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Malaysian kaolinite production and exports have declined despite increasing global 

consumption of kaolinite material in paper and whiteware industries. New 

applications for Malaysian kaolinite are necessary to improve its competitiveness in 

the global environment. This research was designed to test the hypothesis that 

insertion of nanoparticles within a micron grain-size matrix will form a composite 

material with enhanced values in thermal, mechanical and electrical properties. The 

matrix chosen was a kaolinite-mullite matrix and the nanoparticles selected were β-

Silicon Carbide (SiC) and amorphous Silicon Nitride (SN). Both Silicon Carbide-

Mullite (SC-M) and Silicon Nitride-Mullite (SN-M) composite powders were 

prepared with a mixed solution followed by conventional sintering in an argon 

environment  at 1000  °C, 1100  °C and 1200  °C temperatures.  

 

 

XRD data of the SC-M composites yielded kaolinite-mullite products with embedded 

SiC presence. The SN-M composites however, yield the presence of α- and β-Silicon 

Nitride phases as the amorphous nanoparticles were detected to be crystalline by the 

XRD data.  Densities of the composites were lower than the true density of the 

mullite matrix as the composites weights were influenced by the bulk densities of the 

nanopowders. Thermal diffusivity of the SC-M and SN-M composites yielded lower 

values as compared to the thermal diffusivity of the Kaolinite matrix itself. The 

thermal diffusivity values of both SC-M and SN-M were dependent on the presence 

of mullite concentration within the matrix.  

 

 

Mechanical measurements of the SC-M and SN-M composites yielded significantly 

higher compressive strength as compared to those of the matrix samples. Kaolinite-

mullite samples presented layered fractures under the compression test with a 

maximum value of 21.3 MPa. The 5% SC-M sample yielded compression strength of 

54.2 MPa. SiC additions higher than 5% have lower, linear compression relation with 

a sharp break at maximum. SN-M composites exhibited typical ceramic compression 

strength at low weight additions; higher SN additions displayed a constant 
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compression loading effect followed by ceramic loading behavior with 30% SN-M 

displaying ultimate compressive strength of 110 MPa. 

 

 

Dielectric permittivity of the kaolinite-mullite matrix samples has low relaxation 

behavior with εr‟ values marked at 9.3 to 19.3 units (at 1 MHz) for room temperature 

measurement. The insertion of SiC nanoparticles has elevated the real dielectric 

permittivity range from 5.7 units to 17.1 at 1 MHz. Insertion of the SN nanoparticles 

exhibited dielectric suppression as the relative dielectric permittivity values were 

lower than those of the matrix itself, from 4.1 to 12.2  units at 1 MHz.  

 

 

The insertion of nanoparticles within the kaolinite-mullite matrix is fruitful as 

different properties can be examined in detail. Both SiC and SN nanoparticles 

yielded different degrees of enhancements in thermal, mechanical and electrical 

properties. The nanoparticles insertions were beneficial to thermal and electrical 

insulating behavior as well as mechanical compression strength. 
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Penghasilan dan ekspot kaolinit Malaysia telah menurun walaupun terdapat 

peningkatan dalam penggunaan global dalam industri kertas dan tembikar putih. 

Aplikasi baru untuk kaolinit Malaysia adalah  diperlukan untuk meningkatkan daya 

saing bahan tersebut dalam persekitaran global.  Penyelidikan ini bertujuan untuk 

menguji hipotesis bahawa penyuntikan nanopartikel dalam butiran matriks bersaiz 

mikron akan membentuk bahan komposit dengan peningkatan di dalam dalam nilai-

nilai sifat terma, mekanikal dan elektrik. Matriks yang terpilih adalah matriks 

kaolinit-mullite serta nanopartikel yang terpilih ialah β-Silikon Karbida (SiC) dan 

Silicon Nitrida beramorfus (SN). Kedua-dua serbuk komposit Silikon Karbida-

Mullite (SC-M) dan Silikon Nitrida-Mullite (SN-M) telah disediakan dengan larutan 

campuran diikuti oleh pensinteran konvensional dalam persekitaran argon pada suhu 

1000  °C, 1100  °C dan 1200  °C.   

 

 

Data XRD bagi komposit SC-M telah menunjukkan sifat SiC tebenam dalam produk 

kaolinit-mullit. Walau bagaimanapun, komposit SN-M menunjukkan kehadiran fasa 

α- dan β-Silikon Nitrida setelah nanopartikel amorfus dikesan berada dalam keadaan 

kristal oleh data XRD. Ketumpatan bahan-bahan komposit adalah lebih rendah 

daripada ketumpatan sebenar matriks mullite kerana berat komposit dipengaruhi oleh 

ketumpatan pukal serbuk nano. Sifat kemeresapan terma komposit SC-M dan SN-M 

telah menghasilkan nilai-nilai yang lebih rendah berbanding dengan data 

kemeresapan terma matriks kaolinit sendiri. Nilai-nilai kemeresapan terma kedua-

dua SC-M dan SN-M bergantung kepada kehadiran konsentrasi matriks mullite 

dalam matriks tersebut.  

 

 

Kajiuji sifat mekanikal komposit SC-M dan SN-M telah menghasilkan kekuatan 

mampatan yang lebih tinggi berbanding dengan sifat sampel matriks. Sampel 

kaolinit-mullite menunjukkan sifat pematahan secara berlapis di bawah ujian 

mampatan dengan nilai maksimum sebanyak 21.3 MPa. Sampel 5% SC-M 

menghasilkan kekuatan mampatan sebanyak 54.2 MPa. Penambahan SiC melebihi 5% 
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mempunyai sifat yang lebih rendah bersehubungan dengan mampatan linear serta 

patahan mendadak pada takat maksimum. Komposit SN-M yang dipamerkan 

menunjukkan kekuatan mampatan seramik pada konsentrasi SN yang rendah; 

Penambahan SN yang lebih tinggi memaparkan kesan  muatan mampatan yang malar 

diikuti dengan sifat muatan seramik engan 30% SN-M memaparkan kekuatan 

mampatan muktamad 110 MPa. 

 

 

Sifat ketelusan dielektrik sampel matriks kaolinit-mullite mempunyai sifat santaian 

yang rendah dengan nilai-nilai εr‟ di antara 9.3 – 19.3 unit (pada 1 MHz) dalam 

pengukaran pada suhu bilik. Penyuntikan nanopartikel SiC telah meningkatkan sifat 

ketelusan dielektrik sebenar daripada 5.7  kepada 17.1 pada 1 MHz. Penyuntikan 

nanopartikel SN memaparkan sifat penyekatan dielektrik dengan nilai-nilai ketelusan 

dielektrik relatif yang lebih rendah berbanding sifat matriks itu sendiri, dari 4.1 

kepada 12.2 unit pada 1 MHz. 

 

 

Penyisipan nanopartikel dalam matriks kaolinit-mullite membawa manfaat apabila 

sifat yang berbeza boleh dikaji secara terperinci. Kedua-dua nanopartikel SiC dan SN 

telah menghasilkan takat penambahbaikan yang berbeza dalam sifat terma, 

mekanikal dan elektrik. Penyisipan nanopartikel telah memberi manfaat kepada sifat 

penebat terma dan elektrik serta kekuatan mampatan mekanikal. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 Introduction 

 

 

When Prof. Richard P. Feynman gave the famous lecture entitled “There‟s plenty of 

room at the bottom” [1], the emergence of nano-technology has begun in the ceramic 

material research. This paradigm has advanced beyond the conventional ceramic 

materials prevalent in current refractory ceramic industries. Since then, the research 

into material has delved into making smaller size materials and the characterizations 

of the resultant materials yielded surprisingly better properties compared to the 

micron sized ceramics [2].  

 

 

In conventional refractory ceramics, there was no need to pursue the miniaturization 

of the material grain size as the industrial demands and cost of the raw material used 

do not allow it. Hence, the expansion of nanotechnology in this small field related to 

clays and aluminosilicates was restricted to novel research or thermal insulation 

panels where higher prices could be negotiated.   

 

 

In the 1990s, thanks to Schneider et al. [3], the importance of pursuing research of 

mullite came back as the material provides good structural and functional electrical 

properties. Mullite has low thermal expansion, low electrical conductivity and high 

creep resistance, which provides good electrical and thermal insulation for high 

temperature electronics [4]. Since then, mullite based material have served as a 

potential high temperature gas filters [5] and heat exchangers [6].  

 

 

However, the advancements of mullite in new applications have been restricted to 

process modification like mullite thin films [7], mullite coatings [8], mullite whiskers 

[9], or mullite fibers [10]. Therefore, the focus has been on reducing and reusing the 

mullite through size reduction of mullite. However, emphasis should be placed on 

exploiting the advantages of mullite in high temperature operations as matrix 

composite. The mullite matrix composites with platelet and particle fillers have been 

explored by Schneider and Okada [11]. The major focus has been directed at 

zirconium and silica as the main filler components [12] with application in 

mechanical and thermal properties. 

 

 

As such, this research is directed towards the utilization of the Malaysian kaolinite as 

the starting precursor for the mullite matrix. The fillers used were silicon carbide 

(SiC) and silicon nitride (SN) nanopowders procured from the industry to ensure 

repeatable quality.             
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1.2 Research Background 

 

 

Kaolinite has been a major constituent for ball clay/china clay for the making of 

porcelain and refractory materials [13]. It is used for fine china and commercial 

porcelain wares. Modern products that use kaolinite clay include glossy paper, 

toothpaste and geo-polymers fibers [14]. The consumption of kaolinite in United 

States of America by United States Geology Survey (USGS) is estimated at 5830 

metric tons per year (refer to Figure 1.1) [14]. The current price per ton for kaolinite 

clay export is around USD 147-150 [14]. The Malaysian Geology department 

estimates the Malaysian kaolinite production at 35 metric tons per year [15]. Hence, 

kaolinite is a major ceramic raw material for modern productions. 

 

 
Figure 1.1: Global Consumption of Kaolin Clay [14]. 

 

 

However, there is a major shortcoming with kaolinite material. As kaolinite is mined 

geographically by each country, the kaolinite material differs in alumina-silica 

concentration and impurities depending on the mining source. Hence, kaolinite 

material from Georgia, USA will differ from Indian kaolinite and Malaysian 

kaolinite both in material composition and resulting products.      

   

 

1.3 Problem Statement 

 

 

Despite kaolinite being one of Malaysia‟s clay exports (with majority of them 

produced from Bidor-Tapah area), the production of Malaysian kaolinite has 

decreased by 10% in 2013 compared to 2012 values at 442.5 metric tons [15]. The 

slow decline in kaolinite production may be related to the market forces, but the 

Malaysian kaolinite is currently exported as a raw material with little processing 

rather as a finished product. Hence, a paradigm shift is necessary in adding value to 

the Malaysian kaolinite products industry.  

 

 

The current advances in pushing materials towards nano-size levels and mono-

layered materials like graphene, has pushed them towards composite formation of 

micron matrix with nanoparticle fillers, which are rare in the material literature. So 

far, the literature in this aspect has been on by SiC-mullite composition with 
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emphasis on thermal and mechanical applications (refer to section 2.5 and 2.6 of 

Chapter 2). 

 

 

This research hopes to replicate part of the SiC-mullite with industry based standard 

materials obtained from kaolinite and SiC nanopowders. The insertion of foreign 

particles into mullite materials (sintered from kaolinite at 1000 °C to 1200 °C) is not 

well researched as the particle distributions and mullite growth mechanism (in 

response to particles) in this region affects the final composition morphology 

obtained by acicular mullite at 1500 °C to 1700 °C.  

 

 

The research will also explore the application of inserting SN nanoparticles in the 

mullite matrix phase with similar methodology. This composition mix has not been 

tested in the research literature, especially in the nanopowder region. This pilot 

project will characterize the electrical, thermal and mechanical (uniaxial compression) 

properties for the SiC-mullite and SN-mullite composites.  

    

 

1.4 Matrix Information 

 

 

Kaolinite is a common aluminosilicate clay material formed from the weathering 

process of basalt rocks. It was named after the word „kaoling‟ in China [16]. It is a 

main ingredient in the process of making fine china or bone china ceramics. 

According to USGS Clay summary report [14], the usage of kaolinite material in US 

domestic market is mainly in paper manufacturing. Other uses of kaolinite raw 

powder include: filler and extender for paint, plastic and rubber products.  

 

 

The kaolinite structure is unique in nature as the water molecules are sandwiched 

between the alumina and silica layers [17]. The sandwich water layer is a result of 

the natural rock weathering process due to slow absorption of the water molecule 

into the rock and/or minerals through centuries. So far, this process could not be 

replicated synthetically. However, the sandwich water removal during the sintering 

will deconstruct the aluminosilicate structure [17]. Figure 1.2 compares the same 

monolayer of the alumina-silica composition as a result of the water removal [18].   
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Figure 1.2: Kaolinite and Mullite Crystal Structure [18]. 

 

 

The sintering of kaolinite will produce different aluminosilicate products depending 

on the soaking temperature used. Details of the aluminosilicate process are explained 

in section 4.2 of Chapter 4, with the XRD data of the pure kaolinite-mullite matrix. 

The products of the kaolinite conversion are metakaolin, γ-alumina (also known as 

spinel aluminum-silica) and mullite. Each product depends on the reaction 

temperature of the kaolinite-mullite transformation (Figure 1.3).   

 

 
Figure 1.3: Phase Diagram for the Kaolinite to Mullite Transformation [19] 

 

 

1.5 Filler Information  

 

1.5.1 Silicon Carbide (SiC) 

 

Silicon carbide (SiC) is a synthetic product produced from silicon and carbon. There 

are natural deposits of SiC called Moissanite, which are rare and found mostly in 

crater sites resulting from meteorites crash sites. The bonding of silicon and carbon 

requires intense heat and pressure to create covalent bonding between the silicon and 

carbon atoms [20].   
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SiC materials usually result in polytypes as variations of the Si-C-Si-C stacking order 

in layers [21]. There are three common polytypes stacking orders: namely 3c-SiC 

(also known as β-SiC), 4h-SiC and 6h-SiC (known as α-SiC), which are illustrated in 

Figure 1.4. The differences between them are the resultant crystal form and the 

number of repeating stacking order: c and h denotes cubic and hexagonal crystal 

form whereas the 3, 4 and 6 denote the layers per stacking sequence.  

 

 
Figure 1.4: (a) β-SiC and (b) α-SiC Crystal Structure [22]. 

 

 

Both α and β polytypes are the most commonly produced SiC crystals. The α-SiC are 

formed above 1700 °C. Temperatures below the 1700 °C temperature mark usually 

result in the β-SiC formation [23]. The SiC does not melt at high temperature of 

2700 °C; instead it decomposes into Si (liquid) and C (gas). This process is also 

known as sublimation. This makes SiC a useful material for high temperature 

applications.  

 

 

Synthetic pure SiC crystals are colorless and transparent, whereas the industrial 

products can vary from black, grey to green in color depending on the impurities 

present. The production of SiC results from the pressurized, vacuum sintering of 

silicon and carbon. The presence or vacuum or pressurized inert gases are needed 

because the carbon has higher affinity to oxygen compared to the silicon. Therefore, 

there is a possibility of minute silica (SiO2) crystals in between the SiC crystals.  
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Figure 1.5: Phase Diagram for the Formation of SiC [24] 

 

 

Conventional process include the Acheson and Lely methods of producing micron 

size SiC crystals [25]. Referring to Figure 1.5, the temperatures needed to sustain 

Acheson reaction is above 1800 °C for 30 atomic % to 40 atomic % of carbon 

present. Hence, modern nano-materials processing technology developed lower 

temperature reactions such as plasma enhanced chemical vapor deposition (PECVD) 

to mass produce SiC nanopowders in large quantities with controlled grain sizes and 

polytypes orders [26]. 

 

 

Applications of the SiC include modern abrasives and cutting tools for metalwork; 

electronic components such as MOSFETS and transistors [27], diodes and LEDs [28]. 

It is also used for mirrors for radiation sensors [29], nuclear fuel particles and 

cladding systems [30]. Current research also focuses on its ability as a catalyst and 

possible graphene starter material [31].  

 

 

1.5.2 Silicon Nitride (SN) 

 

 

Silicon nitride (SN) consists of three Silicon atoms bonded covalently to 4 Nitrogen 

atoms. It is a man made compounds as the natural mineral sources of SN compounds 

are not found underground except for Nierite mineral, which is found in meteorite 

craters [32]. The phase diagram for the synthesis of SN  is shown in Figure 1.6. 

 

Common SN materials have three different crystal structures, namely, trigonal, 

hexagonal and cubic structure. Both trigonal and hexagonal SN structures are known 

as α- and β-SN. Both materials displayed stacking layers as ABCD-ABCD layers (in 

α-SN) AB-AB layers (in β) [33]; both structures are shown in Figure 1.7. The last 



© C
OPYRIG

HT U
PM

7 
 

structure is known γ-SN, which has a spinel cubic crystal structure similar to boron 

nitride [33]. Of the three crystal structures, β-SN is the most stable and major form of 

SN in ceramic production.  

 
Figure 1.6: Phase Diagram for the Formation of SN Materials [34] 

 

 

 
Figure 1.7: (a) α-SN and (b) β-SN Crystal Structure [35] 

 

 

Applications of the SN ceramics materials are wear resistance materials such as 

bearings and engine components [36]; high temperature material such as rocket 

thrusters [37]; cuttings tools [38]; electronics (but not as a semiconductor like SiC, 

but as insulating masks) [39].     

 

 

1.6 Theoretical Framework 

 

 

SiC and SN nano-materials have been well researched as composite materials for 

applications into thermal, mechanical and electrical improvements [40 - 44]. The 

reduction in grain sizes compared to their micron counterparts has increased the 

electrical and mechanical properties of the materials as the miniaturization allows for 
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larger surface to volume ratio. This in turn affects the electronic transport and 

chemical bonding properties significantly and enhances the overall material.  

 

 

However, the fore-mentioned literature examines the single phase aspect of the nano-

material enhancement. The improvement in electrical thermal and mechanical 

properties proven by the nanomaterials should function well as an intermediate 

material between the micron size materials. Therefore, the mullite derived from the 

industry sector would be elevated by the addition of the nanoparticles during the 

sintering. The selection of mullite, SiC and SN are carefully considered in both 

chemical reactivity and thermal expansion in relation to each other during the 

sintering environment. Following the theory of concrete application, the smaller sizes 

of the nanomaterials will fill in the voids of the micron grain gaps and provide higher 

mechanical strength in uniaxial compression tests.  

 

 

Similarly, thermal diffusivity of the composite material will increase due to the fused 

contact between the nanomaterials and micron materials. The heat transfer across the 

material will be easier as the radiation propagation is bypassed and the heat is 

transferred via the phonon and vibration across the medium. For steady state systems, 

thermal conductivity (α) represents the temperature gradient changes governed by 

Fourier‟s Law (refer to equation 1.1) [45]. For composites materials with random 

filler orientation, the temperature gradient becomes a transient state system, which 

dependent on variations in heat capacity and density at different temperatures [45].  

 
  

  
           (1.1) 

 

Where dT/dt represents the temperature gradient across the material, a is the thermal 

conductivity (steady state systems); thermal diffusivity (transient systems) and  T is 

the measuring temperature.  

 

 

In this research, SiC and SN nanoparticles functions as porosity control within the 

mullite structure, which dictates a possible lower and transient temperature gradient 

based on the random distribution of the nanoparticles. The composite system would 

also contain trapped air, which will reduce the overall thermal diffusivity of the 

composite system [45]. 

 

 

1.7 Conceptual Framework 

 

 

The determination of the nanomaterials‟ enhancement will be tested against the 

properties of the original matrix itself. The index for the comparison will form the 

basis of whether the properties could be enhanced through physical means. A 

comparison index is defined as  

          
                                

                 
               (1.2) 
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Where P can be defined as the tested property such as thermal diffusivity, 

Compression strength and relative dielectric permittivity.  The resultant values would 

be in positive or negative numerical values. A positive would indicate enhancement; 

the negative value would show a suppressive element by the nanoparticles in the 

micron matrix material.   

  

 

Of course, in order to safeguard the consistency of the experiments, both the matrix 

material and subsequent nanoparticle added composites would have to be processed 

and sintered according to the same methodology, which includes the delicate settings 

of the argon assisted sintering process. The testing protocol will be conducted in a 

similar fashion.  

 

 

The research material in this project was selected from industry sources to ensure 

repeatability for the property testing. The research discourages its own production of 

the nanoparticles under testing to discourage any possible „black swan‟ enhancement 

argument. All materials are bought from reputable manufacturers with specific 

production batches for quality and quantity control in cases of repeatability argument.        

 

 

1.8 Research Objectives 

 

 

Based on the problem statements section, this research project is focused on the 

following main research objectives: 

 

1. To obtain a homogenous ceramic mix of the micron matrix and nanopowder 

in specific mix ratios will be produced.  

2. To study both SC-M and SN-M series for structural, thermal (thermal 

diffusivity), mechanical (uniaxial compression) and electrical (low frequency 

dielectrics) properties.  

3. To study and assess the level of enhancement between the properties of the 

mullite matrix against nanopowder filer in the mullite matrix in the 

characterization data collected in the second objective. 

 

 

1.9 Research Limitations 

 

 

In this research project, there are some limitations to the scope of research carried out 

in the investigation of the SC-M and SN-M ceramic composites. Some of the 

limitations are listed below: 

 

1. The research matrix material is restricted to Malaysian sourced kaolinite as 

the purpose is to determine the properties in the kaolinite as starting matrix 

material for nanopowder enhancement. 

2. The nanopowders used in this research are procured from an established 

nanopowder manufacturer (US Research Nanopowders, Inc.). This is to 
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ensure that there are no discrepancies or random deviations of the nano-

materials. 

3. Certain aspects of material process technology have to be designed 

specifically as there is no resource for the material fabrications. Hence, there 

are possible errors related to the design specification and safety use.   

4. The process technologies of the composite are controlled to prevent the 

nanoparticles from oxidation attack. Therefore, the sintering process is 

restricted to the available controlled environment furnaces, which have a 

maximum operating temperature of 1200 °C in argon gas. This forms the 

upper limit for the sintering process in this research. 

5. Not all data types of the characterization test are explored in this research. 

High frequency dielectric measurements, different operating temperatures, 

tensile and bending tests will be explored in the future work. 
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