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: Professor Nor Azah Yusof, PhD 
: Advanced Technology 

Silicon nanowire (SiNW) has attracted significant interest because of its potential 
applications from nanoscale electronics to biomedical engineering. The SiNW represent 
an important class of materials with unique features such as identical diameters to 
biomolecules, applicable to apply in biomolecule or chemical detection and can be 
fabricated as highly sensitive biosensor device. Thus, this study demonstrates the 
development of SiNW biosensor for detecting deoxyribonucleic acid (DNA) of dengue 
virus utilizing electron beam lithography (EBL) coupled with conventional lithography 
(CL) for device fabrication. The surface of fabricated SiNW is chemically modified using 
3-aminopropyltrieloxysilane (APTES) in order to transform the devices as a functional 
sensing element. Prior to biomolecule testing, the amine-terminated SiNW device is first 
evaluated in response to the pH level detection for optimizing the sensor sensitivity that 
related to the effect of SiNW width and SiNW number. It was found that, the device 
consist of single SiNW with 60 nm in width shows the highest sensitivity as compared to 
those devices consists of larger SiNW and in array formation as well. The optimized 
SiNW device is then employed for the detection of dengue virus DNA by introduced the 
additional of three-step procedure involving glutaraldehyde surface treatment, DNA 
immobilization and DNA hybridization. Contact angle measurement, fourier transform 
infrared spectroscopy (FTIR) and x-ray photoelectron spectrometry (XPS) are used to 
assess the effectiveness of the attachment protocol. The detection principle works by 
detecting the changes in the electrical current of SiNW which bridge the source and drain 
terminal to sense the immobilization of probe DNA and their hybridization with target 
DNA. The oxygen (O2) plasma is proposed as an effective strategy for increasing the 
binding amounts of target DNA by modified the SiNW surface. It was found that the 
detection limit of the 60 sec plasma treated-SiNW device could be reduce to 1.985 x 10-14 
M as compared to 4.131 x 10-13 M for the untreated-SiNW device with a linear detection 
range from 1.0 x 10-9 M to 1.0 x 10-13 M of complementary target DNA. In addition, the 
developed biosensor device was able to discriminate between complementary, single 
mismatch and non-complementary DNA sequences. This highly sensitive assay is also 
able to detect reverse transcription-polymerase chain reaction (RT-PCR) product of 
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dengue virus DNA in real samples, making it as a potential method for disease diagnosis 
through electrical biosensor detection. 
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Silikon nanowayar (SiNW) telah menarik minat yang ketara dalam kajian ini kerana ia 
berpotensi untuk diaplikasi daripada elektronik skala nano sehingga kejuruteraan 
bioperubatan. SiNW merupakan suatu bahan yang terpenting dengan ciri-ciri uniknya 
seperti diameter serupa dengan biomolekul, membolehkan untuk digunakan dalam 
pengesanan biomolecule atau kimia dan boleh dibuat sebagai peranti biopenderia yang 
sangat sensitif. Oleh itu, kajian ini menunjukkan proses pembangunan biopenderia 
SiNW untuk mengesan asid deoksiribonukleik (DNA) denggi virus dengan 
menggunakan kaedah litografi alur electron dan litografi konvensional dalam 
penghasilan alat peranti. Untuk berfungsi sebagai elemen penderia, permukaan SiNW 
diubahsuai secara kimia dengan menggunakan 3-aminopropiltrielosilen (APTES). 
Sebelum ujian biomolekul, sensitiviti peranti yang berkaitan dengan kesan lebar SiNW 
dan bilangan SiNW dioptimalkan berdasarkan tindak balas kumpulan amina-SiNW 
kepada pengesanan tahap pH. Didapati bahawa, peranti yang terdiri daripada SiNW 
tunggal dengan kelebaran sebanyak 60 nm menunjukkan sensitiviti yang tertinggi 
berbanding dengan peranti-peranti lain yang terdiri daripada SiNW bersaiz besar dan 
dalam kuantiti yang banyak. Kemudian, tiga-langkah prosedur iaitu pengubahsuaian 
menggunakan glutaraldehid, DNA immobilisasi dan DNA hibridisasi telah dilakukan ke 
atas alat peranti SiNW yang terpilih. Alat pengukuran sudut, spektroskopi inframerah 
transformasi fourier dan spektroskopi fotoelektron sinar-x digunakan untuk menilai 
keberkesanan protokol yang dijalankan. Kaedah pengesanan DNA immobilisasi dan 
DNA hibridisasi dijalankan berdasarkan perubahan arus elektrik SiNW yang menjadi 
penghubung antara pangkalan sumber dan pangkalan salir alat peranti. Pengubahsuaian 
SiNW menggunakan oksigen plasma didapati menjadi strategi yang berkesan untuk 
meningkatkan jumlah pelekatan DNA sasaran. Had pengesanan alat peranti yang 
mempunyai SiNW diubahsuai oleh plasma selama 60 saat boleh dikurangkan kepada 
1.985 x 10-14 M berbanding 4.131 x 10-13 M untuk peranti SiNW yang tidak diubahsuai 
dengan julat pengesanan DNA jujukan-sepadan iaitu dari 1.0 x 10-9 M sehingga 1.0 x 10-

13 M. Selain itu, alat peranti biopenderia yang dibangunkan dapat menunjukkan 
perbezaan antara DNA pelengkap, DNA tidak sepadan tunggal dan DNA bukan 
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pelengkap. Alat peranti yang sangat sensitif ini juga boleh mengesan DNA virus denggi 
dalam sampel sebenar iaitu produk dari reaksi rantai polimerase-transkripsi terbalik (RT-
PCR), menunjukkan bahawa kaedah ini berpotensi sebagai alat diagnosis penyakit 
melalui pengesanan biopenderia secara elektrik. 
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CHAPTER 1 
 
 

INTRODUCTION 
 
 
1.1 Background 
 
Biosensors have been in continuous development and improvement since their first 
appearance in 1962 (Dewa and Ko 1994). The genetic information brought by genome 
sequencing has attracted enormous efforts in the development of DNA biosensor (Baur 
et al. 2009). DNA biosensors consist of an immobilized DNA strand to detect the 
complementary sequence by hybridization process. The binding of the surface-confined 
probe and its complementary target strand is translated into a useful electrical signal 
(Wang 2002).  

 
 

The hybridization process between the probe and its complementary sequence can be 
determined by several transduction methods that have been reported in the literature 
included optical, electrical, electrochemical and gravimetric devices (Grieshaber et al. 
2008; Monosik et al. 2012). Some of this detection requires a label such as magnetic 
beads, metal complexes, organic redox marker or intercalators to attach with the DNA 
target (Baur et al. 2009; Berdat et al. 2006). Although the labeling step enhances the 
sensor sensitivity, however, the labeling-based detection markedly increases the time, 
complexity and cost of the measurement (Baur et al. 2009; Teles and Fonseca 2008). 

 
 

For these reasons, enormous efforts were made in the development of simple, portable, 
rapid and label-free devices suitable for sequence-specific DNA detection. These criteria 
have been accomplished by using an electrical biosensor for DNA hybridization 
detection (Monosik et al. 2012).  In 1997, Souteyrand and co-workers pioneered in the 
development of DNA hybridization detection by using a field effect transistor (FET) 
sensor. The operational dimensions of the device were reported in millimeter range, with 
recording buffer concentrations in the order of a milimole (Souteyrand et al. 1997).  
 
 
The integration of nanomaterials into device structures for biosensing applications has 
played a central role in the development of new strategies for signal transduction (Noor 
and Krull 2014). Due to comparable sizes of biological molecules and nanomaterials (as 
shown in Figure 2.1), the combination of nanomaterials with biomolecules offers 
potential for development of miniaturized sensing device for sensitive detection of 
biomolecules.  

 
 

A wide range of nanoscale materials are promising candidates for biosensing application 
such as nanowire, nanotube and nanoparticle. Among them, silicon nanowire (SiNW) 
emerge as one of the best defined and controlled classes of the nanoscale building 
blocks, since SiNW is adaptable to the advantageously semiconductor-based technology 
(Lieber and Wang 2007). Silicon has been widely used in the development of 
biosensors, as it is biocompatible with semiconducting materials. The doping of silicon 
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can be controlled whether developed by a lithography process based on a top-down 
approach or synthesized by chemical methods based on a bottom-up approach (Mohanty 
et al. 2012).  

 
 

The SiNW is used in standard configuration of field effect devices which is connected to 
the metal source from where a current is injected and subsequently, it drains electrodes 
through which the current is collected. The current is moving in a path from source to 
drain electrode through nanowire, which is called a channel. The presence of a number 
of charged biomolecules on the surface of SiNW will induce a drastic change in the 
nanowire conductance (Lee et al. 2010). This can be demonstrated by taking an example 
of DNA molecules, as DNA strains possess net negative charge in aqueous solution. 
After specific binding to the linked molecules on the nanowire surface, it causes an 
increase in the surface negative charge. The increase in the negative surface charge will 
result in an accumulation of holes carrier in a p-type nanowire, thus an increase in 
conductance of the device will be observed (Arora et al. 2013). These field effect 
sensors can be used for detecting broad range biomolecules as well as chemical species 
based on nanowires surface modification with specific receptors.   

 
 

In 2001, Cui group has introduced chemically-grown silicon nanowires (SiNWs) as a 
sensing element. The biotin-modified SiNWs were used to detect streptavidin down to a 
picomolar concentration range (Cui et al. 2001). Due to their small sizes and large 
surface-to-volume areas, SiNWs have demonstrated higher sensitivity detection as 
compared to the conventional planar-type biosensor based on the electrical detection. 
Hence, the SiNWs biosensors are based on the transduction of signals from 
biomolecules that enable direct electronic detection, which do not require any labeling 
steps. Comparing to optical and other electrochemical methods, the SiNWs based field 
effect sensor involve a much simpler detection method, easier setup and small size, 
which can be realized into the portable biosensor. This leads to the fast growing of the 
SiNWs as electrical field effect transducers which show significant advantages of label-
free, rapid detection and highly sensitive biosensors   (Hahm and Lieber 2004; Zhang et 
al. 2009; Zheng et al. 2005).  
 
 
It was reported that, the existing SiNWs device synthesized by a bottom-up approach 
suffer from poorly in controlling nanowires diameter as well as the difficulty in precisely 
positioning to other existing microelectronic components (Zhang et al. 2001). The issues 
faced by these grown-up SiNWs have been overcome with the advent of SiNWs devices 
patterned by the top-down lithography. This approach allows the production of SiNWs 
with highly uniform, high reproducibility and well-aligned which can be easily 
integrated into electrical readout circuits (Poghossian and Schöning 2014). Thus, the 
top-down fabrication method by electron beam lithography (EBL) and integrated with 
the standard complementary metal-oxide-semiconductor (CMOS) process is 
implemented for device patterning in this research work.  
 
 
Additionally, the intrinsic silicon oxide (SiO2) surface of the SiNW can be easily and 
controllably modified with different probe molecules, which renders SiNW as direct and 
specific biosensors.  Most of the methods reported used single-stranded DNA (ssDNA) 
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probes, which have been selected from synthetic nucleic acid libraries as a receptor to 
hybridize with the target DNA (Zhang and Ning 2012). Simple synthesis, easy labeling, 
high stability and reusable after simple thermal melting of the DNA duplex have made 
the ssDNA molecules an ideal recognition probe for DNA hybridization detection 
(Ruslinda et al. 2013; Teles and Fonseca 2008). In order to provide the linking-site 
between nanowire surfaces to the recognition group of the ssDNA-probe, the SiO2 is 
modified using chemical modification protocols. The 3-aminopropyltriethoxysilane 
(APTES) could be employed to chemical-link with the amine group of DNA molecules 
(NH2-DNA) in combination with glutaraldehyde as a linker (Cui et al. 2001; Singh et al. 
2010; Vercoutere and Akeson 2002), which is known as an established method for 
SiO2/Si surface modification. Thus, this method has been employed in this research 
work in order to provide the linkage with the amine-terminated ssDNA-probe. 
 
 
Central to the entire discipline of the formation of a DNA duplex on the SiNW surface is 
the concept of DNA hybridization. It is known that, the sensitivity of SiNW device is 
affected by binding amounts of target DNA (formation of DNA duplex) on the nanowire 
surface (Wu et al. 2013). Binding amount of target DNA could be improved by 
increasing the amounts of immobilized probe DNA. In this regard, much effort has been 
made on demonstrating nanostructures integrated on top of SiNW surface in order to 
increase the surface area of the device and thus increases the amount of analyte binding 
(Elfstrom et al. 2008; Ryu et al. 2010; Seol et al. 2012; Shao et al. 2008). Although the 
results of modified SiNW device with nanostructures are endowed with improved 
sensitivity, however, the comparable results can be obtained to increase the binding 
amounts of target DNA on the SiNW surface via oxygen (O2) plasma surface treatment 
which has not widely studied is implemented in this research work. Without using a 
complex wet chemistry process to enhance the surface area of SiNW, the sensitivity of 
the sensor device is tunable simply by this method and the role of O2 plasma treatment 
is elucidated.  

 
 

1.2 Problem statement 
 
Dengue illness is caused by the viruses of the Flaviviridae family and transmitted to 
human bodies by the Aedes aegypti mosquito that leads to dengue fever (DF) or its more 
severe case dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS) 
(Baeumner et al. 2002; Zhang et al. 2010). Today, dengue viruses have become a major 
public health concern and it is estimated to be 50 million infections per year with at least 
22000 deaths (Zhang et al. 2010). To date, there is no specific treatment or an effective 
vaccine has yet to be developed to curing the disease. Mosquito eradication strategies 
have been taken as current prevention of the disease, which was reported with limited 
success (Baeumner et al. 2002). Thus, the reliable diagnostic method useful both for 
epidemiological surveillance and clinical diagnosis is required to identify the disease 
rapidly and accurately, and subsequently treat the dengue virus infection at the early 
stage (Guzmán and Kourı́ 2004). 
 
 
The conventional method used for dengue virus infection diagnosis is based on detection 
of virus-specific antibodies, known as serological tests. One of the most common 
methods is enzyme-linked immunosorbent assay (ELISA), which is the detection based 
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on immunoglobulin M (IgM) and immunoglobulin G (IgG) antibodies to dengue virus 
(Lam and Devine 1998). IgM antibody is the first immunoglobulin isotype to appear and 
according to the Pan American Health Organization (PAHO) guidelines, by day five of 
illness, 80% of the cases have detectable IgM antibody. IgG can be detected in a low 
titer at the end of the first week of the infections and it will increase slowly (Guzmán 
and Kourı́ 2004; Peeling et al. 2010). In general, 10% false negative and 1.7% false 
positive reactions have been recorded by using this ELISA method (Guzmán and Kourı́ 
2004). Even though this method has resulted in good approaching for routine dengue 
diagnosis, but it cannot give an early detection since this antibodies-based detection 
demands an appropriate time frame (after five days of onset of infections) in order to 
mount sufficient immune response to produce detectable antibodies in patients for 
diagnosis (Baeumner et al. 2002; Rahman et al. 2014). 
 
 
More recently attention has been focused on molecular assays based on nucleic acid 
amplification for dengue virus detection. The molecular-based diagnostic assays such as 
reverse transcription-polymerase chain reaction (RT-PCR) is preferred as it is more 
sensitive and can provide reliable results in shorter assay time compared to serological 
techniques (Bhatnagar et al. 2012). The protocol however may increase the chance of 
sample cross-contamination and time-consuming due to the use of stained agarose gel 
electrophoresis for visualizing these fluorescent label detections (Lee et al. 2010). 
Furthermore, these techniques present a challenge for miniaturization due to a 
requirement of large and expensive instrumentation for complex nature of the detection 
systems, which include reverse transcription and thermal cycling steps (Li et al. 2009). 
Thus, there is a strong demand for a development of sensitive, label-free, fast response 
and portable sensing devices as replacements for the time-consuming, complexity and 
label-based assays. 

 
 

From the point of view of the electrical properties, a conformational change in a 
biological or chemical event often causes the change in the electrical properties of the 
substances (Frederick 2005; Gao et al. 2007). Therefore, biosensors based on electrical 
detection could be more simple, rapid and portable detection platforms. The 
advancement of nanotechnology has opened up the opportunities of using electrical 
system for biomolecule. The SiNW has become a great candidate for use in miniaturized 
biosensors devices (Dresselhaus et al. 2007; Park et al. 2010) and have been proven as a 
powerful platforms for highly sensitive label-free detection of biological species, such as 
proteins (Cui et al. 2001), viruses (Patolsky et al. 2004) and DNA (Zhang et al. 2010). 
As sensing elements, SiNW has been studied to offer key advantages in the detection 
regime, which requires fast response, label-free method as well as the ability to detect 
target species with extremely low concentrations (Chua et al. 2009). These advantageous 
are significant for the development of molecular electronics based on SiNW device for 
early detection of Dengue diagnosis through DNA hybridization detection. 

 
 

1.3 Research objective 
  
The general objective of this study is to develop SiNW biosensor via top-down approach 
for DNA hybridization detection in dengue diagnosis application. The following specific 
objectives are designed to achieve the general objective: 
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i. To design, fabricate and characterize SiNW device using electron beam 

lithography (EBL) coupled with conventional photolithography process. 
ii. To optimize the device sensitivity that consists of different SiNW width and 

SiNW number in response to the pH solution based on current-voltage (I-V) 
measurement. 

iii. To characterize the chemically modified SiNW surface using fourier transform 
infrared spectroscopy (FTIR), water contact angle measurement and x-ray 
photoelectron spectroscopy (XPS). 

iv. To examine the performance of the developed device for DNA of Dengue 
Virus detection based on electrically measurement of DNA hybridization 
events. 

v. To evaluate the performance of the proposed SiNW biosensor device on the 
analysis of real sample (RT-PCR product of Dengue Virus). 
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