINGLE AND BINARY SOLUTIONS BY ADSORPTION ON QUATERNIZED KENAF CORE FIBERS

INTIDHAR JABIR IDAN AL-THARWANI

FK 2017 82

REMOVING REACTIVE AND ACID DYES FROM SINGLE AND BINARY SOLUTIONS BY ADSORPTION ON QUATERNIZED KENAF CORE FIBERS

INTIDHAR JABIR IDAN AL-THARWANI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Doctor of Philosophy

August 2017

COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia

DEDICATION

This thesis is dedicated to my family with all my love

Intidhar Jabir Idan August 2017

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the Degree of Doctor of Philosophy

REMOVING REACTIVE AND ACID DYES FROM SINGLE AND BINARY SOLUTIONS BY ADSORPTION ON QUATERNIZED KENAF CORE FIBERS

By

INTIDHAR JABIR IDAN AL-THARWANI

Chairman Faculty : Professor Luqman Chuah Abdullah, PhD : Engineering

It is estimated that every year 280,000 tonnes of textile dyes are released in textile mill effluent, and unfortunately, all factories are still using water streams for discharging their effluent water. In the wastewater treatment plant, activated carbon is a widely used adsorbent to remove many types of dyes, but it is very expensive. Therefore, adsorption by utilizing different types of agro-residues is one of the alternative materials to remove various types of dyes from solutions.

In the present research, kenaf core fiber (KCF) residue was chemically modified with (3-chloro-2-hydroxypropyl) trimethylammonium chloride to alter the surface properties to capture anionic dyes from aqueous solution. Batch adsorption studies were conducted to investigate the performance of quartenized kenaf core fiber (QKCF) to remove Reactive Red-RB, Reactive Black-5, Acid Blue-25, and Acid Green-25 from a single system. Various parameters such as initial dye concentration, adsorbent dosage, agitation speed, contact time, temperature and pH were investigated for the single solution system.

The present research explored the suitability of quaternized kenaf core fiber (QKCF) to serve as an adsorbent for the removal of anionic dyes from a binary system. The effects of initial dye concentration, contact time, pH, equilibrium isotherm modelling and mechanism of dye adsorption in a binary system onto QKCF were studied in a batch system, while operation parameters which include inlet dye concentration, flow rate, and bed height were studied in a fixed bed column system.

The results showed that the maximum percentage removal from the single system were 98.10%, 99.58%,99.63% and 99.60% for RR, RB, AB and AG dyes respectively. In addition, the equilibrium data were best represented by the Langmuir isotherm model with maximum adsorption capacity of 185.20, 294.12, 303.03 and 344.83 mg/g for RR, RB, AB and AG dyes respectively, and the kinetic data were found to follow the pseudo-second-order kinetic model. Moreover, the maximum percentage removal reached up to 97.8% and 99.60% for RR and RB dyes respectively from the binary solution, while the maximum percentage removal reached up to 99.96% and 99.60% for AB and AG dyes respectively from the binary solution.

The fixed bed column showed better performance with lower influent dye concentration, less flow rate of the influent and higher adsorbent bed depth.

Overall, the present study showed that QKCF is a potential adsorbent for anionic dye removal from aqueous solutions either in a batch or a fixed bed column system.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Doktor Falsafah

PENGNYAHAN PEWARNA REAKTIF DAN ASID DARIPADA LARUTAN TUNGGAL DAN BINARI SECARA PENJERAPAN TERHADAP SERABUT TERAS KENAF TERKUATER

Oleh

INTIDHAR JABIR IDAN aL-tHARWANI

Ogos 2017

Pengerusi : Profesor Luqman Chuah Abdullah, PhD Fakulti : Kejuruteraan

Dianggarkan bahawa setiap tahun 280,000 tan pewarna teksti telah dilepaskan ke dalam efluen kilang tekstil, dan malangnya semua kilang masih menggunakan saliran air untuk membuang air efluen kilang. Dalam loji rawatan air sisa, karbon teraktif adalah penjerap yang digunakan secara meluas untuk menghapuskan pelbagai jenis pewarna, tetapi ia sangat mahal. Oleh itu, penjerapan dengan menggunakan berbagai jenis sisa-agro merupakan salah satu bahan alternatif untuk mengnyahkan pelbagai jenis pewarna dari larutan.

Dalam kajian ini, baki serabut teras kenaf (KCF) telah diubahsuai secara kimia dengan (3-kloro-3-hidroxypropil) trimetilammonium klorida (CHPTAC) untuk mengubah sifat-sifat permukaan bagi memerangkap pewarna anion dari larutan akueus. Kajian penjerapan sekelompok telah dijalankan untuk mengkaji prestasi serabut teras kenaf terkuater (QKCF) untuk mengnyahkan RB-reaktif merah, Reaktif Hitam-5, Asid Biru-5, dan Asid Hijau 25 dari sistem tunggal. Pelbagai parameter seperti kepekatan awal pewarna, dos penjerap, kelajuan pengadukan, masa sentuhan, suhu dan pH telah disiasat untuk sistem larutan tunggal tersebut.

 \bigcirc

Penyelidikan ini menerokai kesesuaian serabut teras kenaf terkuater (QKCF) untuk bertindak sebagai penjerap bagi mengnyahkan pewarna anion daripada sistem binari. Kesan kepekatan awal pewarna, masa sentuhan, pH, model keseimbangan isoterma dan mekanisma penjerapan pewarna dalam sistem binari ke atas QKCF telah dikaji dalam suatu sistem berkelompok, manakala parameter operasi termasuk kepekatan pewarna masuk, kadar aliran, dan ketinggian dasar telah dikaji dalam suatu sistem turus dasar tetap.

Hasil kajian menunjukkan bahawa peratusan maksimum pengnyahan dari sistem yang tunggal adalah 98.10%, 99.58%, 99.63% dan 99.60% bagi pewarna RR, RB, AB dan AG masing-masing. Tambahan pula, data keseimbangan adalah terbaik diwakili oleh model isoterma Langmuit dengan kapasiti penjerapan maksimum sebanyak 185.20, 294.12, 303.03 dan 344.83 mg/g untuk pewarna RR, RB, AB dan AG masing-masing, dan data kinetik didapati mengikuti model kinetik arahan-kedua-pseudo. Di samping itu, peratusan maksimum pengnyahan mencecah sehingga 97.8% dan 99.60% bagi pewarna RR dan RB masing-masing dari larutan binari, manakala peratusan maksimum pengnyahan mencecah sehingga 99.96% dan 99.60% bagi pewarna AB dan AG masing-masing dari larutan binari.

Turus dasar tetap menunjukkan prestasi yang lebih baik dengan kepekatan pewarna masuk yang lebih rendah, kurang kadar aliran masuk dan kedalaman dasar penjerap yang lebih tinggi.

Secara keseluruhan, kajian ini menunjukkan bahawa QKCF merupakan penjerap yang berpotensi untuk mengnyahkan pewarna anion daripada larutan akueus sama ada dalam kelompok atau pun sistem turus dasar tetap.

ACKNOWLEDGEMENTS

All praises be to almighty Allah, the lord of whole creations, for inspiring and guiding me towards the utmost goodness. I also would like to express my sincere gratitude and appreciation to my supervisor Professor Dr. Luqman Chuah Abdullah and my co-supervisors Dr. Siti Nurul Ain Binti Md Jamil and Professor Dr. Thomas Shean Yaw Choong to them priceless guidance, continued supervision, advice, comment, encouragement and support throughout the research journey. I would like to gratefully acknowledge the technicians in the Department of Chemical and Environmental Engineering and my colleagues for their willingness in helping me. Many thanks and gratitude also goes to the supervisory committee for their guidance and advice. Also, I would like to express my utmost appreciation and gratitude to Universiti Putra Malaysia. Finally, I would like to thank the University of Babylon, Ministry of Higher Education and Scientific Research, Iraq for the financial supporting of the scholarship. Sincere apologies to any individual I had unintentionally left off.

Intidhar Jabir Idan Al-Tharwan August 2017 I certify that a Thesis Examination Committee has met on 16 August 2017 to conduct the final examination of Intidhar Jabir Idan Al-Tharwani on her thesis entitled "Removing Reactive and Acid Dyes from Single and Binary Solutions by Adsorption on Quaternized Kenaf Core Fibers" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Salmiaton binti Ali, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Chairman)

Robiah binti Yunus, PhD Professor Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

Suraya binti Abdul Rashid, PhD Associate Professor Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

Mohanad El-Harbawi, PhD

Associate Professor King Saud University Saudi Arabia (External Examiner)

NOR AINI AB. SHUKOR, PhD Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: 26 October 2017

This thesis was submitted to the Senate of the Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Luqman Chuah Abdullah, PhD

Professor Faculty of Engineering Universiti Putra Malaysia (Chairman)

Thomas Choong Shean Yaw, PhD

Professor Ir Faculty of Engineering Universiti Putra Malaysia (Member)

Siti Nurul Ain Binti Md. Jamil, PhD

Associate Professor Faculty of Science Universiti Putra Malaysia (Member)

ROBIAH BINTI YUNUS, PhD Professor and Dean

School of Graduate Studies Universiti Putra Malaysia

Date:

Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software

Signature:

Date:

Name and Matric No.: Intidhar Jabir Idan Al-Tharwani, GS40433

Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) were adhered to.

Signature: Name of Chairman of Supervisory	
Committee:	Professor Dr. Luqman Chuah Abdullah
Signature:	
Name of Member	
of Supervisory	
Committee:	Professor Ir Dr. Thomas Choong Shean Yaw
Signature:	
Name of Member	
of Supervisory	Associate Drafesson Dr. Siti Numi Ain Dinti Md. Jamil
Committee:	Associate Professor Dr. Siu Nurui Ain Binu Md. Jamii

TABLE OF CONTENTS

				1 age		
	ARSTR	ACT		i		
	$\Delta RSTR$			iii		
-	ACKN)WLE	DGEMENTS	III V		
	ABSTRACT ABSTRAK ACKNOWLEDGEMENTS APPROVAL DECLARATION LIST OF TABLES LIST OF FIGURES LIST OF FIGURES LIST OF ABBREVIATIONS CHAPTER 1 INTRODUCTION 1.1 Introduction 1.2 Problem Statement 1.3 Research Objectives 1.4 Scope of Research Study 1.5 Novelty of Research Study 1.6 Thesis Layout 2 LITERATURE REVIEW 2.1 Introduction 2.2 Environmental and Health Hazards of Dye Pollution 2.3 Wastewater Treatment Technology 2.3.1 Physical Methods 2.3.2 Chemical Methods 2.3.3 Biological Methods 2.3.3 Biological Methods 2.3.3 Biological Methods 2.4.2 Classification of Adsorption 2.4.2.1 Physical Adsorption 2.4.2.1 Physical Adsorption 2.4.2.2 Chemical Adsorption 2.4.2.1 Physical Adsorption 2.4.2.1 Physical Adsorption 2.4.2.1 Physical Adsorption 2.4.2.1 Physical Adsorption 2.4.2.1 Physical Adsorption 2.4.2.1 Physical Adsorption 2.4.2.2 Chemical Adsorption 2.4.2.1 Physical Adsorption 2.4.2.1 Physical Adsorption 2.4.2.2 Chemical Adsorption 2.4.2.1 Physical Adsorption 2.4.2.1 Physical Adsorption 2.4.2.1 Physical Adsorption 2.4.2.1 Physical Adsorption 2.4.2.2 Chemical Adsorption 2.4.2.1 Physical Adsorption 2.4.2.1 Physical Adsorption 2.4.2.2 Chemical Adsorption 2.4.2.1 Physical Adsorption 2.4.2.2 Chemical Adsorption 2.4.2.3 Physical Adsorption 2.4.2.4 Physical Adsorption 2.4.2.4 Physical Adsorption 2.4.2.4 Physical Adsorption 2.4.2 Physical Ads					
	DECLA	RATI	ON	viii		
	LIST O	FTAF	RLES	XV		
	LIST O	FFIG	URES	xviii		
-	LIST O	FSYN	ABOLS	XXX		
	LIST O	FAB	BREVIATIONS	xxxii		
	СНАРТ	FER				
	1	INTR	ODUCTION	1		
		1.1	Introduction	1		
		1.2	Problem Statement	4		
		1.3	Research Objectives	5		
		1.4	Scope of Research Study	5		
		1.5	Novelty of Research Study	5		
		1.6	Thesis Layout	6		
	2	ттт	DATUDE DEVIEW	7		
	2		Introduction	7		
		2.1	Environmental and Health Hazards of Dya Pollution	7		
		2.2	Wastewater Treatment Technology	/ 0		
		2.5	2.3.1 Physical Methods	10		
			2.3.1 Thysical Methods	10		
			2.3.2 Biological Method	11		
		24	Adsorption	12		
			2.4.1 Factors Affecting Dye Adsorption	13		
			2.4.2 Classification of Adsorption	13		
			2.4.2.1 Physical Adsorption	14		
			2.4.2.2 Chemical Adsorption	14		
		2.5	Adsorption Technologies	15		
			2.5.1 Batch Process	15		
			2.5.2 Fixed Bed Process	16		
		2.6	Adsorbate	16		
		2.7	Properties of Adsorbate	16		
			2.7.1 Reactive Dyes	17		
			2.7.2 Acid Dyes	18		
		2.8	Adsorbent	19		
			2.8.1 Properties of Adsorbent	20		
			2.8.2 Types of Adsorbent	21		
		2.9	Activated Carbon	22		
		2.10	Agricultural Wastes for Preparation of Adsorbent	23		
		2.11	Quaternization on Lignocellulosic Fiber	26		

Page

	2.12	Kenaf	29
	2.13	Regeneration of Adsorbent	31
	2.14	Adsorption Equilibrium	31
	2.15	Adsorption Isotherms	31
		2.15.1 Langmuir Isotherm	33
		2.15.2 Freundlich Isotherm	34
		2.15.3 Temkin Isotherm	35
		2.15.4 Extended Langmuir Equation	35
		2.15.5 Jain and Snoeyink Modified Extended Langmuir	36
		Model	
	2.16	Validity of Isotherm Model	36
	2.17	Adsorption Thermodynamics	36
	2.18	Adsorption Kinetics	37
		2.18.1 Pseudo-First-Order Kinetic Model	37
		2.18.2 Pseudo-Second-Order Kinetic Model	37
	2.19	Adsorption Mechanism	38
		2.19.1 Intraparticle Diffusion Model	38
	-	2.19.2 Parallel Diffusion Model	40
	2.20	Fixed-Bed Adsorption	41
	2.21	Breakthrough Curve Modelling	43
		2.21.1 Thomas Model	43
		2.21.2 Yoon-Nelson Model	43
		2.21.3 Adams - Bohart Model	43
3	МАТ	FRIALS AND METHODOLOGY	45
5	3 1	Introduction	45
	3.1	Materials	45
	5.2	3.2.1 Raw Kenaf Core Fiber	45
		3.2.2 Chemicals	46
		3.2.3 Dyes	46
	3.3	Preparation of Dye Solution	47
	3.4	Preparation Adsorbent from Kenaf Core Fibers	48
	3.5	Optimization of Chemical Modification for Preparation	49
		Quaternization Kenaf Core Fiber Adsorbent	
		3.5.1 Effect of NaOH Concentration in Mercerization	49
		Reaction	
		3.5.2 Effect of NaOH Ratio on Quaternization Reaction	50
		3.5.3 Effect of Particle Size	50
		3.5.4 Comparison the Adsorption Performance of	50
		QKCF with NKCF	
	3.6	Surface Characterization	50
		3.6.1 Scanning Electron Microscope (SEM)	50
		3.6.2 BET Analysis	51
		3.6.3 Microanalysis	51
		3.6.4 Energy Dispersive X-Ray (EDX)	51
		3.6.5 Fourier Transform Infrared Spectroscopy (FTIR)	51
	27	3.6.6 Thermogravimetric analysis (TGA)	52
	3.1	Experimental setup for single system in batch adsorption studies	52

		3.7.1	Effect of Agitation Speed	53
		3.7.2	Effect of Temperature	53
		3.7.3	Effect of Initial pH Solution	53
		3.7.4	Effect of Initial Dye Concentration	54
		3.7.5	Effect of Adsorbent Dose	54
		3.7.6	Effect of Contact Time	54
		3.7.7	Adsorption Isotherms	54
		3.7.8	Batch kinetic studies	55
		3.7.9	Adsorption thermodynamics	55
	3.8	Experin Studies	nental Setup for Binary System in Batch Adsorption	55
		3.8.1	Effect of Initial Dye Concentration and pH	56
		3.8.2	Effect of Adsorbent Dose	56
		3.8.3	Effect of Contact Time	56
		3.8.4	Adsorption Isotherms	57
		3.8.5	Batch Kinetic Studies	57
	3.9	Fixed-b	ed Adsorption Studies for Binary System	57
		3.9.1	Effect of Dyes Inlet Concentration	58
		3.9.2	Effect of Adsorbent Bed Height	58
		3.9.3	Effect of Influent Flow Rate	59
	3.10	Regener	ration of Spent Quaternized Kenaf Core Fiber	59
	3.11	Experin	nental Activities	59
4	RES QUA ADS	ULTS AN TERNIZ ORPTIO	ND DISCUSSION (CHARACTERIZATION OF LED KENAF CORE FIBER AND BATCH IN STUDIES FOR SINGLE SYSTEM)	61
	4.1	Introduc	ction	61
	4.2	Charact	erization of Prepared Quaternized Kenaf Core Fiber	61
		4.2.1	Scanning Electron Microscope (SEM)	61
		4.2.2	BET Analysis	64
		4.2.3	Microanalysis (CHN Elemental Analyzer)	64
		4.2.4	Energy Dispersive X-Ray (EDX)	65
		4.2.5	Fourier Transform Infrared Spectroscopy (FTIR)	66
	4.2	4.2.6	Thermo-Gravimetric Analysis (TGA)	68
	4.3	Optimiz	zation of Chemical Modification for Preparation	/0
		Quatern	Effect of NeOIL Concentration in Menovization	70
		4.3.1	Effect of NaOH Concentration in Mercerization	/0
		122	Frocess Effect of NoOH Potic in Quaternization Kanaf	71
		4.3.2	Core Fiber Process	/ 1
		133	Effect of Particle Size	72
		4.3.3	Comparison the Adsorption Performance of	72
		т.Ј.т	QKCF with NKCF	73
	4.4	Batch A	Adsorption Studies for Single System	74
		4.4.1	Effect of Agitation Speed	74
		4.4.2	Effect of Temperature	76
		4.4.3	Effect of Initial pH Solution	79
		4.4.4	Effect of Initial Dye Concentration	80
		4.4.3	Effect of Adsorbent Dose	83

		4.4.6 Effect of Contact Time	85
	4.5	Batch Adsorption Isotherms Studies for a Single System	88
		4.5.1 Batch Adsorption Isotherms for Reactive Red	89
		4.5.2 Batch Adsorption Isotherms for Reactive Black 5	92
		4.5.3 Batch Adsorption Isotherms for Acid Blue 25	96
		4.5.4 Batch Adsorption Isotherms for Acid Green 25	99
		4.5.5 Selective Adsorption Canacities of the Anionic	101
		Dyes	101
	4.6	Thermodynamic Batch Adsorption Studies	104
	4.7	Batch Kinetic Studies for Single System	106
		4.7.1 Pseudo-First-Order Kinetic Studies	106
		4.7.2 Pseudo-Second-Order Kinetic Studies	110
	4.8	Adsorption Mechanism	113
		4.8.1 Intraparticle Diffusion Model	113
		4.8.2 Parallel Diffusion Model	116
5	RES	ULTS AND DISCUSSION (BATCH AND FIXED BED	119
	ADS	ORPTION STUDIES FOR BINARY SYSTEM)	
	5.1	Introduction	119
	5.2	Measurement of Dye Concentration in Multicomponent	119
	53	Batch Advertion Studies for Binery System	122
	5.5	5.3.1 Effect of Initial Dye Concentration and pH	122
		5.3.2 Effect of Adsorbent Dose	122
		5.3.2 Effect of Contact Time	131
	5 /	Adsorption Isotherms for Binary Reactive Dyes	134
	5.4	5.4.1 Extended Langmuir Equation for Dinary Penetivo	130
		System	130
		5.4.2 Jain and Snoeyink Modified Extended Langmuir	139
		Model for Binary Reactive System	
	5.5	Adsorption Isotherms for Binary Acid Dyes	141
		5.5.1 Extended Langmuir Equation for Binary Acid	142
		System	
		5.5.2 Jain and Snoeyink Modified Extended Langmuir	143
		Model for Binary Acid System	
	5.6	Kinetic Studies for Binary System	144
		5.6.1 Kinetic Studies for Binary Reactive Dyes	145
		5.6.2 Kinetic Studies for Binary Acid Dyes	147
	5.7	Fixed-Bed Adsorption Studies	150
		5.7.1 Effect of Inlet Dyes Concentration	150
		5.7.2 Effect of Height of Adsorbent Bed	152
		5.7.3 Effect of Influent Flow Rate	153
	5.8	Column Dynamics Studies	156
	-	5.8.1 Application of Thomas Model	156
		5.8.2 Application of Yoon-Nelson Model	158
		5.8.3 Application of Adams-Bohart Model	160
	5.9	Regeneration of Spent Quaternized Kenaf Core Fiber	161

6	CON FUT	ICLUSIONS AND RECOMMENDATIONS FOR	165
	6.1	Conclusions	165
	6.2	Recommendations for Future Research	166
REFE APPE BIOD LIST	RENC NDIC ATA (OF PU	CES ES DF STUDENT JBLICATIONS	167 189 218 219

LIST OF TABLES

Table		Page
1.1	Characteristics of dyes used in textile dyeing operations	2
1.2	The main characteristics of a cotton wet processing wastewater	3
2.1	Advantages and disadvantages of different method for waste water treatment	11
2.2	Comparison between physisorption and chemisorption adsorption	15
2.3	Categories of pores diameter	21
2.4	Low cost adsorbents	22
2.5	Previous studies on the adsorption of dyes using adsorbents based on agricultural solid wastes	25
2.6	Comparison of chemical and physical treatment on lignocellulosic biomass as an adsorbent product	26
2.7	Research that was conducted by using quaternized lignocellulosic biomass for the removal of anionic dyes	28
2.8	Chemical composition of kenaf core and kenaf bast	29
3.1	List of chemicals and reagents	46
3.2	General properties of RR, RB, AB and AG dyes	47
4.1	Textural characteristic for NKCF and QKCF	64
4.2	Elemental analysis of NKCF and QKCF by CHN	64
4.3	Elemental analysis of NKCF and QKCF by EDX	65
4.4	FTIR absorption bands of natural kenaf core fiber (NKCF) and quaternization kenaf core fiber (QKCF)	68
4.5	Langmuir, Freundlich and Temkin Isotherm models constants at 15 °C, 25 °C, 35 °C and 45 °C for the adsorption of RR dye onto QKCF	91
4.6	Comparison of maximum sorption capacity (mg/g) of RR dye onto different adsorbents	92

 $\overline{\mathbb{C}}$

	4.7	Langmuir, Freundlich and Temkin Isotherm models constants at 15 °C, 25 °C, 35 °C and 45 °C for the adsorption of RB dye onto QKCF	95
	4.8	Comparison of maximum monolayer sorption capacity (mg/g) of RB dye onto different adsorbents	95
	4.9	Langmuir, Freundlich and Temkin Isotherm models constants at 15 °C, 25 °C, 35 °C and 45 °C for the adsorption of AB dye onto QKCF	98
	4.10	Comparison of maximum monolayer sorption capacity (mg/g) of AB dye onto different adsorbents	98
	4.11	Langmuir, Freundlich and Temkin Isotherm models constants at 15 °C, 25 °C, 35 °C and 45 °C for the adsorption of AG dye onto QKCF	101
	4.12	Comparison of maximum monolayer sorption capacity (mg/g) of AG dye onto different adsorbents	101
	4.13	Thermodynamics parameters for adsorption of RR, RB, AB and AG dyes from aqueous solution onto QKCF at different temperatures	106
	4.14	Pseudo-First-Order kinetic model parameters for adsorption of RR, RB, AB, and AG dyes onto QKCF	109
	4.15	Pseudo-Second-Order kinetics model parameters for adsorption of RR, RB, AB, and AG dyes onto QKCF	112
	4.16	Parameters and correlation coefficient (R ²) for Intra-particle diffusion model for adsorption RR, RB, AB and AG dyes by QKCF	116
	4.17	Experimental Intraparticle Effective Diffusivity of RR, RB, AB and AG dyes in QKCF	117
	4.18	Surface diffusivity, pore diffusivity, and correlation coefficient (R ²) for adsorption RR, RB, AB and AG dyes by QKCF	118
	5.1	Langmuir isotherm constants at 25 °C for the adsorption of RR and RB dyes on QKCF in binary system	138
	5.2	Langmuir isotherm constants at 25 °C for the adsorption of AB and AG dyes on QKCF in binary system	141

5.3	Parameters and correlation coefficient (R ²) for pseudo-first-order and pseudo-second order kinetic models for adsorption RB and RR by QKCF in binary system	147
5.4	Parameters and correlation coefficient (R^2) for pseudo-first-order and pseudo-second order kinetic models for adsorption AB and AG by QKCF in binary system	150
5.5	Column Adsorption data for RR and RB dyes in binary system onto QKCF	155
5.6	Column Adsorption data for AB and AG dyes in binary system onto QKCF	156
5.7	Thomas model parameters for RR and RB dyes in binary system at different conditions using linear regression analysis	157
5.8	Thomas model parameters for AB and AG dyes in binary system at different conditions using linear regression analysis	158
5.9	Yoon-Nelson model parameters for RR and RB dyes in binary system at different conditions using linear regression analysis	159
5.10	Yoon-Nelson model parameters for AB and AG dyes in binary system at different conditions using linear regression analysis	159
5.11	Adams- Bohart model parameters for RR and RB dyes in binary system at different conditions using linear regression analysis	160
5.12	Adams- Bohart model parameters for AB and AG dyes in binary system at different conditions using linear regression analysis	161

 \bigcirc

LIST OF FIGURES

Figure		Page
2.1	Diagram representing the loss of dyes in the effluents waste in Europe	8
2.2	Treatment methods for textile effluent	10
2.3	Proposed four stages mechanism of dye adsorption by adsorbent	12
2.4	Structure of reactive dye	17
2.5	Hydrolysis of dyes	18
2.6	Sodium salt dissolved in water to form colored anion	19
2.7	Adsorbate-adsorbent interactions in liquid phase adsorption	20
2.8	Conversion of the quaternary chlorohydrin reagent to its epoxy form	27
2.9	Reaction of the quaternary epoxy with the cellulosic fibre	27
2.10	The probable electrostatic interaction between the quaternized cellulosic fibres with the anionic dyes	28
2.11	Kenaf plant	29
2.12	Cross section in kenaf stalk	30
2.13	The Brunauer classification describing the different types of the adsorption isotherms	32
2.14	Adsorption process steps	39
2.15	A schematic design representing the saturated and the mass transfer zones along with the fresh or unsaturated adsorbent zones seen in an adsorption system with a fixed bed column	41
2.16	The breakthrough curves seen in an adsorption process with a fixed bed column with regards to time	42
3.1	Raw kenaf core fiber	46
3.2	Molecular structure of (a) RR dye, (b) RB dye, (c) AB dye and (d) AG dyes	47

 \bigcirc

3.3	The prepared QKCF adsorbent	49
3.4	Fixed-bed adsorption system used QKCF for adsorption dyes	58
3.5	Flow chart of experimental work	60
4.1	SEM Micrographs of (a) NKCF (b) MKCF with 5 wt% NaOH (c) MKCF with 10 wt% NaOH (d) MKCF with 20 wt% NaOH (e) MKCF with 40 wt% NaOH (f) MKCF with 60 wt% NaOH (g) QKCF	63
4.2	EDX spectra of (a) NKCF and (b) QKCF	66
4.3	FTIR spectra for natural kenaf core fiber (NKCF) and quaternized kenaf core fiber (QKCF)	67
4.4	TGA curve for NKCF	69
4.5	TGA curve for QKCF	70
4.6	Effect of NaOH concentration in the mercerization process on the performance of QKCF for removing RR and RB dyes	71
4.7	Effect of amount of NaOH in the quaternization process on the performance of QKCF for removing RR and RB dyes	72
4.8	Effect of the particle size on the performance of QKCF for removing RR and RB dyes	73
4.9	Effect of QKCF on the percentage removal of RR and RB dyes	74
4.10	Effect of agitation speed on the percentage removal of RR dye onto QKCF	75
4.11	Effect of agitation speed on the percentage removal of RB dye onto QKCF	75
4.12	Effect of agitation speed on the percentage removal of AB dye onto QKCF	76
4.13	Effect of agitation speed on the percentage removal of AG dye onto QKCF	76
4.14	Effect of solution temperature on removal percentages of RR dye onto QKCF	77
4.15	Effect of solution temperature on removal percentages of RB dye onto QKCF	78

	4.16	Effect of solution temperature on removal percentages of AB dye onto QKCF	78
	4.17	Effect of solution temperature on removal percentages of AG dye onto QKCF	79
	4.18	Effect of initial pH solution on the removal percentage of RR, RB, AB and AG anionic dyes onto QKCF	80
	4.19	Effect of initial dye concentration on the percentage removal of RR dye and the amount of adsorbed by QKCF	81
	4.20	Effect of initial dye concentration on the percentage removal of RB dye and the amount of adsorbed by QKCF	82
	4.21	Effect of initial dye concentration on the percentage removal of AB dye and the amount of adsorbed by QKCF	82
	4.22	Effect of initial dye concentration on the percentage removal of AG dye and the amount of adsorbed by QKCF	83
	4.23	Effect of adsorbent dose on the removal of RR dye and the amount of adsorbed by QKCF	84
	4.24	Effect of adsorbent dose on the removal of RB dye and the amount of adsorbed by QKCF	84
	4.25	Effect of adsorbent dose on the removal of AB dye and the amount of adsorbed by QKCF	85
	4.26	Effect of adsorbent dose on the removal of AG dye and the amount of adsorbed by QKCF	85
	4.27	Effect of contact time at various initial dye concentrations of RR dye onto QKCF	86
	4.28	Effect of contact time at various initial dye concentrations of RB dye onto QKCF	87
	4.29	Effect of contact time at various initial dye concentrations of AB dye onto QKCF	87
	4.30	Effect of contact time at various initial dye concentrations of AG dye onto QKCF	88
	4.31	Linearized Langmuir Isotherm Model for adsorption of RR dye onto QKCF at different temperatures	90

	4.32	Linearized Freundlich Isotherm Model for adsorption of RR dye onto QKCF at different temperatures	90
	4.33	Linearized Temkin Isotherm Model for adsorption of RR dye onto QKCF at different temperatures	91
	4.34	Linearized Langmuir isotherm model for adsorption of RB dye onto QKCF at different temperatures	93
	4.35	Linearized Freundlich isotherm model for adsorption of RB dye onto QKCF at different temperatures	94
	4.36	Linearized Temkin isotherm model for adsorption of RB dye onto QKCF at different temperatures	94
	4.37	Linearized Langmuir isotherm model for adsorption of AB dye onto QKCF at different temperatures	96
	4.38	Linearized Freundlich isotherm model for adsorption of AB dye onto QKCF at different temperatures	97
	4.39	Linearized Temkin isotherm model for adsorption of AB dye onto QKCF at different temperatures	97
	4.40	Linearized Langmuir isotherm model for adsorption of AG dye onto QKCF at different temperatures	99
	4.41	Linearized Freundlich isotherm model for adsorption of AG dye onto QKCF at different temperatures	100
	4.42	Linearized Temkin isotherm model for adsorption of AG dye onto QKCF at different temperatures	100
	4.43	Relation between experimental C_e and q_e with models fitting by Langmuir, Freundlich and Temkin isotherms onto QKCF for RR dye	102
	4.44	Relation between experimental Ce and qe with models fitting by Langmuir, Freundlich and Temkin isotherms onto QKCF for RB dye	102
	4.45	Relation between experimental C _e and q _e with models fitting by Langmuir, Freundlich and Temkin isotherms onto QKCF for AB dye	103
	4.46	Relation between experimental Ce and qe with models fitting by Langmuir, Freundlich and Temkin isotherms onto QKCF for AG dye	103

	4.47	Van't Hoff plot for adsorption of RR, RB, AB and AG by QKCF	104
	4.48	Pseudo-first-order kinetic model for adsorption RR onto QKCF	107
4.49		Pseudo-first-order kinetic model for adsorption RB onto QKCF	108
	4.50	Pseudo-first-order kinetic model for adsorption AB onto QKCF	108
	4.51	Pseudo-first-order kinetic model for adsorption AG onto QKCF	109
	4.52	Pseudo-second-order kinetic model for adsorption RR onto QKCF	110
	4.53	Pseudo-second-order kinetic model for adsorption RB onto QKCF	111
	4.54	Pseudo-second-order kinetic model for adsorption AB onto QKCF	111
	4.55	Pseudo-second-order kinetic model for adsorption AG onto QKCF	112
	4.56	Linearized plots of intraparticle diffusion studies for sorption of RR dye onto QKCF	113
	4.57	Linearized plots of intraparticle diffusion studies for sorption of RB dye onto QKCF	114
	4.58	Linearized plots of intraparticle diffusion studies for sorption of AB dye onto QKCF	114
	4.59	Linearized plots of intraparticle diffusion studies for sorption of AG dye onto QKCF	115
	4.60	Plots of uptake data for adsorption of AB on QKCF	117
	4.61	Plot of intraparticle effective diffusivities of anionic dyes RR, RB, AB and AG onto QKCF	118
	5.1	Calibration curves for RR and RB dyes at (a) $\lambda 1$ max =288 nm (b) and $\lambda 2$ max = 599 nm	121
	5.2	Calibration curves for AB and AG dyes at (a) $\lambda 1$ max =602 nm and (b) $\lambda 2$ max = 641 nm	122
	5.3	Effect of initial RR dye concentrations on the removal percentages of RR dye by QKCF at different pH in the presence of (a) 25 mg/L of RB dye, (b) 50 mg/L of RB dye, (c) 75 mg/L of RB dye and (d) 100 mg/L of RB dye	124

	5.4	Effect of initial RB dye concentrations on the removal percentages of RB dye by QKCF at different pH in the presence of (a) 25 mg/L of RR dye, (b) 50 mg/L of RR dye, (c) 75 mg/L of RR dye and (d) 100 mg/L of RR dye	125
	5.5	Effect of equal initial RR and RB dyes concentration on the removal efficiency of both dyes in binary system	126
	5.6	Effect of initial AB dye concentrations on the removal percentages of AB dye by QKCF at different pH in the presence of (a) 25 mg/L of AG dye, (b) 50 mg/L of AG dye, (c) 75 mg/L of AG dye and (d) 100 mg/L of AG dye	128
	5.7	Effect of initial AG dye concentrations on the removal percentages of AG dye by QKCF at different pH in the presence of (a) 25 mg/L of AB dye, (b) 50 mg/L of AB dye, (c) 75 mg/L of AB dye and (d) 100 mg/L of AB dye	130
	5.8	Effect of equal initial AB and AG dyes concentration on the removal efficiency of both dyes in binary system	130
	5.9	Effect of different adsorbent dosages in binary system with (a) 25 mg/L initial concentrations of RR and RB, (b) 50 mg/L initial concentrations of RR and RB, (c) 75 mg/L initial concentrations of RR and RB and (d) 100 mg/L initial concentrations of RR and RB	132
	5.10	Effect of different adsorbent dosages in binary system with (a) 25 mg/L initial concentrations of AB and AG, (b) 50 mg/L initial concentrations of AB and AG, (c) 75 mg/L initial concentrations of AB and AG and (d) 100 mg/L initial concentrations of AB and AG	134
	5.11	Effect of contact time on the removal of RR dye in the presence of RB dye	135
	5.12	Effect of contact time on the removal of RB dye in the presence of RR dye	135
	5.13	Effect of contact time on the removal of RR and RB dyes in binary system	136
	5.14	Effect of contact time on the removal of AB dye in the presence of AG dye	136
	5.15	Effect of contact time on the removal of AG dye in the presence of AB dye	137

5.16	Effect of contact time on the removal of AB and AG dyes in binary system	137
5.17	Extended Langmuir analysis model for RB dye in binary system with RR dye	139
5.18	Extended Langmuir model analysis for RR dye in binary system with RB dye	139
5.19	Jain and Snoeyink model analysis for RB dye in binary system with RR dye	140
5.20	Jain and Snoeyink model analysis for RR dye in binary system with RB dye	141
5.21	Extended Langmuir model analysis for AB dye in binary system with AG dye	142
5.22	Extended Langmuir model analysis for AG dye in binary system with AB dye	143
5.23	Jain and Snoeyink model analysis for AB dye in binary system with AG dye	144
5.24	Jain and Snoeyink model analysis for AG dye in binary system with AB dye	144
5.25	Pseudo-first-order kinetic model for adsorption RB in binary system with RR	145
5.26	Pseudo-second-order kinetic model for adsorption RB in binary system with RR	145
5.27	Pseudo-first-order kinetic model for adsorption RR in binary system with RB	146
5.28	Pseudo-second-order kinetic model for adsorption RR in binary system with RB	146
5.29	Pseudo-first-order kinetic model for adsorption AB in binary system with AG	148
5.30	Pseudo-second-order kinetic model for adsorption AB in binary system with AG	148
5.31	Pseudo-first-order kinetic model for adsorption AG in binary system with AB	149

5.32	Pseudo-second-order kinetic model for adsorption AG in binary system with AB	149
5.33	Breakthrough curves for adsorption of RR and RB dyes in binary system for different initial dye concentrations	151
5.34	Breakthrough curves for adsorption of AB and AG dyes in binary system for different initial dye concentrations	152
5.35	Breakthrough curves for adsorption of RR and RB dyes in binary system for different bed depth	153
5.36	Breakthrough curves for adsorption of AB and AG dyes in binary system for different bed depth	153
5.37	Breakthrough curves for adsorption of RR and RB dyes in binary system for different flow rate	154
5.38	Breakthrough curves for adsorption of AB and AG dyes in binary system for different flow rate	155
5.39	Adsorption cycles for RR dye onto QKCF	162
5.40	Adsorption cycles for RB dye onto QKCF	163
5.41	Adsorption cycles for AB dye onto QKCF	163
5.42	Adsorption cycles for AG dye onto QKCF	164
A.1	Calibration curve for RR dye at $\lambda_{max} = 288 \text{ nm}$	189
A.2	Calibration curve for RB dye at $\lambda_{max} = 599 \text{ nm}$	189
A.3	Calibration curve for AB dye at $\lambda_{max} = 602 \text{ nm}$	190
A.4	Calibration curve for AG dye at $\lambda_{max} = 641 \text{ nm}$	190
B.1	Linearized Langmuir Isotherm Model for adsorption of RR dye onto QKCF at 25 °C	192
B.2	Linearized Freundlich Isotherm Model for adsorption of RR dye onto QKCF at 25 °C	193
B.3	Linearized Temkin Isotherm Model for adsorption of RR dye onto QKCF at 25 °C	194
C.1	Van't Hoff plot for adsorption of RR by QKCF	196
D.1	Pseudo-first order kinetic model for adsorption RR onto QKCF	198

	D.2	Pseudo-second order kinetic model for adsorption RR onto QKCF	
	D.3	Linearized plots of intra particle diffusion studies for sorption of RR dye onto QKCF	199
	E.1	Linear Regression Analysis for breakthrough curve modeling by Thomas model for RR onto QKCF (in presence RB dye) at different influent dye concentration	200
	E.2	Linear Regression Analysis for breakthrough curve modeling by Thomas model for RB onto QKCF (in presence RR dye) at different influent dye concentration	200
	E.3	Linear Regression Analysis for breakthrough curve modeling by Thomas model for AB onto QKCF (in presence AG dye) at different influent dye concentration	201
	E.4	Linear Regression Analysis for breakthrough curve modeling by Thomas model for AG onto QKCF (in presence AB dye) at different influent dye concentration	201
	E.5	Linear Regression Analysis for breakthrough curve modeling by Thomas model for RR onto QKCF (in presence RB dye) at different bed depths	202
	E.6	Linear Regression Analysis for breakthrough curve modeling by Thomas model for RB onto QKCF (in presence RR dye) at different bed depths	202
	E.7	Linear Regression Analysis for breakthrough curve modeling by Thomas model for AB onto QKCF (in presence AG dye) at different bed depths	203
	E.8	Linear Regression Analysis for breakthrough curve modeling by Thomas model for AG onto QKCF (in presence AB dye) at different bed depths	203
	E.9	Linear Regression Analysis for breakthrough curve modeling by Thomas model for RR onto QKCF (in presence RB dye) at different influent flow rate	204
	E.10	Linear Regression Analysis for breakthrough curve modeling by Thomas model for RB onto QKCF (in presence RR dye) at different influent flow rate	204
	E.11	Linear Regression Analysis for breakthrough curve modeling by Thomas model for AB onto QKCF (in presence AG dye) at different influent flow rate	205

E.12	Linear Regression Analysis for breakthrough curve modeling by Thomas model for AG onto QKCF (in presence AB dye) at different influent flow rate	205
E.13	Linear Analysis for breakthrough curve modeling by Yoon- Nelson model for RR onto QKCF (in presence RB dye) at different influent dye concentration	206
E.14	Linear Analysis for breakthrough curve modeling by Yoon- Nelson model for RB onto QKCF (in presence RR dye) at different influent dye concentration	206
E.15	Linear Analysis for breakthrough curve modeling by Yoon- Nelson model for AB onto QKCF (in presence AG dye) at different influent dye concentration	207
E.16	Linear Analysis for breakthrough curve modeling by Yoon- Nelson model for AG onto QKCF (in presence AB dye) at different influent dye concentration	207
E.17	Linear Analysis for breakthrough curve modeling by Yoon- Nelson model for RR onto QKCF (in presence RB dye) at different bed depths	208
E.18	Linear Analysis for breakthrough curve modeling by Yoon- Nelson model for RB onto QKCF (in presence RR dye) at different bed depths	208
E.19	Linear Analysis for breakthrough curve modeling by Yoon- Nelson model for AB onto QKCF (in presence AG dye) at different bed depths	209
E.20	Linear Analysis for breakthrough curve modeling by Yoon- Nelson model for AG onto QKCF (in presence AB dye) at different bed depths	209
E.21	Linear Analysis for breakthrough curve modeling by Yoon- Nelson model for RR onto QKCF (in presence RB dye) at different influent flow rate	210
E.22	Linear Analysis for breakthrough curve modeling by Yoon- Nelson model for RB onto QKCF (in presence RR dye) at different influent flow rate	210
E.23	Linear Analysis for breakthrough curve modeling by Yoon- Nelson model for AB onto QKCF (in presence AG dye) at different influent flow rate	211

E.24	Linear Analysis for breakthrough curve modeling by Yoon- Nelson model for AG onto QKCF (in presence AB dye) at different influent flow rate	211
E.25	Linear Analysis for breakthrough curve modeling by Adams- Bohart model for RR dye onto QKCF (in presence RB dye) at different influent dye concentration	212
E.26	Linear Analysis for breakthrough curve modeling by Adams- Bohart model for RA dye onto QKCF (in presence RR dye) at different influent dye concentration	212
E.27	Linear Analysis for breakthrough curve modeling by Adams- Bohart model for AB dye onto QKCF (in presence AG dye) at different influent dye concentration	213
E.28	Linear Analysis for breakthrough curve modeling by Adams- Bohart model for AG dye onto QKCF (in presence AB dye) at different influent dye concentration	213
E.29	Linear Analysis for breakthrough curve modeling by Adams- Bohart model for RR onto QKCF (in presence RB dye) at different bed depths	214
E.30	Linear Analysis for breakthrough curve modeling by Adams- Bohart model for RB onto QKCF (in presence RR dye) at different bed depths	214
E.31	Linear Analysis for breakthrough curve modeling by Adams- Bohart model for AB onto QKCF (in presence AG dye) at different bed depths	215
E.32	Linear Analysis for breakthrough curve modeling by Adams- Bohart model for AG onto QKCF (in presence AB dye) at different bed depths	215
E.33	Linear Analysis for breakthrough curve modeling by Adams- Bohart model for RR onto QKCF (in presence RB dye) at different influent flow rate	216
E.34	Linear Analysis for breakthrough curve modeling by Adams- Bohart model for RB onto QKCF (in presence RR dye) at different influent flow rate	216
E.35	Linear Analysis for breakthrough curve modeling by Adams- Bohart model for AB onto QKCF (in presence AG dye) at different influent flow rate	217

E.36 Linear Analysis for breakthrough curve modeling by Adams-Bohart model for AG onto QKCF (in presence AB dye) at different influent flow rate

LIST OF SYMBOLS

	Symbols	Description	Unit
	Co	Initial dye concentrations	mg/L
	Ce	Equilibrium dye concentrations	mg/L
	W	Weight of adsorbent	g
	V	Volume of dye solution	L
	qe	Adsorption capacity at equilibrium	mg/g
	qt	Adsorption capacity at any time t	mg/g
	qmax	Maximum adsorption capacity	mg/g
	qe,cal	Calculated adsorption capacity	mg/g
	q _{e,exp}	Experimental adsorption capacity	mg/g
	Kb	Adsorption equilibrium Langmuir constant	L/mg
	KL	Langmuir constant	L/g
	Kid	Intraparticle diffusion rate constant	mg/g min
	K _F	Freundlich constant	$(mg/g)(L/mg)^{1/n}$
	R _L	Separation factor	Dimensionless
	1/n	Surface heterogeneity	Dimensionless
	R	universal gas constant	8.314 J/mol K
	Т	Absolute temperature	°K
	В	Temkin constant related to heat of sorption	j/mol
	А	Temkin isotherm equilibrium binding constant	L/g
	n	number of data points	-
	ΔG^{o}	Change in standard free energy	kJ/mol
	ΔH°	Change in enthalpy	kJ/mol

	ΔS^{o}	Change in standard entropy	j/mol K
	K_1	Pseudo-first-order adsorption rate constant	1/min
	K2	Pseudo-second -order rate constant	mg/g min
Deff		effective diffusivities value for the homogeneous model	m²/s
	Ds	Surface diffusivity	m ² /s
	D _{Pa}	Pore diffusivity	m^2/s
	E	Porosity of adsorbent	-
	C1	Required dye concentration	mg/L
	C ₂	Stock dye concentration	mg/L
	\mathbf{V}_1	Required dye volume	mL
	V_2	Stock dye volume	mL
	Q	Flow rate	mL/min
	m	Amount of adsorbent in the column	g
	Ктн	Thomas rate constant	mL/(mg.min)
	Kyn	Yoon Nelson constant	min ⁻¹
	Kab	Adams Bohart constant	L/(mg.min)
	qo	Thomas constant for bed capacity	mg/g
	τ	Time required for 50% adsorbate breakthrough	Min
	Uo	Linear velocity	cm/min
	No	Maximum dye uptake capacity per unit volume of adsorbent column	mg/L

LIST OF ABBREVIATIONS

KCF	Kenaf core fiber
MKCF	Mercerized Kenaf core fiber
QKCF	Quaternized kenaf core fiber
CHPTAC	(3-chloro-2-hydroxypropyl) trimethylammonium chloride
RR	Reactive Red-RB dye
RB	Reactive Black 5 dye
AB	Acid Blue 25 dye
AG	Acid Green 25 dye
INTROP	Institute of Tropical Forestry and Forest Product
SEM	Scanning Electron Microscope
EDX	Energy Dispersive X-Ray
BET	Brunauer-Emmett-Teller method
FTIR	Fourier Transform Infrared Spectroscopy
TGA	Thermogravimetric analysis
SSE	Sum of the Squares Errors
MTZ	Mass Transfer Zone

CHAPTER 1

INTRODUCTION

1.1 Introduction

The colour is the essential attractive thing for any marketing products. regardless of its arrangement, if the colour of the product is inappropriate, then the sales might not be good either. Dyes are used firstly in the production of customer products, inclusive textiles, sheet, plastics, and pigments. They add dyes and styles to materials (Kant, 2012). A textile was previously being coloured with naturalistic dyes. However, these provided a restricted and a tedious scope of colours. In addition, they showed less colour firmness once subjected to sunlight or washing. For that reason, a mordant type of dye compound was needed in order to fasten the fiber as well as the dye with each other, thus creating the dyers' job tiresome (Whitaker and Willock, 1949). The introduction of artificial dyes from petroleum origin in the late 19th century finished the market for natural dyes from a plant source, which had been in use since 3500 BC. Nowadays, more than 100,000 various dye structures have been synthesized (Kant, 2012). Synthetic dyes have supplied colours which dye quick and produce a broad colour range, but such dyes are said to have toxic nature that make environmentalists seriously worried. Using artificial dyes have, in fact, a reverse impact on various types of existence (Priya, 2015).

Over 3600 types of individual textile dyes are being made by the manufacturers in the present. Throughout textile manufacture's processes, it is estimated that 8000 different type of chemicals is used for both printing and dyeing operations. Around 1.6 million litters of water per day is spent in a textile mill which has a fabric production of around 8000 kg/day, 8% of this water is consumed in printing and 16% in dyeing (Ravi et al., 2014). For this kind of dye, water used for dyeing differs from 30 - 50 litters per kg of cloth. As a result, the contribution of dyeing section is about 15% - 20% of the total flow of effluent. According to The World Bank, 17% -20% of industrial water pollution occurs as a result of textile dyeing and treatment. This vast water use is a key of water body pollution (Rajan et al., 2015).

 \bigcirc

Dyes can be distributing into three mainly classes: (a) cationic (all basic dyes), (b) anionic (direct, acid, and reactive dyes), and (c) non-ionic (dispersed dyes) (Greluk and Hubicki, 2010). Cationic dyes are artificial dyes acting as bases and once soluble in water, forming a colored ion salt, which will then react with the anionic sites on the surface of the substrate. Anionic dyes have negative ions due to the surplus presence of the OH⁻ ions in solution. Reactive and basic dyes have favourite characteristics of bright colour, easily dissolving in water and applying to fabric, moreover they are inexpensive. All these made them widely used in the textile mills (Karadag et. al., 2007).

The researchers in effluent textile treatment have often centred on reactive dyes for these reasons: (i) they are used to dye cotton fibers, and since about half of the world's fiber consumption is of this fiber type, textile factories use more than 80000 tonnes of reactive dyes every year. (Chakraborty et al., 2005). (ii) the dye hydrolysis in alkaline dye bathtub results in wasting about 30% of the reactive dyes used, and (iii) the traditional wastewater treatment plants are not good enough to remove anionic dyes, including reactive dyes, which cause, in turn, coloured water-paths (Kyzas et. al., 2012). Table 1.1 shows the characteristic features of dyes used in the textile dyeing process (Adamu, 2008).

Type of dye	Fixation (%)	characterization	species of pollutants related with the dyes
Reactive	less than 80	water-soluble, anionic composite, greatest dye group	Colour, salt, unfixed dyes, alkali
Acid	less than 93	water-soluble, anionic composite	Colour, unfixed dyes, and organic dyes
Direct	less than 95	water-soluble, anionic composite, can be applied (without mordant or metals like chromium and copper) directly to celluloses	Salt, colour ,unfixed dyes, copper salts, cationic fixing agents
Basic	less than 98	water-soluble, used with a mordant	Unfixed dyes, alkali
Vat	less than 95	ancient dyes, more chemically complex, water-insoluble	Alkali, reducing agent, oxidizing agent
Disperse	less than 92	water-insoluble	Colour, carriers, reducing agent, organic acids
Sulfur	less than 70	organic compounds containing sulfur or sodium sulfide	Alkali, colour ,oxidizing agent, reducing agent, unfixed dyes

Table 1.1 : Characteristics of dyes used in textile dyeing operations (Adamu, 2008)

The most challenging mission in wastewater treatment plants are the removal of anionic dyes, because they are water-soluble which have acidic properties and produce very shining colours in water. It has been estimated that the total dye consumption in textile industry around the world is more than 10,000 tonnes annually and about 10-15% of these dyes are discharged as wastewater through the dyeing processes (Gupta et al., 2013).

A colour of the textile effluent (ADMI colour value - American Dye Manufacturer Institute colour value), and hazardous organic compounds or other potentially dangerous included into each textile processing stages are recorded in Table 1.2 (Cooper, 1995).

Process	Colour (ADMI)	BOD, g O ₂ /L	COD, g O ₂ /L	рН	TDS, g/L	Water consume/ Kg of product (L)
Dyeing	1450-4750	0.01-1.8	1.1-4.6	5-10	0.05	8-300
Desizing	-	1.7-5.2	4.6-5.9	-	-	3-9
Mercerization	- 2	0.05-0.1	1.6	5.5-9.5	4.3-4.6	232-308
Scouring	694	0.1-2.9	8.0	10-13	-	26-43

Table 1.2 : The main characteristics of a cotton wet processing wastewater (Cooper, 1995)

Water stream contaminated by industry effluent is regarded as one of the most common problems in the world. The presence of colour in water has ever been undesirable for any purposes. The presence of metals in different dyes is fundamental for their function as textile colourants. Unavoidable, these toxic metals will reach to aquatic environments and pose a significant menace to the lives in the aquatic system (Waranusantigul et al., 2003). For example, the heavy metals associated with acid dyes are lead, cobalt, zinc, copper, and chromium. While, the heavy metals associated with Reactive dyes are lead, copper, and chromium. Discharge of these dyes with associated toxicity metals may cause negative hazards impacts to the ecosystem and human health (Hameed et al., 2008; Verma, 2008). Dyes that reach to water bodies absorb and reflect the sunlight inhibit photosynthesis, and thus, disturbs aquatic life and, consequently affects food chain (Bouasla et al., 2010). Such dyes are considered carcinogenic and toxic, and therefore, form serious threat to watery life. Synthetic dyes are composed of complex aromatic molecular structures that are constructed to resist for many agents like exposure to venation, laundry, water, light, and all these make them high stabilization. As a result, dyes are resistance to remove by conventional water treatment plants (Indrani et al., 2016). Thus, increasing levels of dyes pollutants in the environment not only cause a dangerous menace to the environment but also affect the public health. To deal with this problem, industrial effluents must be treated prior to discharging.

 \bigcirc

Adsorption process can remove or reduce different kinds of pollutants including dyes and is widely used in wastewater treatment plant (Hamdaoui, 2006). Various adsorbents have been attempted to remove various types of synthetic dyes. In wastewater treatment plant, coal-based activated carbon is a widely used adsorbent to remove many types of dyes, but it is very expensive because original material is costly and required high energy for the activation method. Moreover, there are many problems associated with the regeneration of activated carbon (Gupta et al., 2013). Therefore, numerous studies have been focused on low-cost and efficient adsorbents materials derived from natural materials for the removal various species of dyes from an effluent (Gupta and Suhas, 2009). Following this tendency, cellulose-based layer plants are seen as encouraging materials for the elimination of multi-kinds of pollutants from wastewater. Agricultural biomass plants are one of the plentiful substances, cheap and renewable natural material (Vismara et al., 2009). In this context, the present research deals with the activity of removing acid and reactive anionic dyes from aqueous solution by using inexpensive and native agricultural biomass.

1.2 Problem Statement

It is estimated that every year 280,000 tonnes of textile dyes are released in textile mill effluent (Jin et al., 2007), and unfortunately, all factories are still using water streams for discharging their effluent water. However, the necessity to the renewal of our water resources has received growing interest. This has led up to the evolution of strategies to, reversion water to its source in the least possible pollution form, to enable use water again. These strategies and processes are termed as "wastewater treatment".

Effluent from textile industries should meet the Environmental Quality (Industrial Effluent) Regulations 2009. Any wastewater treatment plant has to design and able to treat the wastewater to meet the standard specifications (Kharat, 2015).

A numerous number of research papers have considered adsorption processes for single component systems. However, due to the complexity of the textile effluent and the variability of the dyeing process little successes have been reported in using this technique as a full-scale process to decolourise textile wastewater. Hence, this study was undertaken to address the problems associated with multi-component adsorption from aqueous solutions. This is essential for the accurate design of adsorption systems as the effect of multicomponent interactions in the process effluent may cause deterioration in the adsorption capacity of an adsorbent for dyes.

The use of commercial activated carbon for removing dyes is expensive as it is obtained from non-renewable starting materials like lignite, coal and petroleum coke. Therefore, aqueous phase adsorption by utilizing different types of agro-residues is one of the most alternatives materials (Kharat, 2015). Agricultural biomass can be either procured directly from plant species or indirectly from a processing of domestic, commercial, industrial or agricultural products (Viglasky et al., 2009). Last few decades, interest on producing adsorbent which can be derived from renewable, abundant, and low-cost substances generated from an agricultural origin was increased (Babel and Kurniawan, 2003). As compared to the production of activated carbon which requires high energy consumption (steam or gasification processes), a chemical modification process on agricultural biomass, such as quaternization, which requires less energy (no gasification) to produce adsorbent, is considered. There are some reported literatures about quaternized adsorbents,

however, no research has ever reported on the quaternized kenaf core fiber (KCF) as adsorbent for binary dyes removal from aqueous solution to date. Therefore, the study on development of quaternized KCF as a novel adsorbent in removing binary dyes in aqueous solutions is needed.

1.3 Research Objectives

The following objectives were addressed in this work:

- 1- To modify and optimize the chemical modification process of kenaf core fiber (KCF) by using quaternized agent; (3-chloro-2-hydroxypropyl) trimethylammonium chloride.
- 2- To examine the removal of anionic Reactive Red RB, Reactive Black 5, Acid Blue 25 and Acid Green 25 dyes from aqueous solutions via single dye batch adsorption systems using the quartenized kenaf core fiber (QKCF).
- 3- To investigate the removal of binary reactive dyes (Reactive Red RB and Reactive Black 5) and binary acid dyes (Acid Blue 25 and Acid Green 25) from aqueous solution via batch and fixed-bed column adsorption systems using the quartenized kenaf core fiber (QKCF).
- 4- To analyze the equilibrium isotherm models using Langmuir, Freundlich and Temkin models for single dye system and also an examination of the applicability of the extended Langmuir model and Jain-Snoeying model for multicomponent dyes in binary systems.

1.4 Scope of Research Study

In this study, kenaf core fiber (KCF) was chemically modified by the quaternized agent and used as adsorbent to adsorb RR, RB, AB and AG dyes from single and binary aqueous solution in batch and continues studies and the results from this study were compared with other research which used modified agricultural waste. The influencing operating factors like agitation speed, temperature, pH, initial dye concentration, adsorbent dosage and contact time were examined in a batch mode system. While, operation parameters which include inlet dye concentration, flow rate, and bed height were studied in fixed bed system. The adsorption isotherm, kinetics and thermodynamic studies of dye adsorption were also studied in detail.

1.5 Novelty of Research Study

In practice, most industrial wastewaters contain more than one dye (as a mixture). However, to date, the utilization of quartenized kenaf core fiber (QKCF) in batch and fixed-bed adsorption studies to adsorb binary reactive dyes and binary acid dyes has not been reported elsewhere. Thus, in the present work, investigation on adsorption in binary system was carried out. Pre-treatment with different concentration of Sodium hydroxide solution was used to increase the accessibility and chemical reactivity of QKCF to obtain the cationic cellulose with ideal

adsorption ability for removing anionic dyes. The mechanism of dyes adsorption onto QKCF was also studied in detail.

1.6 Thesis Layout

There are a total of six chapters in this thesis. Chapter One (Introduction) gives the overview of present situation of water pollution problem. This chapter briefly explains the research objectives and overall content of the thesis.

Chapter Two (Literature Review) provides important information about preparation of adsorbent. Theoretical backgrounds of batch adsorption study for adsorbateadsorbent system are explained in the second section. The third section summarizes the sorption dynamics of fixed bed in terms of Thomas, Adams-Bohart, and Yoon-Nelson models.

Chapter Three (Materials and Methodology) deals with the experimental set up for production of adsorbent. The experimental procedure for single system in batch adsorption studies, binary system in batch adsorption studies, fixed-bed adsorption studies for binary system and regeneration of the prepared adsorbent are explained. The last section of the chapter comprises of schematic flow chart of all research activities in this project.

Chapter Four (Results and Discussion) presents the results obtained for surface characterization of the prepared adsorbents by different physical and chemical tests. The results obtained from batch adsorption studies for adsorbent dyes on QKCF from single solution were presents in second section. Equilibrium isotherm, kinetic studies and thermodynamic parameters are evaluated in in third section. Overall performance of QKCF towards the anionic dyes under investigation is compared with other types of adsorbents.

Chapter Five (Results and Discussion) deals with the batch adsorption studies carried out for dyes in binary system. Equilibrium isotherm and kinetic parameters are evaluated in second section. The break through curve analysis and the model parameters necessary to understand sorption dynamics in continuous flow adsorption were evaluates in third section. The last section provides the necessary information for regeneration of the dyes loaded adsorbent by using eluting agent.

The conclusions of the overall findings of this research are given in Chapter Six. The conclusion summarizes the listed of the objectives are achieved throughout this study. The last section deals with some recommendations and their significance related to this study for future application.

REFERENCES

- Abbas, H. S., Waleed, M. A., Tariq, J., & Dhafer, F. A. (2014). Single and Binary adsorption of reactive blue and red dyes onto Activated Carbon. *International Journal of Engineering Innovation and Research*, 3(5): 642-649.
- Abdul Karim, S. K., Lim, S. F., David, C. S. N., Salleh, S. F., & Law, P. L. (2016). Banana Fibers as Sorbent for Removal of Acid Green Dye from Water. *Journal of Chemistry*, 11 pages.
- Adamu, A. (2008). Adsorptive Removal of Reactive Azo Dyes using Industrial Residue. MSc. Thesis, Faculty of science, Addis Ababa University, Ethiopia.
- Adil, M. (2006). Preparation, modification and characterization of activated carbons for batch adsorption studies on the removal of selected metal ions. MSc. Thesis, University Technology, Malaysia.
- Afroze, S., Kanti, T., & Ang, H. M. (2016) Adsorption performance of continuous fixed bed column for the removal of methylene blue (MB) dye using Eucalyptussheathiana bark biomass. *Research on Chemical Intermediates*, 42(3): 2343-2364.
- Ahmad, A. A., & Hameed, B. H. (2010). Fixed-bed adsorption of reactive azo dye onto granular activated carbon prepared from waste. *Journal of Hazardous Materials*, 175: 298-303.
- Ahmad, A.A. (2006). Isotherm, Kinetics and Thermodynamic studies of Dyes adsorption from aqueous solution onto activated palm ash and Bentonite. MSc. Thesis, University Science Malaysia, Malaysia.
- Ahmedna, M., Marshall, W. E., & Rao, R. M. (2000). Production of granular activated carbons from select agricultural by-products and evaluation of their physical, chemical and adsorption properties. *Bioresource Technology*, 71: 113-123.
- Aksakal, O., & Ucun, H. (2010). Equilibrium, kinetic and thermodynamic studies of the biosorption of textile dye (Reactive Red 195) onto Pinus sylvestris L. *Journal of Hazardous Materials*, 181: 666-672.
- Aksu, Z. (2005). Application of biosorption for the removal of organic pollutants: A review. *Process Biochemistry*, 40(3-4): 997-1026.
- Aksu, Z., & Gonen, F. (2004). Biosorption of phenol by immobilized activated sludge in a continuous packed bed prediction of breakthrough curves. *Process Biochemistry*, 39(5): 599-613.

- Al-Degs, Y., Khraisheh, M. A. M., Allen, S. J., Ahmad, M. N., & Walker, G. M. (2007). Competitive adsorption of reactive dyes from solution: Equilibrium isotherm studies in single and multisolute systems. *Chemical Engineering Journal*, 128:163-167.
- Al-Degs, Y. S., El-Barghouthi, M. I., El-Sheikh, A. H., & Walker, G. M. (2008). Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon. *Dyes and Pigments*, 77(1): 16-23.
- Al-Husseiny, H. A. (2014). Adsorption of methylene blue dye using low cost adsorbent of sawdust: Batch and continues studies. *Journal of Babylon University /Engineering Sciences*, 2(22): 296-310.
- Alimohammadi, Z., Younesi, H., & Bahramifa, N. (2016). Batch and Column Adsorption of Reactive Red 198 from Textile Industry Effluent by Microporous Activated Carbon Developed from Walnut Shells. Waste Biomass Valor, 7(5): 1255-1270.
- Amin, M. T., Alazba, A. A., & Shafiq, M. (2015). Adsorptive Removal of Reactive Black 5 from wastewater using bentonite clay: isotherms, kinetics and thermodynamics. *Sustainability*, 7: 15302-15318.
- Anjaneyulu, Y., Sreedhara, C. N., & Samuel, S. D., (2005). Decolourization of industrial effluents- available methods and emerging technologies-a review. *Reviews in Environmental Science and BioTechnology*, 4 (4): 245-273.
- Ansari, R., & Dezhampanah, H. (2013). Application of polyaniline /sawdust composite for removal of acid green 25 from aqueous solutions: kinetics and thermodynamic studies. *Eur. Chem. Bull.*, 2(4): 220-225.
- Ansari, S. A., Khan, F., & Ahmad, A. (2016). Cauliflower Leave, an Agricultural Waste Biomass Adsorbent, and Its Application for the Removal of MB Dye from Aqueous Solution: Equilibrium, Kinetics, and Thermodynamic Studies. *International Journal of Analytical Chemistry*.
- Arami, M., Limaee, N.Y., Mahmoodi, N.M., & Tabrizi, N.S. (2005). Removal of dyes from colored textile wastewater by orange peel adsorbent: Equilibrium and kinetic Studies. *Journal of Colloid and interface Science*, 288: 371-376.
- Archna, Lokesh, K. N., & Siva Kiran, R. R. (2012). Biological methods of dye removal from textile effluents A review. J Biochem Tech, 3(5): 177-180.
- Ardejani, F. D., Badii, K., Nimall, N.Y., Shafaei, S. Z., & Mirhabibi, A. R. (2008). Adsorption of direct red 80 dyes from aqueous solution on to almond shells: effect of pH, initial concentration and shell type. *Journal of Hazardous Materials*, 151:730-737.

- Asgher, M., & Bhatti, H. N. (2012). Evaluation of thermodynamics and effect of chemical treatments on sorption potential of Citrus waste biomass for removal of anionic dyes from aqueous solutions. *Ecological Engineering*, 38: 79-85.
- Atar, N., Olgun, A., Wang, S., & Liu, S. (2011). Adsorption of anionic dyes on boron industry waste in single and binary solutions using batch and fixed-bed systems. J. Chem. Eng. Data, 56: 508-516.
- Babel, S., & Kurniawan, T. A. (2003). Low-cost adsorbents for heavy metals uptake from contaminated water: a review. *Journal of hazardous materials*, B97: 219-243.
- Balarak, D., Mahdavi, Y., Mostafapour, F. K., & Azarpira, H. (2016). Using of Lemna Minor for adsorption of Acid Green 3 dye (AG3) from aqueous solution: Isotherm and kinetic study. *Journal of Chemistry and Materials Research*, 5 (5): 92-98.
- Balarak, D., Mostafapour, F. K., & Azarpira, H., (2016). Biosorption of Acid Green 25 from Textile dye effluent using Barley husk. *International Journal of* Advanced Biotechnology and Research, 7(3): 1062-1070.
- Bansode, P. R., Losso, J. N., Marshall, W. E., Rapo, R. M., & Portier, R. J. (2003). Adsorption of metal ions by pecans shell-based granular activated carbons. *Bioresource Technology*, 89: 115-119.
- Baral, S. S., Das, N., Ramulu, T. S., Sahoo, S. K., Das, S. N., & Chaudhury, G. R. (2009). Removal of Cr (VI) by thermally activated weed Salvinia cucullata in a fixed-bed column. *Journal of hazardous materials*, 161 (2): 1427-1435.
- Basri, M., H., Abdu, A., Junejo, N., Abdul Hamid, H., & Ahmed K. (2014). Journey of kenaf in Malaysia: A Review. *Scientific Research and Essays*, 9(11): 458-470.
- Baughman, G. L., & Perenich, T.A., (1988). Fate of dyes in aquatic systems: Solubility and partitioning of some hydrophobic dyes and related compounds. *Environmental Toxicology Chemistry*, 7: 183-199.
- Bayramoglu, G., Adiguzel, N., Ersoy, G., & Arica, M. Y. (2013). Removal of Textile Dyes from Aqueous Solution using Amine-Modified Plant Biomass of A. caricum: Equilibrium and Kinetic Studies. *Water Air and Soil Pollution*, 224(8).
- Bazrafshan, E., Rahdar, S., Mostafapour, F. K., Balarak, D., & Zazouli, M. A. (2015). Equilibrium and Thermodynamics Studies for Decolorization of Reactive Black 5 by Adsorption onto Acid Modified Banana Leaf Ash. *Iran J Health Sci*, 3(3): 15-28.

- Bhatnagar, A., Kumar, E., & Sillanpaa, M. (2011). Fluoride removal from water by adsorption-A review. *Chem. Eng. J.*, 171(3): 811-840.
- Bohart, G., & Adams, E. N. (1920). Some aspect of the behavior of charcoal with respect to chlorine. *Journal of American Chemical Society*, 42: 523-529.
- Bouasla, C., Samar, M. E. H., & Ismail, F. (2010). Degradation of methyl violet 6B dye by the Fenton process. *Desalination*, 254(1-3): 35-41.
- Boudrahem, F., Aissani, B., & Soualah, A. (2015). Removal of basic yellow dye from aqueous solutions by sorption onto reed as an adsorbent. *Desalination and Water Treatment*, 54(6). 1727-1734.
- Brunauer, S., Emmet, P. H., & Teller, E. (1938). Adsorption of gases in multimolecular layers. *Journal of American Chemical Society*, 60: 309-319.
- Bulut, Y., & Zeki, T. (2007). Removal of heavy metals from aqueous solution by sawdust adsorption. *Journal of Environmental Science*, 19: 160-166.
- Butler, J. A. V., & Ockrent, C. (1930). Studies in Electrocapillarity. Part III. The Surface Tensions of Solutions Containing Two Surface-Active Solutes. J. Phys. Chem., 34: 2841-2845.
- Cardoso, N. F., Lima, E. C., Royer, B., Bach, M. V., Dotto, G. L., Pinto, L. A. A., & Calvete, T. (2012). Comparison of Spirulina platensis microalgae and commercial activated carbon as adsorbents for the removal of Reactive Red 120 dye from aqueous effluents. *Journal of Hazardous Materials*, 241-242(0): 146-153.
- Chakraborty, S. S., De, S., Basu, J. K., & Gupta, S. (2005). Treatment of a textile effluent: application of a combination method involving adsorption and nanofiltration. *Desalination*, 174: 73-85.
- Chandra, T. C., Mirna, M. M., Sudaryanto, Y., & Ismadji, S. (2007). Adsorption of basic dye onto activated carbon prepared from durian shell: Studies of adsorption equilibrium and kinetics. *Chemical Engineering Journal*, 127: 121-129.
- Chaudhuri, M., & Hui, C. X. (2013). Neem (Azadirachta indica) Leaf Powder:A Plant BasedAdsorbent for Removal of Textile Acid Azo Dye from Aqueous Solution. *Nature Environment and Pollution Technology*, 12(2): 199-202.
- Chen, H. (2006). Recent advances in azo dye degrading enzyme research. *Current Protein Peptide Science*, 7: 101-111.
- Chen, X. (2015). Modeling of Experimental Adsorption Isotherm Data. *Information*, 6(1): 14-22.

- Chowdhury, T. A. (2014). Effect of sodium hydroxide (naoh) concentration in scouring bleaching process of knit fabric. International Journal of Science, *Environment and Technology*, 3(6): 2145 -2149.
- Chowdhury, Z. Z. (2013). preparation, characterization and adsorption studies of heavy metals onto activated adsorbent materials derived from agricultural residues. PhD Thesis, University of Malaya. Malaysia.
- Chowdhury, Z. Z., Abd Hamid, S. B., & Zain, S. M. (2015). Evaluating design parameters for breakthrough curve analysis and kinetics of fixed bed columns for Cu(II) cations using lignocellulosic wastes. *BioResources*, 10(1): 732-749.
- Cooper, P. (1995). Color in dyehouse effluent, Society of Dyers and Colourists, ISBN 0 901956 694, West Yorkshire BDI 2JB, England.
- Dabrowski, A. (2001). Adsorption from theory to practice. Advance in Colloid Interface Science. 93: 135-224.
- Dawood, S., Sen, T. K., & Phan, C. (2014). Synthesis and Characterisation of Novel-Activated Carbon from waste biomass pine cone and its application in the removal of Congo Red Dye from Aqueous Solution by Adsorption. Water Air Soil Pollution, 225(1):1818-1822.
- De Lima, A. C. A., Nascimento, R. F., de Sousa, F. F., Filho, J. M., & Oliveira, A. C. (2012). Modified coconut shell fibers: A green and economical sorbent for the removal of anions from aqueous solutions. *Chem. Eng. J.*, 185, 274-284.
- Deniz, F. (2013). Adsorption Properties of Low-Cost Biomaterial Derived from Prunus amygdalus L. for Dye Removal from Water. *The Scientific World Journal*, 8 pages.
- Dichiara, A. B., Weinstein, S. J., & Rogers R. E. (2015). On the Choice of Batch or Fixed Bed Adsorption Processes for Wastewater Treatment. *Industrial & Engineering Chemistry Research*, 54(34): 8579–8586.
- Dogan, M., Abak, H., & Alkan, M. (2009) Adsorption of Methylene blue onto Hazelnut shell: kinetics, mechanism and activation parameters. *J Hazard Mater*, 164:172-181.
- Dursun, A. Y., Tepe, O., Uslu, G., Dursun, G., & Saatci, Y. (2013). Kinetics of Remazol Black B adsorption onto carbon prepared from sugar beet pulp. *Environ Sci Pollut Res Int.*, 20(4): 2472-83.
- Eckenfelder, W. W.(2000). Industrial Water Pollution Control: Mc Graw Hill Book Company, New York.

- Ekrami, E., & Okazi, M. (2010). Analysis of dye concentration in binary dye solutions using derivative spectrophotometric techniques. *World Applied Science Journal*, 11(8): 1025-1034.
- Elizalde-González, M. P., Mattusch, J., & Wennrich, R. (2008). Chemically modified maize cobs waste with enhanced adsorption properties upon methyl orange and arsenic. *Bioresource Technology*, 99: 5134-5139.
- El-Khaiary, M. I. (2008). Least-squares regression of adsorption equilibrium data: comparing the options. *Journal of Hazardous Materials*, 158: 73–87.
- Elsheikh, M. A., & Al-Hemaidi, W. K. (2012). Approach in Choosing Suitable Technology for Industrial Wastewater Treatment. Journal of Civil & Environmental Engineering, 2:123. doi:10.4172/2165-784X.1000123.
- Fat'hi, M. R., Asfaram, A., Hadipour, A., & Roosta, M. (2014). Kinetics and thermodynamic studies for removal of acid blue 129 from aqueous solution by almond shell", *J Environ Health Sci Eng.*, 12(1): 62-68.
- Ferrero, F. (2007). Dye removal by low cost adsorbents: hazel nut shells in comparison with wood sawdust. *Journal of Hazardous Materials*, 142(1-2):144-152.
- Fettouche, S., Tahiri, M., Madhouni, R., & Cherkaoui, O. (2015). Removal of reactive dyes from aqueous solution by adsorption onto Alfa Fibers powder. J. Mater. Environ. Sci., 6 (1): 129-137.
- Freundlich, H. M. F. (1906). Over the adsorption in solution. Journal of Physical Chemistry, 57: 385-470.
- Fytianos, K., Voudrias, E., & Kokkalis, E. (2000). Sorption-desorption behaviour of 2, 4-dichlorophenol by marine sediments. *Chemosphere*, 40: 3-6.
- Gamal, A. M., Farha, S. A. A., Sallam, H. B., Mahmoud, G. E. A., & Ismil, L. F. M. (2010). Kinetic study and equilibrium isotherm analysis of reactive dyes adsorption onto cotton fiber. *Nature and Science*, 8(11), 95-110.
- Giwa, A. A., Abdulsalam, K. A., Wewers, F., & Oladipo, M. A. (2016). Biosorption of Acid Dye in single and multidye systems onto sawdust of locust Bean (Parkia biglobosa) Tree. *Journal of Chemistry*, 11 pages.
- Giwa, A. A., Bello, I. A., & Olajire, A. A. (2013). Removal of basic dye from aqueous solution by adsorption on melon husk in binary and ternary systems. *Chemical and Process Engineering Research*, 13: 51-68.
- Goel, J., Kadirvelu, K., Rajagopal, C., & Carg, V. K. (2005). Removal of Pb(II) by adsorption using treated granular activated carbon: batch and column studies. *Journal of Hazardous Materials*, B 125: 211-210.

- Greluk, M., & Hubicki, Z. (2010). Kinetics, isotherm and thermodynamic studies of Reactive Black 5 removal by acid acryl resins. *Chem. Eng. Journal*, 162(3): 919-926.
- Greluk, M., & Hubicki, Z. (2013). Evaluation of polystyrene anion exchange resin for removal of reactive dyes from aqueous solutions. *Chem. Eng. Res.des.*, 91(7): 1343-51.
- Gulati, I., Park J, Maken, S., & Lee M. (2014) Production of Carboxymethylcellulose Fibers from Waste Lignocellulosic Sawdust Using NaOH/NaClO2 Pretreatment. *Fibers and Polymers*, 15(4): 680-686.
- Gupta V. K., & Suhas (2009). Application of Low Cost Adsorbents for Dye Removal A Review. J. Environ. Manage., 90(8): 2313-2342.
- Gupta, V. K., Kumar, R., Nayak, A., Saleh, T.A., & Barakat, M.A. (2013). Adsorptive removal of dyes from aqueous solution onto carbon nanotubes:a review. *Adv Colloid Interface Sci*, 193-194: 24-34.
- Hamdaoui, O. (2006). Batch study of liquid-phase adsorption of methylene blue using cedar sawdust and crushed brick. *Journal of Hazardous Materials*, B135, 264-273.
- Hamdaoui, O., & Naffrechoux, E. (2007). Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon Part I. Twoparameter models and equations allowing determination of thermodynamic parameters. *Journal of Hazardous Materials*, 147: 381-394.
- Hameed, B. H., Chin, L. H., & Rengaraj, S. (2008). Adsorption of 4-chlorophenol onto activated carbon prepared from rattan sawdust. *Desalination*, 225: 185-198.
- Hameed, B. H., & Ahmed, A. A. (2009). Batch adsorption of methylene blue from aqueous solution by garlic peel, an agricultural waste biomass. *Journal of Hazardous Materials*, 164(2-3): 870-875.
- Hameed, B. H., & El-Khaiary, M. I. (2008). Kinetics and Equilibrium Studies of Malachite Green Adsorption on Rice Straw-Derived Char. *Journal of Hazardous Materials*, 153 (1-2): 701-708.
- Hameed, B. H., & Hakimi, H. (2008). Utilization of durian (Durio zibethinus Murray) peel as low cost sorbent for the removal of acid dye from aqueous solutions. *Biochem. Eng. J.*, 39: 338-343.
- Hamzeh, Y., Ashori, A., Azadeh, E., & Abdulkhani, A. (2012). Removal of Acid Orange 7 and Remazol Black 5 reactive dyes from aqueous solutions using a novel biosorbent. *Materials Science and Engineering C*, 32(6): 1394-1400.

- Han, R. P., Wang, Y., Zhao, X., Wang, Y. F., Xie, F. L., Cheng, J. M., & Tang, M. S. (2009) Adsorption of methylene blue by phoenix tree's leaf powder in fixed-bed column: experiments and prediction of breakthrough curves. *Desalination*, 245(1-3): 284-297.
- Hao, O. J., Kim, H., & Chiang, P. (2000). Decolorization of Wastewater. Critical Reviews in Environmental Science and Technology, 30(4): 449-505.
- Hassanein, T., & Koumanova, B. (2010). Evaluation of adsorption potential of the agricultural waste wheat straw for BasicYellow21. J. Univ. Chem. Technol. Metall., 45(4): 407–414.
- Hassanein, T. F. (2011). Utilization of agro-lignocellulosic materials for the removal of basic dyes from aqueous solutions. PhD. Thesis, Sofia, Bulgaria.
- He, X., Wu, S., Fu, D., & Ni, J. (2009). Preparation of sodium carboxymethyl cellulose from paper sludge. J. Chem Technol Biotechnol, 84(3): 427-434.
- Hebeish, A., Higazy, A., El-Shafei, A., & Sharaf, S. (2010). Synthesis of carboxymethyl cellulose (CMC) and starch-based hybrids and their applications in flocculation and sizing. *Carbohydrate Polymers*, 79(1): 60-69.
- Henning, K.D., & Degel, J. (1990). Purification of air, water and off gas. Available from world wide web: <u>http://www.activatedcarbon.com/solrec3.html</u>.
- Hessel, C., Allegre, C., Maisseu, M., Charbit, F., & Moulin, P. (2007). Guidelines and legislation for dye house effluents. *Journal of Environ Manage*, 83(2): 171-180.
- Ho, Y.S., & Mckay, G. (1998). Sorption of dye from aqueous solution by peat. *Chemical Engineering Journal*, 70(2): 115-124.
- Hu, D., Wang, P., Li, J., & Wang, L. (2014). Functionalization of Microcrystalline Cellulose with N,N-dimethyldodecylamine for the Removal of Congo Red Dye from an Aqueous Solution. *BioResources*, 9(4): 5951-5962.
- Hubbe, M. A., Park, J., & Park S. (2014). Cellulosic Substrates for Removal of Pollutants from Aqueous Systems: A Review. Part 4. Dissolved Petrochemical Compounds. *BioResources*, 9(4): 7782-7925.
- Ibrahim, A. M. (2016). Haploid Induction of Kenaf (Hibiscus cannabinus L.), Okra (Abelmoschus esculentus L.) and Spring Onion (Allium fistulosum L.) Using Anther, Ovary and Ovule Cultures. PhD. Thesis, Universiti Malaysia Kelantan, Malaysia.
- Indrani, J., Vasniwa, R., Shrivastava, D., & Jadhav K. (2016). Microorganism-Based Treatment of Azo Dyes. *Journal of Environmental Science and Technology*, 9: 188-197.

- Inyinbor, A. A., Adekola, F.A., & Olatunji, G.A. (2016). Kinetics, isotherms and thermodynamic modeling of liquid phase adsorption of Rhodamine B dye onto Raphia hookerie fruit epicarp. *Water Resources and Industry*, 15: 14-27.
- Ip, A. W. M., Barford, J. P., & McKay, G. (2010). A comparative study on the kinetics and mechanisms of removal of Reactive Black 5 by adsorption onto activated carbons and bone char. *Chemical Engineering Journal*, 157(2-3): 434-442.
- IUPAC (1972). IUPAC Manual of Symbols and Terminology. Pure and Applied Chemistry, 31, 587.
- Izadyar, S., & Rahimi, M. (2007). Use of beach wood saw dust for adsorption of textile dyes. *Pakistan Journal of Biological Science*, 10(2): 287-293.
- Jafari, N., Kasra-Kermanshahi, R., Soudi, M.R., Mahvi, A. H., & Gharavi, S. (2012). Degradation of a textile reactive azo dye by a combined biologicalphotocatalytic process: Candida tropicalis Jks2-TiO2/Uv. *Iran. J. Environ. Health Sci. Eng.*, 9, 33-39.
- Jaikumar, V., & Ramamurthi, V. (2009). Effect of biosorption parameters kinetics isotherm and thermodynamics for acid green dye biosorption from aqueous solution by brewery waste. *International Journal of Chemistry*, 1: 1-12.
- Jain, J. S., & Snoeyink, V. L. (1973). Adsorption from Bisolute Systems on Active Carbon. J. Water Pollut. Control Fed., 45(12): 2463-2479.
- Jin, X. C., Liu, G. Q., Xu, Z. H., & Tao, W. Y. (2007). Decolourisation of a dye industry effluent by Aspergillus fumigatus XC6. Appl. Microbiol. Biotechnol., 74(1): 239-243.
- Jorgensen, T. C. (2002). Removal of ammonia from wastewater by ion exchange in the presence of organic compounds. Msc. Thesis, University of Canterbury Christchurch, New Zealand
- Kamal, I., Thirmizir, M. Z., Beyer, G., Saad, M. J., Abdul Rashid, N. A., & Abdul Kadir Y. (2014). Kenaf For Biocomposite: An Overview. *Journal of Science and Technology*, 6(2): 41-65.
- Kamil A. M., Mohammed, H. T., Alkaim, A. F., & Hussein, F. H. (2016). Adsorption of Congo red on multiwall carbon nanotubes: Effect of operational parameters. *Journal of Chemical and Pharmaceutical Sciences*, 9(3): 1128-1133.
- Kandelbauer, A., Erlacher, A., Cavaco-Paulo, A., & Guebitz, M., (2004). Laccasecatalyzed decolorization of the synthetic azo-dye Diamond Black PV 200 and of some structurally related derivatives. *Biocat Biotrans*, 22:331-339.

- Kant, R. (2012). Textile dyeing industry and environmental hazard. *Nat. Sci.*, 4: 22-26.
- Kantasamy N., & Sumari, S. M. (2016). Equilibrium and Themodynamic studies of anionic dyes removal by an anionic clay-layered double hydroxide. Malaysian *Journal of Analytical Sciences*, 20(2): 358-364.
- Kao, P. C., Tzeng, J. H., & Huang, T. L. (2000). Removal of chlorophenols from aqueous solution by fly ash. *Journal of Hazardous Materials*, 76(2-3), 237-249.
- Karadag, D., Turan, M., Akgul, E., Tok, S., & Faki, A. (2007). Adsorption Equilibrium and Kinetics of Reactive Black 5 and Reactive Red 239 in Aqueous Solution onto Surfactant Modified Zeolite. *Journal of Chemical & Engineering Data*, 52: 1615-1620.
- Karthick, K., Dinesh, C., & Namasivayam, C. (2014). Utilization of ZnCl activated Jatropha husk carbon for the removal of reactive and basic dyes: Adsorption equilibrium and kinetic studies. *Environ. Res.*, 24(2): 139-148.
- Karthikeyan, T., Rajgopal, S., & Miranda, L.R. (2005). Chromium(VI) adsorption, from aqueous solution by Heyea Brasilinesis sawdust activated carbon. *Journal of Hazardous Materials*, 124: 192-199.
- Kharat, D. S. (2015). Preparing agricultural residue based adsorbents for removal of dyes from effluents a review. *Brazilian Journal of Chemical Engineering*, 32(1): 1-12.
- Kim, S. J., Jung, S. H., & Kim, J. S. (2010). Fast pyrolysis of palm kernel shells: Influence of operation parameters on the bio-oil yield and the yield of phenol and phenolic compounds. *Bioresource Technology*, 101(23): 9294-9300.
- Koay, Y. S. (2013). Adsorption of reactive dyes from aqueous solutions by quaternized palm kernel shell. MSc. Thesis, Universiti Putra Malaysia, Malaysia.
- Koay, Y. S., Ahamad, I. S., Nourouzi, M. M., Abdullah L. C., & Choong, T. S. Y. (2014). Development of Novel Low-Cost Quaternized Adsorbent from Palm Oil Agriculture Waste for Reactive Dye Removal. *BioResources*, 9(1), 66-85.
- Koçer, O., & Acemioğlu, B., (2016). Adsorption of Basic green 4 from aqueous solution by olive pomace and commercial activated carbon: process design, isotherm, kinetic and thermodynamic studies. *Desalination and Water Treatment*, 57(35): 16653-16669.
- Kurbus, T., Slokar, Y. M., & Marechal, A. M. L., (2002). The study of the effects of the variables on H2O2/UV decoloration of vinylsulphone dye: part II. *Dyes and Pigments*, 54: 67-78.

- Kus'mierek, K., & S'wia tkowski, A. (2015). The influence of different agitation techniques on the adsorption kinetics of 4-chlorophenol on granular activated carbon. *Reac Kinet Mech Cat*, 116: 261-271.
- Kyzas, & Mati, K .A. (2015). Nanoadsorbents for pollutants removal: A review. *Journal of Molecular Liquids*, 203:159-168.
- Kyzas, G. Z., Lazaridis, N. K., & Mitropoulos, A. C. (2012). Removal of dyes from aqueous solutions with untreated coffee residues as potential low-cost adsorbents: Equilibrium, reuse and thermodynamic approach. *Chemical Engineering Journal*, 189-190(0): 148-159.
- Li, H., Huang, G., An, C., Hu, J., & Yang, S. (2013). Removal of tannin from aqueous solution by adsorption onto treated coal fly ash: kinetic, equilibrium, and thermodynamic studies. *Ind. Eeg. Chem. Res.*, 52:15923-15931.
- Li, N., Thomas, R.K., & Rennie, A. R., (2012). Effect of pH, surface charge and counter-ions on the adsorption of sodium dodecyl sulfate to the sapphire/solution interface. *Journal of colloid and interface science*, 378(1): 152-158.
- Li, Q., Yue, Q-Y., Su, Y., Gao, B-Y., & Sun, H-J. (2010). Equilibrium, thermodynamics and process design to minimize adsorbent amount for the adsorption of acid dyes onto cationic polymerloaded bentonite. *Chemical Engineering Journal*, 158: 489-497.
- Lim, H., Kim, S., Lee, M., & Yoon, J. (2003). Removal of two reactive dyes by quaternized sawdust. *Journal of Industrial and Engineering Chemistry*, 9(4): 433-439.
- López-Grimau, V., Vilaseca, M., & Gutiérrez-Bouzán, C. (2015) Comparison of different wastewater treatments for colour removal of reactive dye baths. *Journal Desalination and Water Treatment*, 57(6): 2685-2692.
- Low, K. S., & Lee, C. K. (1997). Quaternized rice husk as sorbent for reactive dyes. *Bioresour. Technol.*, 61(2): 121-125.
- Mafra, M. R., Igarashi-Mafra, L., Zuim, D. R., asques E. C. V., & Ferreira, M. A. (2013). Adsorption of remazol brilliant blue on an orange peel adsorbent. *Brazilian Journal of Chemical Engineering*, 30(3): 657-665.
- Mahapatra, N. N. (2016). Textile dyes. Woodhead Publishing India PVT LTD New Delhi CRC Press Taylor & Francis Group 6000 Broken Sound Parkway, India.
- Mahmoodi N. M. (2011). Equilibrium, Kinetics, and Thermodynamics of dye removal using Alginate in Binary Systems. *Journal of Chemical and Engineering Data*, 56(6): 2802-2811.

- Mahmoodi, N. M., Hayati, B., Arami, M., & Lan, C. (2011). Adsorption of textile dyes on Pine Cone from colored wastewater: Kinetic, equilibrium and thermodynamic studies. *Desalination*, 268(1-3): 117-125.
- Mahmoud, D. K., Amran, M., Salleh, M., & Abdul Karim, W. A. W. (2013). Highlight on empirical batch adsorber design. *Journal of Purity*, *Utility Reaction and Environment*, 2 (1): 14-19.
- Malakootian, M., Mansoorian, H. J., & Yari, A. (2014). Removal of reactive dyes from aqueous solutions by a non-conventional and low cost agricultural waste: adsorption on ash of Aloe Vera plant. *Iranian Journal of Health*, *Safety and Environment*, 1(3): 117-125.
- Malakootian, M., Moosazadeh, M., Yousefi, N., & Fatehizadeh, A. (2011). Fluoride removal from aqueous solution by pumice: Case study on Kuhbonam water, Afr. *Journal of Environ. Sci. Technol.*, 5(4), 299-306.
- Malarvizhi, R. & Ho, Y. (2010). The influence of pH and the structure of the dye molecules on adsorption isotherm modeling using activated carbon. Desalination, 264: 97-101.
- Malik, P. K. (2004). Dye Removal From Wastewater Using Activated Carbon Developed From Sawdust: Adsorption Equilibrium And Kinetics. *Journal of Hazardous Materials*, 113(1-3): 81-88.
- Malkoc, E., Nuhoglu, Y., & Abali, Y. (2006). Cr (VI) adsorption by waste acorn Quercus ithaburensis in fixed beds: Prediction of breakthrough curves. *Chemical Engineering Journal*, 119: 61-68.
- Mane, V. S., Mall, D. I., & Srivastava, C. V. (2007). Kinetic and equilibrium isotherm studies for the adsorptive removal of Brilliant Green dye from aqueous solution by rice husk ash. *Journal of Environmental Management*, 84(4): 390-400.
- Manoochehri, M., Rattan, V. K., Khorsand, A., & Panahi, H. A. (2010). Capacity of activated carbon derived from agricultural waste in the removal of reactive dyes from aqueous solutions. *Carbon Letters*, 11(3): 169-175.
- Martin, M. J., Artola, A., Balaguer, M. D., & Rigola, M. (2003). Activated carbons developed from surplus sewage sludge for the removal of dyes from dilute aqueous solutions. *Chemical Engineering Journal*, 94(3): 231-239.
- Mathur, N., & Bhatnagar, P. (2007). Mutagenicity assessment of textile dyes from Sangner(Rajasthan). *Journal of Environmental Biology*, 28: 123-126.
- Mattson, J. S., & Mark H. B. (1971). Activated Carbon Surface Chemistry and Adsorption from Solution, Marcell Dekker, New York.

- McMullan, G., Meehan, C., Conneely, A., Kirby, N., & Robinson, T. (2001). Microbial decolourisation and degradation of textile dyes. *Applied Microbiol. Biotechnol.*, 56: 81-87.
- Mittal, A., Gajbe, V., & Mittal, J. (2008). Removal and recovery of hazardous triphenylmethane dye, Methyl Violet through adsorption over granulated waste materials. *Journal of Hazardous Materials*, 150(2): 364-375.
- Mohamad R. M., Khan, M. A., Hosseini, S., Abdullah, L. C., & Choong, T. S. Y. (2015). Adsorption/desorption of cationic dye on surfactant modified mesoporous carbon coated monolith: Equilibrium, kinetic and thermodynamic studies. *Journal of Industrial and Engineering Chemistry*, 21: 369-377.
- Mohamed, M. M. (2004). Acid dye removal: comparison of surfactant-modified mesoporous FSM-16 with activated carbon derived from rice husk. *Journal of Colloid and Interface Science*, 272: 28-34.
- Mohammad, M., Hossein, J. M., & Ahmadreza Y. (2014). Removal of reactive dyes from aqueous solutions by a non-conventional and low cost agricultural waste: adsorption on ash of Aloe Vera plant. *Iranian Journal of Health*, *Safety & Environment*, 1(3): 117-125.
- Mohammad, Y. S., Shaibu-Imodagbe, E. M., Igboro, S. B., Giwa, A., & Okuofu, C. A. (2015). Effect of Phosphoric Acid Modification on Characteristics of Rice Husk Activated Carbon. *Iranica Journal of Energy and Environment*, 6 (1):20-25.
- Mohammad-Khah, A., & Ansari, R. (2009). Activated charcoal: Preparation, characterization and applications : A review article. *International Journal of ChemTech Research*, 1(4):859-864.
- Mondal, S. (2008). Methods of Dye Removal from Dye House Effluent-An Overview. *Environmental Engineering Science*, 25(3): 383-396.
- Mousa, K. M., & Taha, A. H. (2015). Adsorption of Reactive Blue Dye onto Natural and Modified Wheat Straw. J Chem Eng Process Technol, 6(6): 260-266.
- Munnaf, A., Islam, M. S., Tusher, T. R., Kabir, M. H., & Molla, M. A. H. (2014). Investigation of Water Quality Parameters Discharged from Textile Dyeing Industries. J. Environ. Sci. & Natural Resources, 7(1): 257-263.
- Murithi, G., Onindo, C. O., Wambu, E. W., & Muthakia, G. K. (2014). Removal of Cadmium(II) Ions from Water by Adsorption using Water Hyacinth (Eichhornia crassipes) Biomass. *BioResources*, 9(2): 3613-3631.

- Muruganandham, M., & Swaminathan, M. (2006). Advanced oxidative decolourisation of Reactive Yellow 14 azo dye by UV/TiO2, UV/H2O2, UV/H2O2/Fe2 processes. Separation and Purification Technology, 48: 297-303.
- Nadeem, U. (2014). Adsorptive removal of Pb(ii) and Cr(vi) ions on natrolite. *Eur. Chem. Bull.*, 3(5): 495-501.
- Nadi, H., Alizadeh, M., Ahmadabadi, M., Yari, A. R., & Hashemi, S. (2012). Removal of Reactive Dyes (Green, Orange, and Yellow) from Aqueous Solutions by Peanut Shell Powder as a Natural Adsorbent. Arch Hyg Sci, 1(2): 41-47.
- Nouri, J., Khorasani, N., Lorestani, B., Yousefi, N., Hassani, A.H., & Karami, M. (2009). Accumulation of heavy metals in soil and uptake by plant species with phytoremediation potential. *Environ. Earth Sci.*, 59 (2): 315-323.
- Nourouzi, M. M., Chuah, T. G., & Choong, T. S. Y. (2009). Equilibrium and kinetic study on reactive dyes adsorption by palm kernel shell-based activated carbon: In single and binary systems. *Journal of Environmental Engineering*, 135(12): 1393-1398.
- Nuengmatcha, P., Mahachai, R. and Chanthai, S. (2016). Adsorption Capacity of the as Synthetic Graphene Oxide for the Removal of Alizarin Red Dye from aqueous solution, Orient. J. Chem., 32: 1399 -1410.
- Nuhoglu, Y., & Malkoc, E. (2009). Thermodynamic and kinetic studies for environmentaly friendly Ni(II) biosorption using waste pomace of olive oil factory. *Bioresource Technology*, 100: 2375-2380.
- O"zcan, A., O"ncu", E. M., & O"zcan, A. S. (2006). Kinetics, isotherm and thermodynamic studies of adsorption of Acid Blue 193 from aqueous solutions onto natural sepiolite. *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 277 (1), 90-97.
- Obaid, M. K., Abdullah, L. C., Idan, I. J., Jamil, S. N. A., & Mahdi, D. S. (2017). Batch Adsorption Study for Removal Acid Red 114 Dye from Aqueous Solution by Using Kenaf, *International Journal of Engineering Research and Reviews*, 5 (1): 38-49.
- Oguntimein, G. B. (2016). Textile dye removal using dried sun flower seed hull a new low cost biosorbent: equilibrium, kinetics and thermodynamic studies. *Adv Res Text Eng.*, 1(1): 1008-1015.
- Okeola, F. O., & Odebunmi, E. O. (2010). Freundlich and Langmuir Isotherms Parameters for Adsorption of Methylene Blue by Activated Carbon Derived from Agrowastes. *Advances in Natural and Applied Sciences*, 4(3): 281-288.

- Ong, S., Lee, W., Keng, P., Lee, S., Hung, Y., & Ha, S. (2010). Equilibrium studies and kinetics mechanism for the removal of basic and reactive dyes in both single and binary systems using EDTA modified rice husk. *International Journal of Physical Sciences*, 5(5): 582-595.
- Özacar, M., & Sengil, I. A. (2005). Adsorption of metal complex dyes from aqueous solutions by pine sawdust. *Bioresource Technology*, 96: 791-795.
- Parvin M. (2015). Adsorption of dyes on activated carbon from agricultural wastes. MSc. Thesis, United Arab Emirates University, United Arab Emirates.
- Patil, S., Patil, J., Renukdas, S., & Patel, N. (2015). Mechanism of adsorption of ferrous ions from waste water on natural adsorbents. World journal of pharmacy and pharmaceutical sciences, 4(7):767-788.
- Perez, S., & Samain, D. (2010). Structure and engineering of celluloses. Adv. Carbohydr. Chem. Biochem., 64, 25-116.
- Perry, R., & Green, D. W. (1997). Perry's Chemical Engineers Handbook, 7th Ed. McMrow-Hill International Edition, Singapore.
- Petit, C., Siedel, B., Gloriod, D., Sartre, V., Lef evre, F., & Bonjour, J. (2015). Adsorption-based antifreeze system for loop heat pipes. Applied Thermal Engineering, Elsevier, 78 (5): 704-711.
- Piccin, J. S., Gomes, C. S., Feris, L. A., & Gutterres, M. (2012). Kinetics and isotherm of leather dye adsorption by tannery solid waste. *Chem Eng Journal*, 183: 30-38.
- Podder, M. S., & Majumder, C. B. (2016). Sequestering of As(III) and As(V) from wastewater using a novel Neem leaves/MnFe2O4 composite biosorbent. *International Journal of Phytoremediation*, DOI:10.1080/15226514.2016.1193467. Eccepted paper.
- Prasath, R. R., Muthirulan, P., & Kannan, N. (2014). Agricultural wastes as a low cost adsorbents for the removal of Acid Blue 92 dye: A Comparative study with Commercial activated carbon. *IOSR Journal of Agriculture and Veterinary Science*, 7(2): 19-32.
- Priya, R. A. K. (2015). Chittoraa, rakshit ameta and sanyogita sharma," enhancement of photocatalytic activity of zinc oxide by doping with nitrogen. *Sci. Revs. Chem. Commun.*, 5(4): 113-124.
- Qiu H., Lv, L., Pan, B., Zhang, Q., Zhang, W., & Zhang, Q. (2009). Critical review in adsorption kinetic models. *Journal of Zhejiang University SCIENCE A*, 10(5):716-724.

- Rafatullah, M., Sulaiman, O., Hashim, R., & Ahmad, A., (2010). Adsorption of methylene blue on low-cost adsorbents:areview. *Journal of Hazard. Material*, 177: 70-80.
- Rajan, M. R., Infant Raja, S., & Noel, D. S. (2015). Field Level Study on the Utilization of Dyeing Industry Effluent Residue on Growth of Cluster Bean Cyamopsis Tetragonoloba. *Indian Journal of Applied Research*, 5(12): 277-279.
- Ratna & Padhi, B. S. (2012). Pollution due to synthetic dyes toxicity & carcinogenicity studies and remediation. *International journal of environmental sciences*, 3(3): 940-955.
- Ravi, D., Parthasarathy, R., Vijayabharathi, V., & Suresh, S. (2014). Effect of Textile Dye Effluent on Soybean Crop. *Journal of Pharmaceutical, Chemical and Biological Sciences*, 2(2):111-117.
- Rosa, S., Laranjeira, M. C.M., Riela, H. G., & F'avere, V. T. (2008). Cross-linked quaternary chitosan as an adsorbent for the removal of the reactive dye from aqueous solutions. *Journal of Hazardous Materials*, 155: 253-260.
- Rosas, J., Bedia J., Rodríguez-Mirasol, J., & Cordero, T. (2009). HEMP-derived activated carbon fibers by chemical activation with phosphoric acid. *Fuel*, 88(1): 19-26.
- Rouf, S., & Nagapadma, M. (2015). Modeling of Fixed Bed Column Studies for Adsorption of Azo Dye on Chitosan Impregnated with a Cationic Surfactant. International Journal of Scientific & Engineering Research, 6(2):124-132.
- Rusly, S. M., & Ibrahim, S. (2010). Adsorption of textile reactive dye by palm shell activated carbon, Response Surface Methodology. World Academy of Science, Engineering and Technology, 67: 892-895.
- Saad, M. J., & Kamal, I. (2012). Mechanical and Physical Properties of Low Density Kenaf Core Particleboards Bonded with Different Resins. *Journal of Science and Technology*, 4(1): 17-32.
- Safa, Y., & Bhatti, H. N. (2011). Kinetic and thermodynamic modeling for the removal of direct red-31 and direct orange-26 dyes from aqueous solutions by rice husk. *Desalination*, 272: 313-322.
- Saha, P., & Chowdhury, S. (2011). Insight into adsorption Thermodynamics, Thermodynamics,ISBN:978-953-307-544-0,InTech,Available: <u>http://www.intechopen.com/books/thermodynamics/insight-into-adsorption-thermodynamics</u>
- Samarghandi, M. R., Hadi, M., & McKay, G. (2014). Breakthrough Curve Analysis for Fixed- Bed Adsorption of Azo Dyes Using Novel Pine Cone-Derived Active Carbon. *Adsorption Science & Technology*, 32(10): 791-806.

- Sanchez, N., Benedetti, T. M., Vazquez, M., Córdoba de Torresi, S. I., & Torresi, R. M. (2012). Kinetic and Thermodynamic Studies on the Adsorption of Reactive Red 239 by Carra Sawdust Treated with Formaldehyde. *Adsorption Science & Technology*, 30(10): 881-899.
- Sanchez-Prado, L., Lompart, M., Lores, M., Garcma-Jares, C., Bayona, J. M., & Cela, R. (2006). Monitoring the photochemical degradation of triclosan in waste water by UV light and sunlight using solid phase micro-extraction. *Chemosphere*, 65:1338-1347.
- Sarita, Y., Tyagi, D. K., & Yadav O.P. (2012). An overview of effluent treatment for the removal of pollutant dyes. Asian Journal of Research In Chemistry, 5(1):1-6.
- Savova, D., Apak, E., Ekinci, E., Yardim, F., Petrova, N., Budinova, T., Razvigorova, M., & Minkova, V. (2001). Biomass conversion to carbon adsorbents and gas. *Biomass Bioenergy*, 21:133–142.
- Sen, T. K., & Dawood, S. (2014). Review on Dye Removal from Its Aqueous Solution into Alternative Cost Effective and Non-Conventional Adsorbents. *Journal of Chemical and Process Engineering*, 1: 1-11.
- Senthilkumaar, S., Kalaamani, P., Porkodi, K., Varadarajan, P.R., & Subburaam, C.V. (2006). Adsorption of dissolved Reactive red dye from aqueous phase onto activated carbon prepared from agricultural waste. *Bioresource Technology*, 97: 1618-1625.
- Senthilkumaar, S., Varadarajan, P.R., Porkodi, K., & Subbhuraam, C. V. (2005). Adsorption of methylene blue onto jute fiber carbon: kinetics and equilibrium studies. *Journal of Colloid and Interface Science*, 284: 78-82.
- Shaarani, F. W., & Hameed, B. H. (2011). Ammonia-modified activated carbon for the adsorption of 2,4-dichlorophenol. *Chem. Eng. Journal*, 169, 180-185.
- Shakir, K., Elkafrawy, A. F., Ghoneimy, H. F., Elrab Beheir, S. G., & Refaat, M. (2010). Removal of rhodamine B (a basic dye) and thoron (an acidic dye) from dilute aqueous solutions and wastewater simulants by ion flotation. *Water Research*, 44(5): 1449-1461.
- Sharma, S., Saxena, R., & Ghanesh, G. (2014). Gaur Study of Removal Techniques for Azo Dyes by Biosorption: A Review. *IOSR Journal of Applied Chemistry* (*IOSR-JAC*), 7(10): 6-21.
- Sheikh, M. A., Sardar, M., Mohammadi, A., Azimi, F., & Nurieh, N. (2013). Equilibrium and Kinetic Studies on the Adsorption of Acid Yellow 36 dye by Pinecone. *Arch Hyg Sci*, 2(4): 158-164.

- Shelke, R. S., Bharad, J. V., Madje, B. R., & Ubale, M. B. (2011). Studies on the removal of acid dyes from aqueous solutions by Ashoka leaf powder. *Der Chemica Sinica*, 2 (4): 6-11.
- Singh, B., Thakur, V., Bhatia, G., Verma, D., & Singh, K. (2016). Eco-friendly and Cost-effective Use of Rice Straw in the Form of Fixed Bed Column to Remove Water Pollutants. *Journal of Bioremediat Biodegrad*, 7(6): 374-381.
- Singh, H., Chauhan, G., Jain, A. K., & Sharma,S. K. (2016). Adsorptive potential of agricultural wastes for removal of dyes from aqueous solutions", *Journal of Environmental Chemical Engineering*, 5: 122-135.
- Singh, K., & Arora, S. (2011). Removal of Synthetic Textile Dyes From Wastewaters: A Critical Review on Present Treatment Technologies. *Critical Reviews in Environmental Science and Technology*, 41:807-878.
- Sivakumar, P., & Palanisamy, N., (2010). Mechanistic study of dye adsorption on to a novel non-conventional low-cost adsorbent. *Advances in Applied Science Research*, 1(1): 58-65.
- Sohrabi, H., & Ameri E. (2015). Adsorption equilibrium, kinetics, and thermodynamics assessment of the removal of the reactive red 141 dye using sesame waste. *Desalination and Water Treatment*, 57(38): 18087-18098.
- Solis, M., Solis, A., Perezb, H. I., Manjarrez, N., & Floresa, M. (2012). Microbial decolouration ofazo dyes: A review. *Process Biochemistry*, 47: 1723-1748.
- Sreelatha, G., Ageetha, V., Parmar, J., & Padmaja, P. (2011). Equilibrium and kinetic studies on reactive dye adsorption using palm shell powder and chitosan. *Journal of Chemical & Engineering Data*, 56: 35-42.
- Srivastava, V.C., Mall, I. D., & Mishra, I. M. (2007). Adsorption thermodynamics and isosteric heat of adsorption of toxic metal ions onto bagasse fly ash (BFA) and rice husk ash (RHA). *Chemical Engineering Journal*, 132: 267-278.
- Sumanjit, S., Mahajan, R. K., & Gupta, V. K. (2015). Modification of surface behaviour of Eichhornia crassipes using surface active agent: An adsorption study. *Journal of Industrial and Engineering Chemistry*, 21: 189-197.
- Sumanjit, Walia, T. P. S., & Kaur, R. (2007). Removal of health hazards causing acidic dyes from aqueous solutions by the process of adsorption. *OJHAS*, 6(3): 1-10.
- Tafesse, T. B., Yetemegne, A. K., & Kumar, S. (2015). The Physico-Chemical Studies of Wastewater in Hawassa Textile Industry. J Environ Anal Chem, 2(4): 153.

- Tahir, P. Md., Ahmed, A. B., SaifulAzry, S. O. A., & Ahmed, Z. (2011). Retting process of some bast plant fibres and its effect on fibre quality: A review. *BioResources*, 6(4): 5260-5281.
- Tan, I. A. W., Ahmad, A. L., & Hameed, B. H. (2008). Adsorption of basic dye using activated carbon prepared from oil palm shell: batch and fixed bed studies. *Desalination*, 225: 13-28.
- Tanyildizi, M. Ş. (2011). Modeling of adsorption isotherms and kinetics of reactive dye from aqueous solution by peanut hull. *Chemical Engineering Journal*, 168: 1234-1240.
- Teka, T., & Enyew, S. (2014). Study on effect of different parameters on adsorption efficiency of low cost activated orange peels for the removal of methylene blue dye. *International Journal of Innovation and Scientific Research*, 8(1):106-111.
- Temkin, M. I., & Pyzhev, V. (1940). Kinetics of ammonia synthesis on promoted iron catalyst. *Acta Physiochemical USSR*, 12: 327-356.
- Thomas, H. C. (1944). Heterogeneous Ion exchange in a flowing system. Journal of the American Chemical Society, 66(10): 1664-1666. DOI: 10.1021/ja01238a017.
- Tripathy, S. K., & Rao, D. A. (2015). Mitotic aberrations induced by orange red (a food additive dye) as a potential genotoxicant on root tip cells of onion (Allium cepa L.). *International Food Research Journal*, 22(1): 383-392.
- Uçar, D., & Armağan, B. (2012). The removal of reactive black 5 from aqueous solutions by cotton seed shell. *Water Environ Res.*, 84(4): 323-327.
- Umbuzeiro, G. A., Freeman, H., Warren, S. H., Kummrow, F., & Claxton, L. D. (2005). Mutagenicity evaluation of the commercial product CI Disperse Blue 291 using different protocols of the Salmonella assay. *Food and Chemical Toxicology*, 43: 49-56.
- Upadhye, G. C., & Yamgar, R. S. (2016). Analytical study of agricultural waste as nonconventional low cost adsorbent removal of dyes from aqueous solutions. *International Journal of Chemical Studies*, 4(1): 128-133.
- Vadivelan, V., & Kumar, K. N. (2005). Equilibrium, Kinetics, mechanism and process design for the sorption of methylene blue onto rice husk. *Journal Colloid and Interface Science*, 286(1): 90-100.
- Ventura-Camargo, B. C., & Marin-Morales, M. A. (2013). Azo Dyes: Characterization and Toxicity-A Review. *Textiles and Light Industrial Science and Technology (TLIST)*, 2(2): 85-103.

- Verma, Y. (2008). Acute Toxicity Assessment of Textile Dyes and Textile and Dye Industrial Effluents Using Daphnia magna Bioassay, *Toxicol. Ind. Health*, 24 (7): 491-500.
- Viglasky, J., Barborak, O., Suchomel, J., & Langova, N. (2009). Status and Vision for the Biomass-To-Energy Sector. *The Journal of New Paradigm Research.*, 65(5-6):112-118.
- Vijayaraghavan, K., & Yun, Y. S. (2008). Biosorption of C.I. Reactive Black 5 from aqueous solution using acid-treated biomass of brown seaweed laminaria sp. *Dyes and Pigments*, 76, 726-732.
- Vinodhini, V., & Das, N. (2010). Packed bed column studies on Cr(VI) removal from tannery waste water by neem sawdust. *Desalination*, 264: 9-14.
- Vismara, E., Melone, L., Gastaldi, G., Cosentino, C., & Torri, G. (2009). Surface functionalization of cotton cellulose with glycidyl methacrylate and its application for the adsorption of aromatic pollutants from wastewaters. *Journal of Hazardous Materials*, 170:798-808.
- Vital, R. K., Saibaba, K. V. N., Shaik, K. B., & Gopinath, R. (2016). Dye Removal by Adsorption: A Review. *J Bioremediat Biodegrad*, 7: 371-379.
- Wang, C., Yediler, A., Linert, D., Wang, Z., & Kettrup, A. (2002). Toxicity evaluation of reactive dye stuff, auxiliaries and selected effluents in textile finishing industry to luminescent bacteria vibrio fisheri. *Chemosphere*, 46: 339-344.
- Wang, L., & Li, J. (2013). Adsorption of C.I. Reactive Red 228 dye from aqueous solution by modified cellulose from flax shive: Kinetics, equilibrium, and thermodynamics. *Ind. Crop. Product*, 42(1): 153-158.
- Wang, S., Zhu, Z. H., Coomes, A., Haghseresht, F., & Lu, G. Q. (2005). The physical and surface chemical characteristics of activated carbons and the adsorption of Methylene blue from waste water. *Journal of Colloid and Interface Science*, 284(2): 440-446.
- Wang, W. (2005). A study on the adsorption properties of quaternized cellulose. PhD. Thesis, Auburn, Alabama.
- Wanyonyi, W. C., Onyari, J. M., & Shiundu, P. M. (2014). Adsorption of Congo Red Dye from Aqueous Solutions Using Roots of Eichhornia crassipes: Kinetic and Equilibrium Studies. *Energy Procedia*, 50: 862-869.
- Waranusantigul, P., Pokethitiyook, P., Kruatrachue, M., & Upatham, E. S. (2003). Kinetics of basic dye (methylene blue) biosorption by giant duckweed (Spiraodela polyrrhiza). *Env. Pol.*, 125: 385-391.

- Wawrzkiewicz, M., & Hubicki, Z. (2015). Anion exchange resins as effective sorbents for removal of acid, reactive, and direct dyes from textile wastewaters, ion exchange - studies andapplications,DOI:10.5772/60952. Available from: http://www.intechopen.com/books/ion-exchange-studiesand-applications/anion-exchange-resins-as-effective-sorbents-for-removalof-acid-reactive-and-direct-dyes-from-textil
- Weber, E. J., & Stickney, V. C. (1993). Hydrolysis kinetics of reactive blue 19-vinyl sulfone. *Water Research*, 27(1): 63-67.
- Weber, T. W., & Chakkravorti, R. K. (1974). Pore and solid diffusion model for fixed bed adsorbents. AIChE Journal, 20: 228-238.
- Weber, W. J., & Morris, J. C. (1962). International Conference on Water Symposium.Oxford: Pergamon.
- Whitaker, C. M., & Willock, C. C. (1949). Dyeing with coal tar dyestuffs. Tindall and Cox Baillière, London, 5: 1-7.
- Wong, S.Y., Tan, Y. P., Abdullah, A. H., & Ong, S. T. (2009). The removal of basic and reactive dyes using quartenised sugar cane bagasse. *Journal of Physical Science*, 20(1): 59-74.
- Xiong, J., Tao, J., Guo, K., Jiao, C., Zhang, D., Lin, H., & Chen, Y. (2015). A rational modification route to an amphiprotic cotton fiber as adsorbent for dyes. *Fibers and Polymers* 2, 16(7): 1512-1518.
- Xu, X., Gao, B. Y., Yue, Q. Y., & Zhong, Q. Q. (2010). Preparation and utilization of wheat straw bearing amine groups for the sorption of acid and reactive dyes from aqueous solutions. *Journal of Hazardous Materials*, 182(1-3): 1-9.
- Yazdani, M., Mahmoodi, N. M., Arami, M., & Bahrami, H. (2012). Surfactant-Modified Feldspar: Isotherm, Kinetic, and Thermodynamic of Binary System Dye Removal. *Journal of Applied Polymer Science*, 126: 340-349.
- Yao, Y. J., Xu, F. F., & Chen, M. (2010). Adsorption behavior of methylene blue on carbon nanotubes. *Bioresource Technology*, 101: 3040-3046.
- Yazdani, M., Mahmoodi, N. M., Arami, M., & Bahrami H. (2012). Surfactantmodified feldspar: isotherm, kinetic, and thermodynamic of binary system dye removal. *Journal of Applied Polymer Science*, 126 (1): 340-349.
- Yoon, Y. N., & Nelson, J. H. (1984). Application of gas adsorption kinetics. Part I. A theoretical model of respirator cartridge service life. *American Industrial Hygiene Association Journal*, 45: 509-516.

- Yoshida, H., Yoshikawa, M., & Kataoka, T. (1994). Parallel Transport of BSA by Surface and Pore Diffusion in Strongly Basic Chitosan. *Bioengineering*, *Food and Natural Products*, 40(12): 2034-2044.
- Yousefi, N., Fatehizadeh, A., Azizi, E., Ahmadian, M., Ahmadi, A., Rajabizadeh, A., & Toolabi, A. (2011). Adsorption of reactive black 5 dye onto modified wheat straw: isotherm and kinetics study. *Sacha Journal of Environmental Studies*, 1(2): 81-91.
- Yusof, S. R. M., Zahri, N. A. M., Koay, Y. S., Mobarekeh, M. N., Chuah, L. A., & Choong, T. S. Y. (2015). Removal of fluoride using modifiedkenaf as adsorbent. *Journal of Engineering Science and Technology Special Issue on SOMCHE 2014 & RSCE 2014 Conference*, January (2015): 11-22.
- Zaini, N., & Khairul, S. N. K. (2014). Adsorption of Carbon Dioxide on Monoethanolamine (MEA)–Impregnated Kenaf Core Fiber by Pressure Swing Adsorption System (PSA). Jurnal Teknologi (Sciences & Engineering), 68(5): 11-16.
- Zhang, W., Lia, H., Kana, X., Donga, L., Yana, H., Jianga, Z., Yanga, H., Lia, A., & Cheng, R. (2012). Adsorption of anionic dyes from aqueous solutions using chemically modified straw. *Bioresource Technology*, 117: 40-47.