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To date, the demand for better light emitting diodes (LEDs) has led to growing interest 

in producing Zn2SiO4 based glass ceramic phosphors using waste materials. In this 

research, low cost Zn2SiO4:xEu3+ phosphors were prepared based on a solid state 

method using recyclable glass wastes as silica source. The influence of Eu3+ ions (x = 

0, 1, 2, 3, 4 and 5 wt.%) and the effect of sintering temperatures, ranging from 600 to 

1000 °C on the structural, morphological and optical properties of the phosphors were 

also investigated using X-ray diffraction (XRD), Field emission scanning electron 

microscopy (FESEM), Fourier transform infrared (FTIR) spectroscopy, Raman 

spectroscopy, Ultraviolet-visible near infrared (UV-Vis-NIR) spectroscopy and 

Photoluminescence (PL) spectroscopy. These glass ceramics showed the increasing 

densities with increasing Eu3+ and sintering temperature. Structural investigation using 

XRD had revealed that the higher intensities of the diffraction peaks were due to 

sintering temperatures. Furthermore, their diffraction peaks had slightly shifted to 

lower diffraction angles when the dopant’s concentration was increased. The 

morphologies from FESEM analysis showed the formation of densely packed grains 

and smooth surfaces with the increment of sintering temperatures and addition of 

dopants. FTIR spectra showed that the progression of sintering temperature has 

narrowed the broad bands of SiO4 and ZnO4 at 1000 °C. All the broad bands were 

reduced to smaller bands after the addition of dopant. Additionally, the effects of 

sintering temperatures and dopants on the samples were apparent on the Raman 

spectra, which showed the narrow width of Raman lines and the shifted energy region 

in the spectrum. Most importantly, the largest optical band gaps of the samples were 

found at the highest sintering temperature. Meanwhile, Eu3+ doped samples have 

shown the largest optical band gap at 1000 °C upon the examination of the Moss-

Burstein effect. Results for the photoluminescence showed red luminescence 

emissions at 600 nm due to Eu3+ transitions under 400 nm excitation. It was observed 

that sintering temperatures of 900 and 1000 °C have decreased the intensity of 

emission, while the highest doping concentration of 5 wt.% of Eu3+ has shown the 

highest emission intensity of the phosphors. Apart from that, waste silica sources have 

proven to have excellent crystallinity, surface morphology, optical band gap and 
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emission intensity for obtaining red emitting phosphors, which could also be useful for 

white LEDs.  
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Sehingga kini, permintaan untuk diod pemancar cahaya (LEDs) yang lebih baik telah 

membawa peningkatan kepentingan dalam menghasilkan zink silika seramik kaca 

fosfor dengan menggunakan sisa bahan. Dalam kajian ini, bahan kos rendah 

Zn2SiO4:xEu3+ telah disediakan berdasarkan kaedah keadaan pepejal menggunakan 

sisa kaca yang boleh dikitar semula sebagai sumber silika. Pengaruh Eu3+ ion yang 

berbeza (x = 1, 2, 3, 4 and 5 wt.%) dan kesan suhu pembakaran daripada 600 ke 1000 

°C ke atas struktur, morfologi, dan sifat optik telah dikaji dengan menggunakan 

pembelauan sinar-X (XRD), mikroskop pelepasan bidang imbasan electron (FESEM), 

spektroskopi inframerah (FTIR), spektroskopi Raman, spektroskopi ultraungu cahaya 

nampak inframerah (UV-Vis-NIR) dan spektroskopi kefotopendarcahayaan (PL). 

Seramik kaca telah menunjukkan peningkatan ketumpatan dengan penambahan Eu3+ 

dan suhu pembakaran. Kajian struktur menggunakan XRD mendapati pembelauan 

puncak dengan keamatan yang tinggi disebabkan peningkatan suhu pembakaran. 

Tambahan pula, pembelauan puncak telah beralih sedikit ke sudut pembelauan yang 

lebih rendah apabila kepekatan pendopan meningkat. Morfologi daripada analisis 

FESEM menunjukkan pembentukan butiran yang padat dan permukaan yang rata 

dengan peningkatan suhu pembakaran dan penambahan pendopan. Spektra FTIR telah 

menunjukkan peningkatan suhu akan mengecilkan jalur lebar SiO4 dan ZnO4 pada 

1000 °C. Semua jalur lebar dikurangkan kepada jalur yang lebih kecil selepas 

penambahan pendopan. Tambahan lagi, kesan suhu pembakaran dan pendopan ke atas 

sampel telah kelihatan di spektra Raman yang mana menunjukkan ketirusan lebar jalur 

Raman dan peralihan kawasan tenaga di dalam spektrum. Paling utama, jurang jalur 

optik yang besar telah dijumpai pada suhu pembakaran yang paling tinggi. Manakala, 

sampel yang didopan Eu3+ telah menunjukkan jurang jalur optik yang besar di 1000 

°C disebabkan kesan ‘Moss-Burstein’. Keputusan kefotopendarcahayaan telah 

memberikan pendarcahayaan pancaran merah di 600 nm berikutan peralihan Eu3+ di 

bawah pengujaan biru. Ia juga telah dilihat, suhu pembakaran daripada 900 dan 1000 

°C telah mengurangkan keamatan pancaran, manakala kepekatan pendopan paling 

tinggi, 5 wt.% daripada Eu3+ telah menunjukkan keamatan pancaran fosfor yang paling 

tinggi. Selain itu, sisa sumber silika telah terbukti mempunyai ciri penghabluran, 

permukaan morfologi, jurang jalur optik dan keamatan pancaran yang baik bagi 
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menghasilkan pemancar merah fosfor yang boleh digunakan untuk diod pemancar 

cahaya putih.  
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 Zinc Silicate 

 

 

Recently, researchers have shown increased interests in the fabrication of oxide based 

on inorganic silicate phosphors that have efficient luminescence and chemical stability 

for advanced phosphor and photonic applications. Among these inorganic silicate 

phosphors, zinc silicate (Zn2SiO4), or also known by its mineral name, willemite, is 

one of the earliest discoveries during 1829 at Moresnet, La Calamine, Belgium by 

Armand Lévy (Lévy, 1843; Schneider et al., 2008). The name willemite was dedicated 

to the King of the Netherlands, Willem I of Orange-Nassau (Takesue et al., 2009). 

This material is one of the zinc ore minerals that have a phenakite structure, which 

belongs to the group of orthosilicates with a trigonal-rhombohedral symmetry 

(Simonov et al., 1977; Tarafder et al., 2014; Rao et al., 2014). The average density of 

willemite is 4.05 kg/m3, while its colour variation ranges from transparent to red-

brown and black (Brugger et al., 2003; Hitzman et al., 2003). To date, studies on 

willemite phosphor are focused on its occurrence, its crystallography, its 

luminescence, and its application as an industrial material. In terms of crystallography, 

the ZnO-SiO2 system produces three different phases at high temperature reactions, 

namely, α, β, and γ-Zn2SiO4. The α-Zn2SiO4 phase, which melts at 1512 °C, is known 

as the stable phase of orthosilicate or neosilicate in nature. It consists of isolated Zn-O 

tetrahedrons and Si-O tetrahedrons (Bunting, 1930; Ingerson et al., 1948). 

Additionally, willemite is a well-known as the nature of the green mineral 

fluorescence. Prior to the development of halophosphor in 1942, the synthetic 

Franklin’s willemite was taken down to exhibit green luminescence when it was 

activated with divalent manganese (Mn2+) luminescence center. Ever since, this 

synthetic willemite was used as a phosphor in fluorescent lamp, neon discharge lamps, 

black and white television, and many other displays and lighting devices.  

 

 

1.2 Rare Earth  

 

 

Recent developments in luminescent materials have led to a high interest in inorganic 

materials doped with rare earth ions. Such material can be utilized in various display 

devices, such as flat panel displays, plasma display panel, field emission display, light 

emitting display, sensors and lasers (Huong et al., 2012; Shi et al., 2013; Janković et 

al., 2014; Zhang et al., 2014). The strength, toughness and luminescence efficiencies 

of the host materials are enhanced by adding small concentrations of rare earth oxides 

(also known as dopants) (Guanming et al., 2007; Li et al., 2012). Generally, rare earth 

elements are made up of two series elements, such as lanthanide and actinide series. 

The lanthanide series includes elements with atomic numbers from 57 to 71. These 

elements mainly exhibit the +3 oxidation state, and are usually used in crystalline 

compounds, superconductors and permanent magnets. Furthermore, these rare earth 

elements can also be identified by the well shielding of the unpaired electrons in the 
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4f orbital with the outer 5s2 and 5p6 orbitals. Because of their specific electronic 

configurations, these elements possess good luminescent characteristics with high 

emission efficiency and high color purity (Huang et al., 2006; Krsmanović et al., 

2009). Among the lanthanide elements, trivalent europium (Eu3+) has attracted much 

attention as a luminescence activator ion with a reddish emission bands from 5D0 – 7F2 

transitions. This element traditionally occupies the dominant role of active ions in 

many optical spectroscopies due to the large number of absorption and sharp emission 

bands arising from the transition between their energy levels (Shionoya and Hirano, 

1968). Other than that, europium is an effective material that can be found in two 

oxidation states, i.e. Eu2+ and Eu3+ depending on the preparation purpose. It is the only 

lanthanide ion with the ground state, J = 0, with exceptional restrictions which exist 

on the induced electric-dipole transitions that originated from the ground state (Rao et 

al., 2013a). Furthermore, it is also a vital luminescent activator ion due to its reddish 

emission that can be utilized in various optical devices such as electroluminescent 

devices, optical amplifiers, and lasers (Mesfar et al., 2013). 

 

 

1.3 Soda Lime Silica Glass 

 

 

To date, various researches have proposed the diversification of glass ceramic 

production by using recyclable by-products as raw and starting materials. The 

recyclable by-products include zinc-hydrometallurgy waste (Pelino, 2000), basaltic 

rocks (Bickford and Jantzen, 1986; Khater et al., 2012), refining of silica sand and 

kaolin clay (Toya et al., 2004), flu gas (Kim and Kim, 2004), steel slag (He et al., 

2012) and panel glass (Bernado et al., 2007). In addition, soda lime silica (SLS) glass 

from recyclable bottles has also renewed the interest of 90% of the world’s glass 

manufacturers (Matori et al., 2010). SLS glasses that consist mainly of silicon dioxide 

(SiO2), sodium oxide (Na2O) and calcium oxide (CaO) have good glass-forming nature 

compared to several other conventional systems (Chimalawong et al., 2010; Marinoni 

et al., 2013). Previous studies on SLS glass have shown that it has fine optical and 

mechanical properties, such as good chemical stability, good durability, low melting 

point, high ultraviolet transparency, high surface damage threshold and good rare earth 

ion solubility (Xu et al., 2004; Qiao et al., 2006; Chimalawong et al., 2012). The 

compositions of SLS glass using EDXRF are presented in Table 1.1 (Zaid et al., 2012). 
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Table 1.1: Analysis of chemical composition of SLS glass using EDXRF  

(Zaid et al., 2012). 

 

Elements Wt.% 

SiO2 69.5 

CaO 11.3 

Na2O 12.5 

Al2O3 2.8 

K2O 1.5 

MgO 2.0 

Fe2O3 0.2 

B2O3 0.1 

BaO 0.1 

 

 

1.4 Glass Ceramic 

 

 

In 1953, an accidental overheating of a glass furnace at 900 °C by Stanley Donald 

Stookey has led to the discovery of glass ceramics. Small crystals were found in the 

amorphous material, which can prevent cracks from propagating through the glass 

after the glass is overheated (Stookey, 2000). The obtained glass ceramics are known 

as microcrystalline solids that are produced by the controlled crystallization 

(devitrification) of a glass (Beall, 1992). The crystallization of a glass consists of 

melting, quenching, and heating processes that can form a predominantly crystalline 

ceramic. The basis of controlled crystallization lies in the efficient internal nucleation, 

which allows the development of fine-grained polycrystalline materials without voids, 

micro cracks, or other porosity. Glass ceramics are easily manufactured using high 

speed plastic forming processes (e.g. pressing, blowing, rolling) to create complex 

shapes, which are essentially free of internal inhomogeneity. Glass ceramics are 

favoured due to their high mechanical strength, low coefficients of thermal expansion, 

high temperature stability, high chemical durability, low dielectric constant and loss, 

as well as high resistivity (McMillan, 1974). Thus, a wide range of glass ceramic 

materials with tailored properties have been developed and used as cook wares, 

electrical insulators and substrates, building materials, architectural cladding, in 

medicine and dentistry, and as optical materials (Goncalves et al., 2002; Callister and 

Retwisch, 2014).  
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1.5 Problem Statement  

 

 

Numerous studies have focused on the preparations and optical properties of inorganic 

luminescent materials (Tang et al., 2008; Vijaya and Jayasankar, 2013; Rojas et al., 

2014; Sudharani et al., 2014; Wu et al., 2014). Zn2SiO4 is one of the ideal hosts for 

luminescent materials (Joly et al., 2007; El Mir et al., 2007) due to its chemical 

stabilities and high luminescent efficiencies (Zhang et al., 2000). Consequently, 

Zn2SiO4 doped with transition metal ions, such as manganese (Kwon and Kim, 2005), 

titanium (Guo et al., 2006), vanadium (El Ghoul et al., 2012), and nickel (Babu and 

Buddhudu, 2014a) have been used extensively as efficient luminescent materials for 

lamps and cathode ray tubes (CRTs). However, growing interests on white light-

emitting diodes (w-LEDs) due to their high color rendering, long life span and low 

power consumptions have attracted much attention towards developing rare earth 

doped Zn2SiO4 phosphors (Shi et al., 2006; Raju et al., 2010; Yang et al., 2013). The 

bright colour luminescence of rare earth doped materials can also be observed from 

the narrow characteristics of the emission bands in the optical spectra (Liu et al., 2000). 

Thus, an intensive research is needed on Zn2SiO4 doped with rare earth ions, such as 

Tb3+, Eu3+ and Ce3+ (Zhang et al., 2001; Zhang et al., 2003) that can produce excellent 

luminescent in green, red and blue emissions, respectively. 

 

Numerous studies have been conducted to develop Zn2SiO4 doped with rare earth ions 

using high purity silica (SiO2) source as a raw material. Such productions are costly 

since SiO2 is quite expensive and it has a melting point of higher than 1700 °C. 

Previous studies have also reported that a large amount of energy consumption is 

required to prepare Zn2SiO4 which covers the process of melting, heating and cooling. 

Bunting et al. (1930) and Patrascu et al. (2009) have reported that the melting point 

for Zn2SiO4 is 1498 °C. Further optimization of this method is needed to produce low 

cost Zn2SiO4. Therefore, waste SLS glass was chosen to replace the high purity silica 

source. SLS glass is cheaper but able to exhibit low melting point, good chemical 

stability, high transparency, high thermal stability, and good solubility for rare earth 

ions. Other than that, using waste SLS glass helps to reduce the quantity of solid waste 

and thus, helps preserve the environment as well.  

 

The solid state method (Natarajan et al., 2005) and several chemical methods, which 

include the sol-gel method (Babu and Buddhudu, 2013), polymer precursor method 

(Su et al., 1996), spray pyrolysis method (Kang and Park, 2000), hydrothermal method 

(An et al., 2010) and sonochemical method (Masjedi-Arani and Salavati-Niasari, 

2016) have been used to fabricate Zn2SiO4. Among these methods, the solid state 

method is simpler for producing large scale Zn2SiO4 compared to the chemical 

methods (Lakshmanan, 2012; Wong et al., 2013; Li et al., 2014; Tamrakar et al., 

2014). This is because the chemical methods require complicated steps, high cost 

equipment and long preparation periods (Khobragade et al., 2013).  

 

In view of these factors, it is of interest to develop novel Zn2SiO4:Eu3+ using the solid 

state method. The structural and optical properties of Zn2SiO4:Eu3+ are investigated.  
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1.6 Objectives of the Study 

 

 

The objectives of this research are summarized as follows: 

 

1) To synthesize Zn2SiO4:Eu3+ from waste SLS glass, ZnO and Eu2O3 using solid 

state method. 

2) To study the effect of sintering temperatures towards structural and optical 

properties of Zn2SiO4:Eu3+. 

3) To evaluate the effect of Eu2O3 doping towards structural and optical properties 

of Zn2SiO4:Eu3+. 

 

 

1.7 Scopes of the Study 

 

 

The scopes of the study are stated as follows: 

 

1) Zinc silicate doped with europium ions, Zn2SiO4:Eu3+ was prepared from waste 

SLS glasses, ZnO and EuO powders. The following stoichiometric equation, 

(ZnO0.5SLS0.5)1-y (Eu2O3)y where y = 0, 0.01, 0.02, 0.03, 0.04 and 0.05, was 

applied in the conventional solid state method. All starting materials were used 

as reference materials. 

2) Sintering temperatures to produce Zn2SiO4:Eu3+ glass ceramics were varied from 

600 °C to 1000 °C. 

3) The density and chemical compositions of Zn2SiO4:Eu3+ were analyzed using an 

electronic densitometer and XRF analysis. 

4) The structural properties, which include phase structure, bonding formation and 

surface morphology were characterized using XRD, FESEM, FTIR, and Raman 

analysis. 

5) The optical properties, which include absorption, optical band gap and 

luminescence intensity of the samples were measured using UV-Vis-NIR and 

Photoluminescence spectroscopy. 

 

 

1.8 Outline of Thesis 

 

 

This thesis begins with Chapter 1, with an introduction to zinc silicate with the addition 

of doping ion, trivalent europium ions. Previous and current researches by other 

researchers are reviewed in Chapter 2. Then, the methods and instruments that were 

used to characterize the properties of zinc silicate doped europium ions are 

comprehensively explained in Chapter 3. The results, which include the effect of 

europium ions doping and sintering temperatures towards the physical, structural and 

optical properties of zinc silicate are analyzed and discussed in Chapter 4. Finally, the 

conclusion of the study and recommendations for future work are given in Chapter 5. 
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