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Phosphor host materials are subjects of continuing study in materials sciences 
because their physical and chemical properties and wide range of applications. 
Several methods and techniques have been applied for the synthesis of phosphor host 
materials. Most of these techniques are difficult to employ in a larger scale 
production due to the complicated procedures, longer reaction period, high reaction 
temperatures involved, toxic reagents and by–products which are potentially harmful 
and unfriendly to the environment. In this study, the Zinc oxide (ZnO), Silicon 
dioxide (SiO2) and Willemite were successfully synthesized using simple thermal 
treatment method from an aqueous solution containing only zinc acetate and silicon 
tetraacetate, poly(vinyl pyrrolidone), and deionized water. The characterization 
studies of the nanoparticles formed were carried out by Thermogravimetry analysis 
(TGA), X–ray Diffraction spectroscopy (XRD), Electron Dispersive X–ray 
spectroscopy (EDX), Transmission Electron Microscopy (TEM), Fourier Transform 
Infrared Spectroscopy (FT–IR), UV–Vis Spectrometer and PL Spectroscopy. The 
corresponding peaks of Zn, Si and O were observed in the EDX analysis of the 
sample which reveals their presence in ZnSiO4, while in the preparation of SiO2 the 
only peak of Si and O were observed. The Zn and O peaks in the EDX spectra ZnO 
reveals their presence. The XRD patterns confirmed the formation of nanoparticles 
of ZnO and Zn2SiO4 NPs. the XRD confirms that the SiO2 formed were in the 
amorphous state as there was no peak exhibited. The results from the FESEM and 
TEM shows that the particle size increased with the calcination temperature 
increased from 23.8 to 37.7 nm between 500 –750 °C in the case of ZnO, and the 
willemite phase formed at 1000 °C had 43.7 nm crystal size. The SiO2 particles 
calcined at 500–750 °C were <10 nm from the TEM images. The FT–IR spectra 
show only the principle absorption bands of Si–O–Si and Zn–O located at 
wavenumber less 1000 cm−1 respectively confirms the formation of ZnO, SiO2 and 
Zn2SiO4 NPs. The ZnO band gap energy was determined from UV–vis reflectance 
spectra using the Kubelka–Munk function and the band gaps were found to decrease 
with increase in calcination temperature due to particle size increased from 3.325–
3.245 eV calcined from 500–750 °C. The absorbance spectra were used to determine 
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the band gap energy of SiO2 and Zn2SiO4. The wide band gap of 3.123– 4.352 eV for 
SiO2 samples calcine between from 500–750 °C was recorded. Willemite phase 
formed at 800, 900 and 1000 °C possessed a wide band gap of 5.460, 5.527 and 
5.527 eV respectively. The PL analysis of ZnO NPs when excited at 300 nm reveals 
the various deep level defect originated from zinc interstitial while the PL analysis of 
Zn2SiO4  NPs at higher calcination temperature reveals deep level defects in the blue 
region related to  oxygen vacancies often referred to as blue emission. The blue band 
observed for all samples in the PL analysis of SiO2 NPs have been believed to have 
originated from electron hole recombination of self–trapped exciton. 
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Bahan perumah fosfor adalah subjek kajian yang berterusan dalam bidang sains 
bahan kerana sifat fizikal dan kimia mereka mempunyai pelbagai aplikasi. Beberapa 
kaedah dan teknik telah digunakan bagi hos sintesis. Kebanyakkan teknik ini sukar 
untuk digunakan dalam penghasilan skala yang lebih besar disebabkan oleh prosedur 
yang rumit, masa tindak balas yang  lebih lama,  melibatkan suhu tindak balas yang 
tinggi, reagen toksik dan produk sampingan yang mempunyai potensi yang 
berbahaya, dan tidak mesra kepada alam  sekitar. Dalam kajian ini, oksida zink 
(ZnO), silikon dioksida (SiO2) dan Willemite telah berjaya disintesis melalui kaedah 
rawatan haba dari larutan akueus yang mengandungi hanya zink asetat dan silikon 
tetraacetate, poli (vinil pyrrolidone), dan air ternyahion. Kajian pencirian bagi zarah 
nano yang dihasilkan telah dijalankan dengan analisis termogravimetri (TGA), 
spektra belauan sinar–X (XRD), spektra serakan electron sinar–X (EDX), Transmisi 
Mikroskop Elektron (TEM), Fourier Transform Infrared Spektroskopi (FT–IR), UV–
Vis Spektrometer dan PL Spektroskopi. Puncak sepadan bagi Zn, Si dan O telah 
diperhatikan dalam analisis EDX sampel yang menunjukkan kewujudan Zn2SiO4, 
manakala dalam penyediaan SiO2 hanya puncak Si dan O telah dikesan. Pada 
spektrum EDX ZnO menunjukkan terpatpuncak Zn dan O. Corak spektrum XRD 
mengesahkan pembentukan ZnO dan Zn2SiO4 berzarah nano. XRD mengesahkan 
bahawa SiO2 terbentuk dalam keadaan amorfus kerana tiada puncak dapat dikesan. 
Keputusan dari XRD, FESEM dan TEM menunjukkan bahawa saiz zarah akan 
meningkat dengan peningkatan suhu pengkalsinan daripada 23.8 nm kepada 37.7 nm 
bagi suhu 500 –750 °C bagi ZnO, dan fasa willemite dicerap pada suhu 1000 °C dan 
mempunyai saiz hablur 43.7 nm. Zarah SiO2 terkalsin antara  500–750 ° C adalah 
<10 nm dari imej–imej TEM. Spektrum FT–IR menunjukkan hanya jalur penyerapan 
utama bagi Si–O–Si dan Zn–O yang masing–masing terletak di nombor gelombang 
kurang 1000 cm–1 mengesahkan pembentukan ZnO, SiO2 dan Zn2SiO4. Jalur jurang 
tenaga bagi ZnO telah ditentukan daripada UV–vis spektrum pantulan menggunakan 
kaedah Kubelka–Munk dan jurang band didapati berkurangan dengan peningkatan 
suhu pengkalsinan disebabkan oleh peningkatan saiz zarah dari 3.325–3.245 eV 
selepas dikalsinkan pada suhu 500–750 °C. Teknik spektrum penyerapan juga telah 
digunakan untuk menentukan tenaga jurang jalur bagi SiO2 dan Zn2SiO4. Jurang jalur 
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dengan luas 3.1237–4.3522 eV untuk SiO2 telah direkodkan selepas dikalsinkan pada 
suhu 500–750 °C. Fasa Willemite terbentuk pada suhu 800, 900 dan 1000 °C dan 
memiliki jurang jalur yang luas iaitu masing–masing dengan 5.460, 5.527 dan 5.527 
eV. Analisis PL ZnO NP apabila teruja pada 300nm mendedahkan pelbagai 
kecacatan peringkat mendalam berasal dari celahan zink manakala analisis PL bagi 
Zn2SiO4 NP pada suhu pengkalsinan yang lebih tinggi mendedahkan kecacatan tahap 
mendalam di dalam kawasan biru yang berkaitan dengan kekosongan oksigen yang 
sering dirujuk sebagai pelepasan biru. Jalur biru dilihat pada semua sampel dalam 
analisis PL bagi SiO2 NP telah dipercayai berasal dari penggabungan semula 
elektron–lubang daripada terperangkap–diri exciton. 
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      CHAPTER 1 
 
 

1 INTRODUCTION 
 
 
1.1 Background 
 
In December 1959, a famous lecturer named R. Feynman, a professor at California 
Institute of Technology delivered a speech at a conference of American physical 
society that was titled “There is plenty of room at the bottom”. For the first time the 
idea of “NANO” was mentioned in the event, and he made some remarks “I would 
like to describe a field, in which little has been done, but in which an enormous 
amount can be done in principle”. Feynman elaborated much on the numerous 
technical application of the field (Feynman, 1960). 
 
 
In 1974, Tsnoguchi from Tokyo Science University gave a definition of 
nanotechnology as “Consist of the processing of separation, consolidation, and 
deformation of material by one atom or by one molecule” (Taniguchi, 1974). A quite 
number of significant discoveries and invention was made while in the second half of 
the 1980s to early 1990s which develop an essential impact on the further 
development of the nanotechnology. After that, nanotechnological research and 
design were intensified; its practical application expands, and a considerable number 
of organization and countries got involved in it. In the past decades, most of the 
scientist and researchers have agreed upon the idea of nanotechnology deals with the 
broad field of applied science and technologies in design, fabrication, 
characterization of the nanoscale material (typically ranging from 1–100 nm), and 
the assembly of nanoscale devices. In general concept, a material can be referred to 
as “nano–structured” if they have at least one dimension that is less than 100 nm, for 
instance, filamentary structures, atomic clusters, layered films and bulk 
nanostructured materials. 
 
 
Nanoscience and nanotechnology are two themes in the study of nanomaterials 
(Bandaru et al., 2005). Nanoscience is more related to definition of fundamentals of 
nanomaterial which consist of the both experimental and theoretical aspect, synthesis 
and features of nanomaterial (Krusin–Elbaum et al., 2004). While nanotechnology is 
the general term used in the technology and engineering part involved in the 
manipulation of matter that include the development, application and implication 
material in nanoscale. 
 
 
Nanotechnology is multi–disciplinary specialization which cut across the 
conventional boundaries between physics, chemistry, mathematics, biology and 
engineering (Salata, 2004). Using these concepts the technologist and engineer 
maneuver materials at nanoscale to create a product which make use of remarkable 
features. 
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In nanomaterial research and development, synthesis and characterization plays an 
important role. Top–down and bottom–up approach technique, are the two major 
approaches for nanomaterials assembling. In top–down method, nanomaterials are 
constructed from large size material without molecule level control (Wong et al., 
2009). While the bottom–up approach is where materials are constructed from a few 
molecule components by chemical self–assembling in solution into functional 
superstructures (Wong et al., 2009). Due to simplicity, and a short period of 
processing, top–down approach is mostly applied in industries. 
 
 
Nanomaterials have attracted considerable attention from researchers around the 
world in recent years, due to the "quantum size effect" phenomenon: The properties 
of a material such as physical, chemical, electrical and optical properties while in 
nano–scale differs a lot from those bulk size. Usually, the elemental composition and 
crystal structure of a bulk size material determines most of its chemical and physical 
properties. Surface atom in bulk material plays a negligible role in most of its 
properties because it only accounts for a little fraction of total atoms. While in nano–
scale since the particle size has decreased, the surface atom tends for a greater 
proportion of the total, hence are no longer negligible. It is always important to note 
that  either in bulk or nano–scale materials, the activity between the external media 
and surface atoms, under certain given conditions, can dramatically affect reactions 
such as crystal growth and catalysis on either bulk or nano–scale materials. Figure 1 
gives the illustration that surface atom proportion increases significantly as the 
particle size was smaller than 20 nm. 
 
 
A new physical and chemical property emerges due the dramatic increase in a 
surface atom in the total; such include optical, catalytic ability and a change of 
magnetization. The dramatic increase of surface atom percentage in total atoms leads 
to the appearance of new chemical and physical properties of nanoparticles such as 
the emergence of catalytic ability, featured optical spectra, and a change of 
magnetization. 
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Figure 1.1 The percentage of atoms in bulk and on the surface as a function of 

particle size (Fuller et al., 2002). 
 
 
The Greater surface area tends to expose more atoms to the external environment, 
which changes both physical properties and chemical properties of nanoparticles. 
Surface chemistry is vital in the areas of corrosion, catalysis, and absorption. Most 
often chemical reactions take place at the interface between two phases, larger area 
of interface raises more chances of contact between the reactants, which results in 
more active interactions. Thus many reactions, which cannot take place in bulk–sized 
materials, can now occur in nano–sized materials. 
 
 
Summarily, Nanoparticles (NPs) tends to be more reactive and sensitive to the outer 
environment when the surface area or surface atom is increased, this will render it a 
potential application and a market value which cannot be obtained in the bulk 
material. These applications are promising in a wide range of human endeavors such 
as pharmaceutical industries disease detection and control, genetic study, optical 
devices, solar cells, batteries, catalysts, and sensor. Moreover, during past decade, 
different specializations have begun to work with one another to pave a way to 
advanced technologies and cutting–edge instruments for advancing nanotechnology. 
The main driving force behind the explosion in nanomaterials research interest is 
attributed to the unusual physical and chemical properties and yet the huge 
applications. 
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1.2 Phosphor and Phosphor host material 
 
Phosphors also refer to a luminescent material, are those materials that exhibit the 
phenomenon of luminescence which they can emit light after being exposed to 
radiation such as ultraviolet light or electron beam. The phosphor material is useful 
in a variety of display applications like electroluminescent, photo luminescent, 
cathode ray tubes (CRTs), X–ray detectors,  LEDs and LCDs (Birkel et al., 2012; 
Chen et al., 2010). 
 
 
Phosphor host is usually an inorganic material with a large band gap that could be an 
oxide, silicate, nitride, oxynitride, halide, oxyhalide, selenide, or sulfide which is 
transparent to the incident radiation (George et al., 2013; Xie and Hirosaki, 2007). 
 
 
1.3 Problem Statements 
 
Phosphor industries have been condemned for the high energy they consumed  and 
carbon emission due the high temperature of annealing involved (Zhang and Cheng, 
2009; Canadell and Raupach, 2008). In this regard, a method that involved low 
preparation temperature is considered to be favorable in order to mitigate energy 
consumption and carbon emission. However, zinc oxide (ZnO), silicon oxide (SiO2), 
and willemite (Zn2SiO4) NPs have previously been synthesized using various 
methods which include a sol–gel method, ball milling method, mechanical method, 
chemical method, microwave method, combustion method, hydrothermal method 
and spray pyrolysis method. Nevertheless, most of these methods are difficult to 
apply on  a larger scale of production owing the high temperature involve, complex 
procedure, longer time for the reaction to take place, toxic reagents and a harmful 
by–product which are not friendly to the environments. In order to give the remedy 
and curb the setback of the previous methods of synthesis, this study has introduced a 
simple thermal treatment method for synthesis zinc oxide, silicon oxide and 
willemite nanoparticles.  The study investigates the influence of the calcination 
temperature on the formation of these nanoparticles by thermal treatment method and 
by followed the characterization of physical properties. 
 
 
1.4 Significance of the study 
 
Phosphor host materials such zinc oxide, silicon dioxide and willemite have 
continuously attracted scientific interest and so many investigations has been going 
due to their physical–chemical properties and the wide application range of 
optoelectronics, cathode ray tubes (CRTs) and X–ray detectors, considering such 
tremendous applications of these NPs in present day activities. In this study, NPs of 
ZnO, SiO2 and Zn2SiO4 have been synthesized by thermal treatment method from an 
aqueous solution of zinc acetate dihydrate, silicon tetraacetate, PVP (polyvinyl 
pyrrolidone), and deionized water as stated earlier. The solution was dried at 80 °C 
for 24 h in an electric oven. The solid crystal was crush and ground before 
calculations at different temperature 
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1.5 Research Objective 
 
The aim of the study was to synthesize, ZnO, SiO2 and Zn2SiO4 NPs by simple 
thermal treatment method, followed by characterization of the physical properties. 
The objectives of the study are list below. 
 

(i) To synthesize NPs of ZnO, SiO2, and Zn2SiO4 by simple thermal 
treatment method. 

(ii) To determine the effect of calcination temperature on the formation of 
such nanoparticles. 

(iii) To study the effect of calcination temperature on the structural and optical 
properties of such nanoparticles. 
 
 

1.6 Thesis outline 
 
Synthesis and characterization of ZnO, SiO2 and Zn2SiO4 NPs by simple thermal 
treatment method are the main feature of evaluation in this thesis. Summary of the 
evolution of nanoscience and nanotechnology in addition to the problem statement, 
the significance of the study and study objectives were stated all in Chapter one. A 
brief discussion on the general background of ZnO, SiO2 and Zn2SiO4 NPs and 
common preparation and synthesis methods were discussed in Chapter 2. While in 
Chapter 3, the detailed clarification of the methodology and procedures involved in 
the synthesis of ZnO, SiO2 and Zn2SiO4 NPs by thermal treatment are discussed in 
details. The results and discussion for characterization measurement; the 
thermogravimetry analysis (TGA), X–ray diffraction (XRD), Fourier transform 
infrared spectroscopy (FTIR), transmission electron microscopy (TEM), Field 
emission scanning microscopy (FESEM), Ultra Violet visible spectroscopy (UV–
vis.) and Photoluminescence measurement were explained in Chapter 4. Finally, the 
summary and conclusions of this research work with some recommendations for 
future research were given in Chapter 5. The last part of the thesis consists of the list 
of references, a list of publications and conferences by the author. 
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