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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of 

the requirement for the degree of Doctor of Philosophy 

 

 

ELECTRICAL PROPERTIES OF MIXED OXIDES OF MANGANESE AND 

VANADIUM PREPARED BY CONVENTIONAL SOLID STATE AND 

MECHANICAL ALLOYING METHODS 

 

 

By 

 

TAN FOO KHOON 

 

June 2016 

 

 

Chairman :  Jumiah Hassan, PhD 

Faculty :  Institute of Advanced Technology 

 

 

Metal oxide of manganese (Mn) and vanadium (V) are widely studied due to their 

interesting fundamental physical properties. There were several works on Mn-V mixed 

oxide done previously, but it still lacks comprehensive electrical studies on Mn-V 

oxide system which can gives more information to describe the mixed oxide. In this 

project, the investigation toward morphology, electrical conductivity, dielectric 

properties and thermal diffusivity of the mixed oxides was carried out. The samples 

were prepared by conventional solid state (SS) and mechanical alloying (MA) methods. 

The samples were prepared with a ratio of 40 mol% of V2O5 and 60 mol% of 2MnO2 

and were sintered at different sintering temperatures from 500 to 800
o
C and 

characterized. In the meantime, samples of pure oxides, Mn and V were also prepared 

to compare with the mixed oxides. 

 

 

X-ray Diffraction confirmed that the samples prepared are multi phases and Rietveld 

refinement method was employed to estimate the phase composition in each sample. 

MA method successfully reduced the sintering temperature for the reaction to occur at 

a much lower temperature compare to SS method. Also, the surfaces of the sample 

were visualized using Field emission scanning electron microscopy (FESEM) and the 

average grain size was calculated. From FESEM images, MA method produced very 

fine particles in nano-scale while SS method in micro-scale.  

 

 

The DC and AC conductivities of the samples showed the semiconducting behavior 

because the electrical conductivity increases when temperature increased. The Mn-V 

oxides have lower electrical conductivity as compare to the starting materials. Since the 

samples are multi phases, hence the dielectric constant obtained is a contribution from 

different phases. The polarization mechanism in this frequency region (40 to 1 MHz) 

can be explained by interfacial and dipolar polarization. On the other hand, the spectra 

of electric modulus and impedance of the samples successfully revealed the dielectric 

relaxation process which cannot be observed directly from dielectric loss spectrum. 

Equivalent circuit modeling was adopted to further describe and predict the electrical 
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properties of the material. The samples were successfully fitted to single parallel RC 

circuit or two parallel RC circuits connected in series.  

 

 

The sample sintered at 500
o
C prepared using MA method gave the best dielectric 

properties. This is possibly due to MA method reduces the particle size and increases 

the grain boundary volume of the sample. Also, the MA series have better thermal 

stability and gave higher thermal diffusivity compare to SS series where the heat from 

energy dissipation can be easily transferred for the cooling process.  

 

 

Lastly, a more comprehensive electrical and thermal study on Mn-V oxide system is 

done and it can be a reference for future researchers. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk ijazah Doktor Falsafah 

 

 

SIFAT ELEKTRIK BAGI CAMPURAN OKSIDA DARI MANGAN DAN 

VANADIUM YANG DISEDIAKAN MELALUI KAEDAH PEMPROSESAN 

SERAMIK AND PENGALOIAN MEKANIKAL 

 

 

Oleh 

 

TAN FOO KHOON 

 

Jun 2016 

 

 

Pengerusi : Jumiah Hassan, PhD 

Fakulti  : Institut Teknologi Maju 

 

 

Oksida logam mangan (Mn) dan vanadium (V) dikaji secara meluas atas sifat-sifat 

fizikal asasnya yang menarik. Terdapat beberapa kerja-kerja penyelidikan pada oksida 

campuran Mn-V dilakukan sebelum ini, tetapi ia masih tidak mempunyai sebuah kajian 

elektrik yang lengkap mengenai sistem oksida Mn-V yang boleh memberi maklumat 

lanjut untuk menggambarkan oksida campuran. Dalam projek ini, siasatan terhadap 

morfologi, kekonduksian elektrik, sifat dielektrik dan kemeresapan terma bagi oksida 

campuran telah dijalankan. Sampel telah disediakan dengan kaedah pemprosesan 

seramik (SS) dan pengaloian mekanik (MA). Sampel telah disediakan dengan nisbah 

40 mol% daripada V2O5 dan 60 mol% daripada 2MnO2 dan telah disinter pada suhu 

suhu pensinteran yang berbeza dari 500 hingga 800
 o

C dan dicirikannya. Pada masa 

yang sama, sampel-sampel oksida tulen, Mn dan V juga disediakan untuk dibanding 

dengan oksida campuran. 

 

 

X-ray Diffraction mengesahkan bahawa sampel yang disediakan adalah dalam pelbagai 

fasa dan kaedah penyempurnaan Rietveld telah digunakan untuk menganggarkan 

komposisi fasa dalam setiap sampel. Kaedah MA berjaya mengurangkan suhu 

pensinteran menyebabkan tindak balas yang berlaku adalah pada suhu yang lebih 

rendah berbanding dengan kaedah SS. Juga, permukaan sampel itu diperhatikan 

menggunakan medan imbasan mikroskop elektron (FESEM) dan saiz bijian purata 

dikira. Daripada imej FESEM, kaedah MA menghasilkan zarah yang sangat halus 

dalam skala-nano manakala kaedah SS dalam skala-mikro. 

 

 

Kekonduksian DC dan AC bagi sampel-sampel menunjukkan sifat semikonduktor 

kerana peningkatan kekonduksian elektrik dengan peningkatan suhu. Oksida Mn-V 

mempunyai kekonduksian elektrik yang lebih rendah berbanding dengan bahan 

mentah. Oleh kerana sampel mempunyai pelbagai fasa, maka pemalar dielektrik yang 

diperolehi adalah dari sumbangan fasa-fasa yang berbeza. Mekanisme polarisasi di 

julat frekuensi ini (40-1 MHz) dapat dijelaskan oleh polarisasi antaramuka dan 

dwikutub. Selain itu, modulus elektrik dan impedans sampel berjaya mendedahkan 
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proses kesantaian dielektrik yang tidak dapat diperhatikan secara terus daripada 

spektrum faktor lesapan dielektrik. Pemodelan litar setara telah diggunakan supaya 

boleh menghurai dan meramalkan sifat-sifat elektrik bagi sesuatu bahan. Sampel-

sampel telah berjaya diwakilkan ke satu litar RC selari atau dua litar RC selari 

disambung secara sesiri. 

 

 

Sampel disinter pada suhu 500
o
C disediakan dengan menggunakan kaedah MA 

mempunyai sifat dielektrik yang terbaik. Ini mungkin disebabkan oleh kaedah MA 

mengurangkan saiz zarah dan meningkatkan jumlah sempadan bijian dalam sampel. 

Juga, siri MA yang mempunyai kestabilan terma yang lebih baik dan memberikan 

kemeresapan terma yang lebih tinggi berbanding dengan siri SS maka haba dibebaskan 

dari pelesapan tenaga boleh meresap dengan mudah bagi proses penyejukan. 

 

 

Akhir sekali, kajian elektrik dan haba yang lebih menyeluruh ke atas sistem oksida Mn-

V dilakukan dan ia boleh menjadi rujukan kepada penyelidik akan datang. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background of project and motivation 

Currently, composite materials have wide variety of applications in our daily life such as 

electrical devices, mobile communication systems, etc. Therefore, composite tailoring 

was set off to suit the particular needs for different usages.  

In the past decade, there have been several research carried out with different metal 

oxides due to their applications in various electronic devices such as smart window 

(Zhangli et al., 2013), optical detector (Bin et al., 2013), cathode coating in high-capacity 

lithium batteries (Di Blasi et al., 2015), high performance capacitor (Vilar et al., 2005), 

thermistor (Gouda et al., 2013) and others. 

Transition element has mixed valence ions, hence those compounds have unique 

properties and very useful in various fields. Manganese is one of the transition element 

which has a formal oxidation state from -3 to +7. Meanwhile, manganese oxides include 

MnO, Mn2O3, Mn2O7, etc (Kemmitt et al., 1975). According to pervious researches, 

composites containing MnO2 such as V2O5 (Gouda et al., 2009), SnO, As2O3 (Kayan et 

al., 2004), CaO (Vilar et al., 2005), Fe2O3 (Molenda et al., 1987) etc were investigated.  

Besides, vanadium oxides which include V2O3, V2O5, V6O13, VO2, etc., show a phase 

transition from the semiconductor phase to the metal phase when measuring temperature 

increases (Xiaochun et al., 2008). Therefore, the phase change gives more variations of 

electrical and dielectric properties. 

From previous study, Gouda et al. (Gouda et al., 2009) prepared mixed oxides of Mn and 

V under different mass ratio of Mn2O3 and VO2 from 90:10 to 5:95. They found that 

resistivity and thermistor constant of beta or gamma form of Mn2V2O7 are higher 

compared to the well known oxides of vanadium and binary/ternary oxides of 

manganese, nickel and cobalt. It meant that d-block electronic configuration of V5+ in 

Mn2V2O7 contributed to higher resistivity (Bordeneuve et al., 2009). 

There were some works related with V2O5 done previously, but the reports were focused 

on structural investigation and some electrical properties of MnV2O6 and Mn2V2O7 

(Gouda et al., 2013; Gouda et al., 2009; Dongfang, 2013; Mocala et al., 1987). However, 

it still lacks a comprehensive electrical studies on Mn-V oxide system which can gives 

insight into the response of grain and grain boundary to the electric field. Also, there 

were several investigations related to Mn and V oxides reported prepared by different 

methods which were pulsed laser deposition (Dongfang, 2013), solid state reaction 

(Gouda et al., 2009, Mocala et al., 1987) and high pressure synthesis (Subramanian, 
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1992). However, there are no studies on Mn-V oxide prepared by mechanical alloying 

method. Therefore, it is a pioneer work in this project. According to previous studies, the 

Mn-V mixed oxides prepared in this project may have high dielectric loss factor and the 

energy loss may convert into heat. Hence, thermal diffusivity measurement was carried 

out to further understand the thermal properties of the mixed oxides. 

In this project, the conventional solid state and mechanical alloying method were 

employed to prepare the samples. The aim is confined to study the morphology and the 

phase composition of Mn-V oxides produced at different sintering temperatures. Also, 

the electrical and dielectric properties of the mixed oxides at different measuring 

temperature were also investigated. Lastly, the thermal diffusivity of the mixed oxides 

was measured at different temperatures as subordinate studies in this project. 

1.2 Transition Metal 

In the periodic table, the transition metals are any element in d-block of the periodic 

table. These elements have partially filled d sub-shell which can give up their valence 

electrons to become cation. Therefore, the d-orbitals have variety of oxidation states. 

The general properties of the transition metals are usually high melting point, have 

several oxidation states, form coloured compounds and paramagnetic (HyperPhysics, 

n.d.). Transition metal oxides are starting to draw attention from many researchers,

because they have wide range of electronic properties ranging from insulating, 

semiconductor and conducting properties. Their electronic properties can be modified by 

changing its morphology structure, doping or changing their stoichiometry. The plentiful 

of transition metal oxides in nature is another advantage for technologies to be widely 

utilized (Walia et al., 2013). 

1.2.1 Manganese Oxide 

Manganese element is one of a transition metal which is hard and bronze in color. It is 

one of the transition elements which have a wide range of oxidation states such as +2, 

+3, +4, +6, and +7. The electron configuration of manganese element is 

1s22s22p63s23p64s23d5. The melting point of manganese metal is relatively high which is 

1244 oC (Kemmitt et al., 1975). It occurs naturally as the mineral pyrolusite, which is an 

essential ore of manganese (Anthony et al., 1990). On the other hand, manganese oxides 

basically include MnO, Mn3O4, Mn2O3, MnO2 with different allotropes which show 

some advantages of  non-toxicity, easy to obtain and therefore low cost. Moreover, they 

exhibit high specific capacitances and have become the most promising materials in 

application of supercapacitors (Junhua et al., 2002). 

Manganese (IV) oxide is the one of the starting materials in this project. It is also known 

as manganese dioxide, MnO2 with +4 oxidation state. MnO2 has blackish or brown solid 

physical appearance. MnO2 melts at 535oC (MSDS, n.d.) and insoluble in water. The 
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basic unit of MnO2 is octahedral closed packet structure, which is built up by one 

manganese atom coordinated with six oxygen atoms (Figure 1.1). The atoms are linked 

together in different ways so as to form various crystallographic and derivative structures 

(Inorganic Crystal Structure Database, 2014).  

Figure 1.1: Tetragonal crystal system of MnO2. 

(http://www.webelements.com/compounds/manganese/manganese_dioxide.html) 

Naturally, MnO2 with different structural forms has been found, which are α-, β-, δ-, γ- 

and ε-MnO2 which have various properties (Zhong Jie et al., 2015; Hongtao et al., 2012). 

The α-MnO2 phase has nanowire structure where β-MnO2 phase has mircorods structure 

(Bang et al., 2014). The different morphologies structures of manganese oxide can result 

in the change of crystal lattice, the differences of crystal defects and holes, which affect 

the polarization and consequently alter the dielectric properties of materials. According 

to the morphological structure, mircorods have less polarization ability than nanowires, 

hence α-MnO2 has higher dielectric permittivity compared β-MnO2. Also, the 

temperature will affect the movement of charge carriers in the interior tunnels and 

cavities which leads to the fact that MnO2 materials will have various dielectric 

relaxation phenomena and electromagnetic characteristics (Yude et al., 2010; Hongtao 

et al., 2010). 

Nowadays, MnO2 is widely studied because of its interesting fundamental physical 

properties. They have lots of applications such as, catalyst, molecular-sieves, ion-sieves 

due to it ion exchange, molecular adsorption, electrochemical and magnetic properties 

(Yude et al., 2010). It is also used in preparing soft magnetic materials, electrodes and 

electrochemical capacitors (Dakhel, 2006). 

1.2.2 Vanadium Oxide 

Vanadium element has an atomic number of 23 and the electronic configuration is 

1s22s22p63s23p64s23d3. Vanadium element is a transition metal element which has 

variation of oxidation states ranging from +5, +4, +3 to +2. Therefore, it exists in many 

phases such as VO, VO2, V2O3 or V2O5 (Walia, et al. 2013). V2O5 is a brown or yellow 

solid. It is an amphoteric oxide and oxidizing agent (Zabriky, 2009). 

http://www.webelements.com/compounds/manganese/manganese_dioxide.html
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The other phases of vanadium oxide (VO, VO2, V2O3) have multiple crystal phases, but 

V2O5 exists only as an orthorhombic crystal (Figure 1.3) which is fundamentally 

comprising of VO5 pyramids that form alternating double chains along the b-axis (Walia 

et al., 2013). Hence, V2O5 has a strong tendency for the crystallites in a powder or a 

texture to be oriented or grew in belt shapes (Sharma et al., 2015). 

Figure 1.2: Orthorhombic crystal system of V2O5. 

(http://www.chemtube3d.com/solidstate/SS-V2O5.htm) 

Among the oxides of vanadium, V2O5 melted at 690oC (MSDS, n.d.), an orange-red 

powder and partially soluble in water to give a pale yellow acidic solution, and which 

dissolves readily in alkalies to form vanadates. Meanwhile, it is also soluble in strong 

acids. V2O5 is widely used in analytical chemistry due to the V2O5 ion can form slightly 

soluble or intensely colored, simple or complex compounds with inorganic and organic 

substances (Manskaya et al., 1968).  

V2O5 is widely used in thin-films device application due to its phase transition behavior. 

When the vanadium oxide thin film was heated to a specific temperature, it will present 

a phase transition indicated by the changes of its electrical and optical properties (Ya et 

al., 2014). An insulating thin film with good dielectric properties also has wide range of 

applications in various electronic devices, hence the dielectric properties of V2O5 thin 

film has drawn much attention from researchers (Thomas et al., 1989).   

1.3 Conventional Solid State Method 

Conventional solid state method is widely used to prepare polycrystalline solid from 

mixture of starting materials. Furthermore, this method is low cost and high yield which 

is another advantage to become a preference of many researchers. In recent years, the 

materials synthesis and processing become crucial for materials development. As a 

result, the importance of sintering increases as materials processing technology. 

The purpose of the sintering process is to produce sintered parts with reproducible and 

designed microstructure through controlling the sintering variables. Microstructure 

control means the control of grain size, sintered density, size and distribution of other 

http://www.chemtube3d.com/solidstate/SS-V2O5.htm
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phases including pores. Sintering processes can be categorized into two types: solid state 

sintering and liquid phase sintering. Solid state sintering occurred when the powder 

pelletized or densified completely in a solid state at the sintering temperature. At higher 

sintering temperatures, liquid phase sintering occurs in the powder compact during 

sintering. 

The sinterability and sintered microstructure of a powder compact were determined by 

several variables. They may divide into two categories: materials variables and process 

variables. The materials variables include chemical composition of powder compact, 

size, shape, size distribution, etc. These variables influence densification and grain 

growth. The homogeneity of the powder mixture also takes a significant role. The other 

variables related to sintering condition (process variables) are mostly thermodynamic 

variables, such as temperature, time, pressure, atmosphere, heating and cooling rate, etc 

(Randall, 1996). 

1.4 Mechanical Alloying Method 

Mechanical alloying is a dry, solid state powder, high-energy ball milling technique. This 

technique has been widely used to produce a variety of commercially usages and 

scientific purposes. 

Usually we can easily found two terms used in the literature to denote the processing of 

powder particles in high-energy ball mills. Mechanical Alloying (MA) describes the 

process when mixtures of powders (metals or alloy) are milled together. However, the 

milling of uniform composition powders, such as pure metals, intermetallics, or 

prealloyed powders for a reduction in particle size, but not for the materials 

homogeneities, has been named as Mechanical Milling (MM) (Suryanarayana, 2001). 

MA is a well-known high-energy ball milling method for materials in powder form 

which requires neither high temperature or heating nor using expensive equipment 

(Loginov et al., 2015). The powders are trapped between the grinding balls in a vial 

during milling. The powder particles undergo repeated severe plastic deformation and 

fracture processes, resulting incorporation of lattice defects and to a continuous 

refinement to the nanocrystalline size. On the other hand, the milling conditions also 

played important roles in the milling process. For instance, the mechanical behavior of 

the powder components such as, their phase equilibria, and the stress state during milling 

can then result in intermixing, solid state interdiffusion and supersaturation beyond the 

equilibrium solubility limit and chemical reaction, lastly resulting in metastable phase 

formation (Suryanarayana, 2001; Eckert et al., 1991; Raanaei et al., 2015; Scudino et al., 

2009). 

This method carried out by using SPEX SamplePrep 8000D Mixer/Mill (Figure 4.1), are 

able to mill about 8-20 g of the powder at a time depending on the size of the vials (Figure 

4.2). The grinding balls move energetically back and forth for several thousand times a 

minute, thus crushing and milling the powders and consequently, a homogeneous mixed 
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composites with smaller particle size powders was obtained (Loginov et al., 2015; Azimi 

et al., 2014).  

1.5 Objective 

1. To prepare and characterize mixed oxides 60 mol% of 2MnO2 and 40 mol%

V2O5 by conventional solid state reaction method and mechanical alloying

method at different sintering temperatures, 500°C - 800°C.

2. To study the morphology and phase composition changes of the samples at

different sintering temperatures.

3. To study the electrical and thermal properties of different Mn-V oxides phases

under different measuring temperatures, 30°C - 400°C.

1.6 Hypothesis 

1. The average grain size would increases with sintering temperature. 

2. Phase composition of starting materials would decrease while phase 

composition of Mn-V oxides would increase with sintering temperature. 

3. Electrical conductivity, dielectric constant and dielectric loss factor of the 

samples would increase as measuring temperature increases. And, thermal 

diffusivity would decreases with increase in measuring temperature. 

1.7 Outlines of the Present Study 

The present thesis consists of 6 chapters. First of all, Chapter 1 briefly presents the 

background and the importance of the project followed by the introduction of the 

preparation techniques used in this project which are conventional solid state method and 

mechanical alloying method. The introduction of the starting materials manganese oxide 

and vanadium oxide are also included, followed by the objectives of this research. 

Chapter 2 deals with the previous published works which are related to the present study. 

Chapter 3 discussed the mechanism regarding sample preparation methods, theory and 

basic principles related to this study. Chapter 4 mainly describes the experimental 

methodology for the preparation of the mixed oxide of Mn and V which are conventional 

solid state and mechanical alloying methods. From the flow charts, the procedures of 

sample preparation are completely presented with detail description of each procedure 

using two methods followed by the details of dielectric measurement and 

characterization techniques. Chapter 5 presents the discussion toward the results 

obtained, comparison between the samples at different sintering temperatures, measuring 

temperatures and frequencies. Lastly, Chapter 6 summarizes all the results and presented 

significant results and conclusion. Some recommendations for future work related to this 

research are also suggested. 
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