
© C
OPYRIG

HT U
PM 

 

UNIVERSITI PUTRA MALAYSIA 
 

MICROWAVE-ABSORPTION PERFORMANCE OF COMPOSITIONALLY- 
VARIED FERRITE-CARBON NANOTUBE- 

POLYMER COMPOSITE AND CVD-SYNTHESIZED CARBON 
NANOTUBE-POLYMER COMPOSITE 

 

 
 
 
 
 
 
 
 
 

FADZIDAH BT MOHD IDRIS 
 
 
 
 
 
 
 
 
 
 
 
 

ITMA 2016 14 



© C
OPYRIG

HT U
PM MICROWAVE-ABSORPTION PERFORMANCE OF 

COMPOSITIONALLY- VARIED FERRITE-CARBON NANOTUBE-

POLYMER COMPOSITE AND CVD-SYNTHESIZED CARBON 

NANOTUBE-POLYMER COMPOSITE 

By 

FADZIDAH BT MOHD IDRIS 

Thesis Submitted to the School of Graduate Studies,  

Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of 

Doctor of Philosophy 

November 2016 



© C
OPYRIG

HT U
PM

 

 

COPYRIGHT 

 

All material contained within the thesis, including without limitation, text, logos, 
icons, photographs and all other artwork, is copyright material of Universiti Putra 
Malaysia unless otherwise stated. Use may be made of any material contained within 
the thesis for non-commercial purposes from the copyright holder. Commercial use 
of material may only be made with the express, prior, written permission of 
Universiti Putra Malaysia. 

 

Copyright © Universiti Putra Malaysia 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



© C
OPYRIG

HT U
PM

 

 

DEDICATION 

 

In appreciation of their love and sacrifices, this thesis is dedicated to my family 
especially my beloved mother HJH SABARIAH BT MOHD YATIM and my 

sisters ZANARIAH BT MOHD IDRIS and ZURAIDAH BT MOHD IDRIS who 
have been giving me full moral support throughout the years. Not forgotten to my 
late father Allahyarham MOHD IDRIS BIN HJ SHARIAT. Finally to my lovely 

husband MOHD SHAMSUL EZZAD BIN SHAFIE and my cute son FIRAZ 

NURHAKEEM. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



© C
OPYRIG

HT U
PM

i 
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FADZIDAH BT MOHD IDRIS 
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Chairman: Associate Professor Mansor Hashim, PhD 

Institute   :     Advanced Technology  

Currently the research and development of radar absorbing materials (RAM) have 
increased where wide range of materials are used for the design, aiming to eliminate 
or reduce the spurious electromagnetic radiation levels more closely in different 
applications. The present research attempts to fabricate high absorbing material 
compositions suitable for microwave absorption from 8 to 18 GHz. Various 
microwave absorbing composites were fabricated using conventional solid state 
method and chemical vapor deposition method. There were various different 
materials being synthesized with different weight percentages, different mixed 
materials, different catalysts to synthesize carbon nanotube (CNT) and different 
thicknesses. However, only selected and outstanding results will be explained in 
details in this thesis. The materials being discussed were divided into four parts; 
Multiwalled Carbon Nanotubes (MWCNTs) mixed with Nickel-Zinc Ferrite 
(Ni0.5Zn0.5Fe2O4), as-synthesized CNTs catalyzed by mill scale, as-synthesized 
CNTs catalyzed by Nickel-Zinc Ferrite (Ni0.5Zn0.5Fe2O4) mixed with Cobalt Ferrite 
(CoFe2O4) and as-synthesized CNTs catalyzed by Nickel-Zinc Ferrite 
(Ni0.5Zn0.5Fe2O4) mixed with Carbonyl Iron. For mixed ferrite with MWCNTs, the 
starting raw metal oxide powder materials to produce ferrite materials were weighed 
and milled using the high energy ball milling technique to get nanometer starting 
particle size while MWCNTs was obtained from commercial source. The ferrite 
powders were then sintered at different sintering temperature according to different 
materials being synthesized. For CVD method, the catalyst powder was weighed and 
heated at 7000C for 30 minutes. Argon gas and ethanol was used as the carrier gas
and carbon source, respectively. The prepared composite samples were then 
incorporated into epoxy resin as a matrix with different ratio and poured into special 
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manufacture sample holder with thickness kept at 1, 2 and 3 mm. The crystalline 
phase formation of all samples prepared was further investigated with an X-ray 
diffractometer (XRD). The particle size was measured using a transmission electron 
microscope (TEM). The microstructure of the samples was picture using a field 
emission scanning electron microscope (FESEM) measurement. The elemental 
analysis was measured using electron dispersive X-ray spectroscopy (EDX). The 
vibrational phonon modes were determined by Raman spectroscopy. The resistivity 
was measured using a resistivity measurement setup. The magnetic properties were 
measured using a Vibrating Sample Magnetometer (VSM). The scattering 
parameters were measured in the X and Ku-band regions by using a Vector Network 
Analyzer (VNA) within the frequency range from 8 GHz to 18 GHz. The XRD 
results for ferrite mixed with MWCNTs showed that the diffraction peaks were 
slightly shifted and the dominant peaks were given by ferrite materials since the 
weight percentages amount being added was higher. The average particle size of 
synthesized ferrite and average diameter of as-synthesized CNTs were in nanometers 
sized region which enhanced the absorption capability. The resulting aggregated 
morphology of as-synthesized CNTs were due to Van der Waals forces and this was 
resolved by incorporated them into an insulated polymer matrix. The carbon 
structures forms were mostly straight, spiral, hollow tube, netlike and twisted fiber 
which enhanced the ability of absorption. The EDX measurement for selected 
samples showed the elements presence in the composite samples. Raman spectrum 
showed defect (D-band) was higher than graphitize (G-band) which attributed to 
defects in the tube ends, staging disorders, hollow tube and curved graphene layers. 
For ferrite mixed with MWCNTs, it was found that as the amount of MWCNTs 
increased, the coercivity (Hc) of composites increased while the saturation 
magnetization (Ms) and retentivity (Mr) both decreased. For measurement at higher 
frequency (X-band and Ku-band), thicker samples resulted in higher microwave 
absorption. As the thickness increased, reflection loss peak shifted towards lower 
frequency range due to shifted of matching frequency. For thickness of 3 mm, the 
reflection loss reached -17 dB at 9.5 GHz for 2 wt% MWCNTs- Ni0.5Zn0.5Fe2O4 /P 
with bandwidth 3.5 GHz. As for as-synthesized CNT by mill scale milled at 20 hours 
for thickness of 3 mm, the value of reflection loss was -25 dB. As for as-synthesized 
mixed ferrite with thickness of 3mm, the reflection loss of sample with as-
synthesized (80% NZF + 20% C)/P gave the most minimum reflection loss value of -
29 dB at around 12.5 GHz with bandwidth 4 GHz (10.5 – 14.5 GHz) and -26 dB at 
9.5 GHz for as-synthesized (20% NZF + 80% CI)/P. The prepared as-synthesized 
CNT polymer composites were expected to be very useful in many application 
especially military applications such as radar cross section reduction and for 
prevention of electromagnetic interference. 
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November 2016 

Pengerusi: 

Institut    : 
Profesor Madya Mansor Hashim, PhD 

Teknologi Maju 

Pada masa kini penyelidikan dan pembangunan bahan-bahan penyerap radar (RAM) 
telah meningkat dimana pelbagai bahan yang digunakan untuk reka bentuk, 
bertujuan untuk menghapuskan atau mengurangkan tahap radiasi elektromagnet 
palsu lebih rapat dalam aplikasi yang berbeza. Kajian masa kini cuba untuk mereka 
komposisi bahan penyerap yang tinggi sesuai untuk penyerapan mikro gelombang 8 
hingga 18 GHz. Pelbagai komposit penyerap mikro gelombang telah direka 
menggunakan kaedah konvensional keadaan pepejal dan kaedah pemendapan wap 
kimia. Terdapat pelbagai bahan yang berbeza yang disintesis dengan peratusan berat 
bahan yang berbeza, bahan-bahan campuran yang berbeza, pemangkin yang berbeza 
untuk mensintesis CNT dan ketebalan yang berbeza. Walau bagaimanapun, hanya 
dipilih dan keputusan yang cemerlang akan diterangkan secara terperinci dalam tesis 
ini. Bahan-bahan yang dibincangkan telah dibahagikan kepada empat bahagian; 
Multidinding nanotiub karbon (MWCNTs) bercampur dengan nikel zink Ferit 
(Ni0.5Zn0.5Fe2O4), Multidinding nanotiub karbon (MWCNTs) dicampur dengan 
Cobalt Ferit (CoFe2O4), sedia-disintesis CNTs dimangkinkan oleh sisik besi, sedia-
disintesis CNT dimangkinkan oleh Nikel -Zinc Ferit (Ni0.5Zn0.5Fe2O4) dicampur 
dengan Cobalt Ferit (CoFe2O4) dan sedia-disintesis sebagai CNT dimangkinkan oleh 
Nikel-zink Ferit (Ni0.5Zn0.5Fe2O4) dicampur dengan karbonil ferit (CI). Untuk ferit 
dicampur dengan MWCNT, bermula bahan mentah logam oksida bagi menghasilkan 
bahan ferit adalah ditimbang dan digiling menggunakan teknik tenaga gilingan bola 
yang tinggi untuk mendapatkan bermula saiz zarah nanometer manakala MWCNT 
digunakan adalah dari sumber komersial. Serbuk ferit kemudian dibakar pada masa 
pembakaran yang berbeza mengikut perbezaan bahan yang disintesis. Bagi kaedah 
CVD, serbuk pemangkin telah ditimbang dan dipanaskan pada 7000C selama 30
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minit. Gas Argon dan etanol digunakan sebagai gas pengangkut dan sumber karbon. 
Sampel komposit disediakan kemudian dimasukkan ke dalam resin epoksi sebagai 
matriks dengan berbeza nisbah dan dituangkan ke dalam pembuatan istimewa 
pemegang sampel dengan ketebalan ditetapkan pada 1, 2 dan 3 mm. Pembentukan 
fasa kristal semua sampel disediakan telah disiasat lanjut dengan sinar-X 
pembelauan (XRD). Saiz zarah diukur menggunakan mikroskop elektron 
penghantaran (TEM). Mikrostruktur sampel diambil menggunakan pelepasan bidang 
imbasan mikroskop elektron (FESEM) ukuran. Analisis unsur diukur menggunakan 
elektron serakan spektroskopi sinar-X (EDX). Mod getaran fonon ditentukan oleh 
Raman spektroskopi. Kerintangan diukur menggunakan ukuran kerintangan. Sifat-
sifat magnet telah diukur menggunakan Vibrating Sample Magnetometer (VSM). 
Penyerakan diukur dalam kawasan jalur-X dan Ku dengan menggunakan Network 
Analyzer Vector (VNA) dalam julat frekuensi daripada 8 hingga 18 GHz. Keputusan 
XRD bagi ferit bercampur dengan MWCNT menunjukkan bahawa puncak 
pembelauan telah sedikit beralih dan puncak dominan telah diberikan oleh bahan-
bahan ferit setelah peratusan jumlah berat yang ditambah adalah lebih tinggi. Purata 
saiz zarah ferit disintesis dan diameter purata sedia-disintesis CNT berada dalam 
kawasan bersaiz nanometer yang telah meningkatkan keupayaan penyerapan. Hasil 
gumpalan morfologi sedia-disintesis CNT telah disebabkan oleh Van der Waals dan 
ini diselesaikan dengan menggabungkan mereka ke dalam matriks polimer penebat 
dengan dicampur menggunakan adunan kelajuan tinggi. Bentuk struktur karbon 
kebanyakannya lurus, lingkaran, tiub berongga, seperti jaring dan serat berpintal 
yang meningkatkan keupayaan penyerapan. Pengukuran EDX untuk sampel yang 
dipilih menunjukkan kehadiran unsur dalam sampel komposit. Raman spectrum 
menunjukkan kecacatan (jalur-D) adalah lebih tinggi daripada grafitic (jalur-G) yang 
disebabkan oleh kecacatan pada hujung tiub, gangguan penyusunan, tiub berongga 
dan lapisan graphene melengkung. Untuk ferit dicampur dengan MWCNT, didapati 
bahawa jumlah MWCNTs meningkat, coercivity (Hc) komposit meningkat, 
manakala pemagnetan tepu (Ms) dan baki pemagnetan (Mr) kedua-dua menurun. 
Untuk mengukur pada frekuensi yang lebih tinggi (jalur-X dan jalur-Ku), sampel 
tebal menyebabkan penyerapan gelombang mikro yang lebih tinggi. Apabila 
ketebalan meningkat, perubahan puncak kehilangan pantulan ke arah julat frekuensi 
yang lebih rendah kerana beralih yang hampir sama frekuensi. Untuk ketebalan 3 
mm, kehilangan pantulan mencapai -17 dB pada 9.5 GHz bagi 2 wt% MWCNTs- 
Ni0.5Zn0.5Fe2O4 /P dengan lebar jalur 3.5 GHz. Bagi sedia-disintesis CNT oleh 
sisik besi gilingan pada 20 jam untuk ketebalan 3 mm, nilai kehilangan pantulan 
adalah -25 dB. Bagi sedia-disintesis ferit campuran dengan ketebalan 3mm, 
kehilangan pantulan sampel dengan sedia-disintesis  (80% NZF + 20% C)/P 
memberikan nilai kehilangan pantulan paling minimum -29 dB pada kira-kira 12.5 
GHz dengan lebar jalur 4 GHz (10.5 14.5 GHz) dan -26 dB pada 9.5 GHz untuk 
sedia-disintesis  (20% NZF + 80% CI)/P. Polimer komposit yang disediakan 
dijangka menjadi sangat berguna dalam aplikasi ketenteraan seperti seksyen 
pengurangan rentas radar dan pencegahan gangguan elektromagnet. 
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CHAPTER 1 

 

 INTRODUCTION 

 

1.1 Motivating Background of the Study 

Recently, rapid development of local electronic devices, microwave communication 
and the pollution of electromagnetic interference strongly require electromagnetic 
wave absorbing materials with favorable properties such as low density, low cost and 
strong absorption in a wide frequency range (Wang et al., 2010). In fact, the rapid 
development of gigahertz application devices results in serious electromagnetic 
(EM) interference pollution. The electromagnetic interference pollution can cause 
disturbances on the equipment and systems for medical, industrial, commercial, and 
military applications. Microwave radiation is also potentially harmful to biological 
systems which are continuously exposed to microwave for a considerable period of 
time. Electromagnetic interference shielding or microwave absorbing materials have 
been used to attenuate those unwanted electromagnetic energies, which is an 
important issue to be considered for both civil and military purposes. Therefore, 
considerable attention has been devoted to the effective electromagnetic wave 
absorbing materials with lightweight and strong absorption over a broad frequency 
spectrum (An et al., 2009; Thomassin et al., 2007; Xu et al., 2007; Che et al., 2004). 
 

Those materials with the capability of absorbing electromagnetic signal are widely 
applied in industrial, commercial and military fields (Tong et al., 2011; Zeng et al., 
2010; Zhou et al., 2007). For example, in military applications, particularly in an 
antiradar system the used materials should have a strong absorbing effect. Thus, EM 
wave absorbers with wider absorption bandwidths and better absorption properties 
become more and more important (Qing et al., 2010; Kim et al., 2005). As in current 
computers, the working frequencies of wireless communication devices and clock 
frequency of CPU are from hundreds of MHz to several GHz. The broadband 
absorbers will be preferable to suppress the EM interferences between such signals 
with different frequencies. Thus, much attention has been paid to radar absorbing 
materials (RAMs) due to their unique absorbing microwave energy and effectively 
reducing electromagnetic backscatter. They are specially designed material to 
suppress the reflected electromagnetic energy incident on the surface of the absorber 
by dissipating the magnetic and/or electrical fields of the wave into heat. The 
excellent RAMs should have certain properties as follows: 1) exhibit strong 
microwave absorption properties over a wide frequency range; 2) need to be thin and 
lightweight, especially for aircraft; 3) have simple coating-layer structure. Extensive 
study has been carried out to develop new microwave absorbing materials with a 
high magnetic and electric loss (Ruan et al., 2000; Babbar et al., 2000). 
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For the sake of better microwave absorbing capability, a wide range of radar 
absorbing materials have been fabricated up to now such as powder metals, carbonyl 
composites, conductive magnetic fibers, hard and soft ferrites and etc. In fact, the 
fabricated absorbing material should have electric and/or magnetic dipoles in order 
to interact with the electromagnetic fields in the radiation. Thus, an absorbing 
material can be classified as magnetic, dielectric or hybrid (a combination of 
magnetic and dielectric) since pure dielectric or magnetic materials are insufficient 
for absorbing radiation energy. Other than that, new systems have also been evolved 
comprising composite powder containing hard and soft magnetic materials. 
Moreover, with advances in nanotechnology nano microwave absorbers have played 
an important role in developing better absorbing material. All in all, it would help to 
develop a proper perspective by having better understanding on the underlying 
principles of RAM analysis, design and fabrication methods, and the identification of 
the actual RAM materials. It may also facilitate pioneering the next generation of 
materials and technology of RAM. 

1.2 Overview: Historical Perspective to the Evolution of Radar Absorbing 

Materials (RAM) 

Early research on radar absorbing materials (RAM) was started during 1930’s while 
the commercial production of RAM started to grow and develop in 1950’s. The first 
absorber material to be patented was developed in 1936 at Naamlooze Vennootschap 
Machinerieen, in the Netherlands. In the research, carbon black and TiO2 was used 
as a quarterwave resonant material in the 2 GHz region to achieve dissipation and 
high dielectric constant respectively. 

During the World War II, the advents of radars causing absorbers were intensified. 
According to Schade, 1945 and MacFarlane, 1945, there were two types of materials 
being used in submarines which were successfully developed in Germany. The first 
material called Wesch and the second was Jaumann absorber. Wesch material 
consisted of a semiflexible rubber sheet loaded with carbonyl iron while later 
material was developed by a multilayer approach. The reflection coefficients were 
typically lower than -20 dB over a wideband (2 – 15 GHz) for both absorbers for 
near normal incidence. 

According to Emerson, 1973, two types of absorbers (airbone version and rugged 
shipboard version) were developed during the same time in US which generically 
called HARP (Halpern-anti-radar-paint). These absorbers offered a reflection 
reduction of 15 – 20 dB at resonance. The airbone version (MX-410) utilized 
artificial dielectric materials of high relative permittivity which was actually akin to 
paint. This version could operate in the X-band with a typical thickness of 0.07 
inches while having broad absorption around the resonant frequency (Montgomery 
et al., 1948). As for rugged shipboard version, it consists of a high concentration of 
iron particles in a neoprene binder.  
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A well-known absorber being approached consists of a resistive sheet which was 
placed at quarter wavelength from the scatterer, was spaced by a low dielectric 
material. This absorber was known as the Salisbury screen which developed around 
the same time as HARP (Salisbury, 1952) and was widely used in earlier anechoic 
chamber designs that operate by the resonant technique. Later, Ruck et al. (1970) 
introduced another resonant absorber in wide use which was known as the 
Dallenbach layer. This new approached consisted of a homogeneous lossy layer on a 
metal plate which the thickness of the lossy layer was selected such that its input 
impedance matched the intrinsic impedance of the free space. 
 

As discussed above, the absorbers developed in earlier stages were mostly 
narrowband in nature. As a result, more research was needed towards obtaining 
broadband RAM. Probably the very first approach to be tried in this context which 
most practical broadband RAM were constructed was a multilayer structure 
(Jaumann absorbers discussed above). For example, the broadening of the bandwidth 
of Salisbury screens was achieved by introducing additional layers of resistive sheets 
and spacers (Emerson, 1973). 
 

In some applications, bulk absorbers were also used replacing sheets or layers. The 
conductivity of the bulk material reduces upon infusion of carbon in a matrix of 
spongy urethane foam. Based on this approach, in the early 1950’s, the US Naval 
Research Laboratory developed a broadband absorber. The conductivity was reduced 
by dipping or spraying carbon onto a mat of loosely spun animal hair. These bulk 
absorbers could be readily used in order to control reflections in both indoor 
(anechoic) and outdoor antenna measurement ranges. 
 

In the 1960’s, the possibility of using magnetic materials (e.g., the ferrites) as an 
absorbing materials was explored intensively. Crispin & Siegel (1968) reported that 
thin magnetic RAM with low reflection coefficient that was fabricated could operate 
at lower resonant frequencies that had earlier been feasible with the dielectric 
materials. However, these materials are much heavier although they were thinner 
compared to the dielectrics. In addition, they are prone to disintegration at higher 
frequencies. 
 

It came to light in the 1980’s by serendipity that some biotechnology products have 
ultrawide band absorption characteristics. Therefore, subsequent experiments being 
carried out and it confirmed that substantial RCS reduction was indeed possible by 
dissolving these compounds in aircraft structural materials. Following this, the 
Department of Defense, US, immediately classified the compound. However, there 
are conjectures that this ultrawide band RAM is a retinyl compound which belongs 
to the class of Schiff-base salts. This is a powdery black substance which is much 
lighter than the ferrites and it is also said to have been used in making RAM paints 
for stealth aircraft. 
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According to Jaggard & Enghetta (1989), a class of homogeneous materials has also 
being found to be used as RAM. It is by making use of the chiral property which 
depend upon optical activity and circular dichroism and the backscatter RCS which 
is independent of polarization. On the other hand, the chiral RAM have vastly 
superior RCS characteristics as compared to the dielectric and magnetic RAM 
discussed above. 
 

Finally, in the 1990’s certain polymers when doped showed finite conductivity was 
discovered. In the context of RAM, it is important to have such conducting polymers 
since the conductivity provides a loss mechanism by attenuating the EM waves 
within the polymers. Typical conducting polymers are polyaromatic in nature, such 
as polyaniline and polypyrrole whereas dopants consist of iodine, bromine, ferric 
chloride etc. Thus, controlling the dopant concentration can tuned or varied the 
conductivity of these polymers. This provides an opportunity in designing RAM in 
order to fulfill the properties/characteristics needed for certain application. Advances 
in the 1990’s, led to 3-dimensional inorganic carbon crystals (the fullerenes) which 
yet has been reported that C60 and other fullerenes when doped results in very 
effective RAM.  
 

1.3 Selection of Materials 

Reflection loss values can be altered in order to achieve maximal absorption of the 
electromagnetic energy. Nowadays, considerable efforts have been made to design 
various materials in order to reach the targets. Consequently, in this research various 
types of materials have been prepared in order to be the candidate as good absorbing 
materials. The overall main materials to be used as fillers are nickel zinc ferrite, 
barium hexaferrite, cobalt ferrite, magnetite, carbonyl iron and multiwalled carbon 
nanotubes. These are all the main starting materials to be used with each of the 
materials plays their role in obtaining higher absorption. The reasons of choosing 
those materials are stated in the Table 1.1 below: 

Table 1.1: List of materials and reasons for choosing them as an absorbing 

material. 

Materials Reason 

Nickel Zinc Ferrite 
(Ni0.5Zn0.5Fe2O4) 

Ni0.5Zn0.5Fe2O4 has moderate saturation magnetization, 
remarkable chemical stability, and a good mechanical 
hardness. Their high resistivity is found to be the most 
versatile technological materials especially suited for high 
frequency applications. They also have an advantage in 
applications which can cover from low to microwave 
frequencies and low to high permeability. It is very useful 
especially in the microwave frequency range for having a 
resonant frequency at high frequency. 



© C
OPYRIG

HT U
PM

5 
 

Barium 
Hexaferrite 
(BaFe12O19) 

BaFe12O19 is one of the high performance permanent magnet 
with fairly large magnetocrystalline anisotropy, high curie 
temperature, relatively large saturation magnetization and 
high coercivity. Moreover, it also has high resistance, 
excellent thermal and chemical stability and corrosion 
resistivity. Therefore they can be used as microwave 
absorbers in the GHz frequency range. 

Cobalt Ferrite 
(CoFe2O4) 

CoFe2O4 is one of the rapid relaxing ions which are good in 
terms of absorbing and releasing the energy. By having high 
anisotropy field, it allows absorbing the microwave energy 
efficiently by precessing the magnetic moment. Moreover, by 
having large saturation magnetization and high Snoek’s limit, 
it results in high complex permeability values at a wide 
frequency range. Thus, it makes CoFe2O4 is highly useful as 
a thin absorber working at a high-frequency range. 

Magnetite (Fe3O4) Fe3O4 is a magnetic material with high dielectric permittivity, 
thus it exhibits both magnetic and dielectric losses. Fe3O4 
behaves as a total reflector when irradiated by an 
electromagnetic wave. However, by incorporating into 
insulating matrix, it may reduce the low dielectric 
permittivity to ensures low reflection from the sample’s front 
surface. 

Carbonyl Iron, 
Fe(CO)5 (CI)  

Carbonyl iron is particles widely used as microwave 
absorption filler having large saturation magnetization and 
high Snoek’s limit which result in high complex permeability 
values at a wide frequency range. This factor makes CI 
particles are useful for microwave absorber at a high-
frequency band.  

Multiwalled 
Carbon Nanotubes 

Multiwalled carbon nanotubes have properties of lightweight, 
high specific surface areas, low percolation and high 
electrical property. It also offers a large flexibility for design 
and control of microwave absorption behaviors as it being 
incorporated into polymer. The composites can be tailored 
through changes in loading fractions, matrix materials, 
complex permittivity and loss tangent of MWCNTs-polymer 
composites. The incorporation of CNT may also enhance the 
thermal stability of the composite as well as possess high real 
and imaginary permittivity. Thus, by having small additions 
of MWCNTs, the values of complex permittivity may 
increase dramatically. Moreover, an optimum conductivity is 
needed for good microwave absorption since low 
conductivity may cause partial absorption of the microwave 
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whereas highly conducting material may transmits or reflects 
the wave without any absorption. Thus, the advantages of 
having free electrons in its skeleton, it can absorb the energy 
and helps in attenuating it as well. Further the high surface 
area of MWCNT also may be a reason for its good 
microwave absorption behavior. 

 

Instead of inorganic samples, this research work have also introduced materials from 
industrial byproduct (steel mill scale) and agricultural waste (organic) sample which 
may help in obtaining good microwave absorbers. Mill scale is the flaky surface of 
hot rolled steel which consist of iron(II) oxide (FeO), iron(III) oxide (Fe2O3) and 
iron(II, III) oxide (Fe3O4, magnetite). It was used in order to synthesis of low cost 
material for lightweight absorber. In addition, iron content is dominant and mill scale 
can be divided into three types as electric loss, magnetic loss and dielectric loss 
materials. On the other hand, a coconut husk is an example of organic samples which 
contains 30wt% of coir fibres and 70wt% coir dust which is also known as coco 
peat. The coco peat contains lignin, cellulose and hemi-cellulose which are 
potentially useful as a microwave absorber. The content of carbon in coco peat can 
also reach to 50%. Carbon plays an important role in microwave absorption since it 
may easily heated by microwave energy which is suitable for transforming the 
microwave energy to thermal energy because carbon is impeded as microwave signal 
pass through. An electric field is produced at the surfaces of the absorber as the 
microwave pass through the carbon based absorber. Thus, the electrical energy is 
then transformed into thermal energy and is dissipated. 
 

1.4 Problem Statement 

Aiming to eliminate or reduce the spurious electromagnetic radiation levels more 
closely in different applications, the research and the development of radar absorbing 
materials (RAM) have increased. However, current technology lacks on the 
fabrication of microwave absorbing materials with the ability of absorbing 
electromagnetic radiation in a broad frequency range. The actual barrier to achieve 
this goal is the lack of detailed scientific understanding of how the molecular units of 
materials and their combinations reflect, absorb and transmit the incident microwave 
energy. Therefore, extensive studies, as to be attempted in this research work, on 
microwave absorption properties of various materials need to be synthesized and 
investigated to look for the microwave absorbing materials with high absorptive 
ability and wide band absorption suitable at frequency 8 to 18 GHz. 
 
 
1.5 Objective 

The objective of this research is to fabricate various microwave absorbing 
composites which are later to be used in microwave absorbing applications. The 
research will concentrate on observing the behavior of significantly important 
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material properties related with microwave absorption as well as the performance of 
the material when introduced as a microwave absorber. Thus, this study aims to 
explore all the information about microwave absorbers in order to scientifically 
understand the underlying microwave absorption mechanisms through their basic 
theories.  

 

Work-phase Objectives 

1. To synthesize and investigate absorption properties of fillers by varying its 
materials content and thickness to be incorporated into matrix that would 
increase the absorption at frequencies 8 to 18 GHz (X to Ku band). 

2. To optimize the setup of the reflection loss measurement that would reduce 
the air gap. 

3. To analyze the properties in obtaining the possible materials to be used as an 
absorber that would increase the performance of reflection loss ≤30 dB. 

4. To study various properties especially microwave absorption properties from 
the research that would increase the microwave absorbing performance. 

  

1.6 Thesis Overview 

A general introduction on background of the study, overview historical perspective 
of the evolution of RAM, problem statements and objectives are discussed in 
Chapter one. As for Chapter two, the relevant EM parameters and phenomena 
associated with RAM, which are used in the analysis and design in the later chapters, 
are also identified and explained. The related literatures on finding the suitable 
microwave absorbers to solve the electromagnetic interference (EMI) problem are 
also discussed in this chapter. The attention of the reader is also drawn towards the 
new approach form this research work. The background theory on magnetism was 
explained in Chapter three. In addition to that, the important basic theory and 
background to the process of microwave excitation and the different ways the 
microwave energy is lost to the system are further explained in detail. Chapter four 
explained in detail preparation of the samples and reviews the methods in measuring 
microwave and reflection properties using microwaves characterization equipment. 
The analysis of the results based on the design of the various types of RAM that 
were considered and all measurements are discussed in Chapter five. Finally, the 
research findings are summarized and concluded in Chapter six. In addition to the 
last chapter, there are some suggestions for further research and the thesis also 
includes an extensive bibliography of all literature being used. 
 

1.7 Limitations of the study 

Although the objectives and scopes in this thesis had been thoroughly investigated and 
studied, there are few limitations regarding to the research: 
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1. The measurement was carried out in the X-Band (8-12GHz) and Ku-band (12-
18GHz) frequency due to the limitation in experimental equipment constrained.  

2. The results of the test involving free space measurement would be best executed 
in a wideband condition i.e.: 1-18GHz and in anechoic chamber, where most 
research on the practical absorber was done. However, the horn antenna 
arrangement was not employed since the absorber plate area needs to be large 
enough, therefore requiring a rather large amount of expensive ferrite 
powder. Also it would be difficult to obtain a highly uniform thickness of the 
ferrite-loaded paint since the plate area required is large ( ≥ 30 cm × 30 cm). 
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