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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in
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OF ITERATIVE METHOD FOR SOLVING POISSON

EQUATION

By

NIK AMIR SYAFIQ NIK MAZLAN

June 2016

Chairman : Professor Mohamed Othman, PhD
Faculty : Institute for Mathematical Research

This thesis deals with an adaptation of hierarchical matrix (H -matrix) tech-
niques in iterative methods for solving the Poisson equation, which is a rep-
resentative of partial differential equations. The research examines different
iterative techniques and ordering strategies in Gauss-Seidel method which are
easy to implement on a computer. The H -matrix techniques allows an effi-
cient treatment of a dense matrix. This treatment will lead to less memory
utilizations.

Three types of finite-difference approximations in the form of the full-sweep
(FS), half-sweep (HS) and quarter-sweep (QS) approaches are considered in
this research. An extension of this approach where a faster convergence rate
can be achieved is by grouping the iteration points into a single iteration
unit. Implemented with the finite-difference schemes mentioned above, this
approach produces Explicit Group (EG), Explicit Decoupled Group (EDG)
and Modified Explicit Group (MEG) methods. All of these iterative methods
are yet to be implemented with H -matrix.

The construction of an H -matrix relies on a hierarchical partitioning of the
dense matrix. To set up this partitioning, a so-called admissibility condition
must be satisfied. Two types of admissibility conditions namely the weak
admissibility and standard admissibility will be considered in this research.
This will produce two different H -matrix structures, HW - and HS-matrices,
which consists of different memory utilizations.
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The main objective of this thesis is to develop an adaptation of the H -
matrix structures with the iterative method. Both of these structures will be
compared with each other. The HW -matrix should produce a more accurate
solution with a faster execution time and utilizes less memory when compared
to the HS-matrix.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia
sebagai memenuhi keperluan untuk Master Sains

ADAPTASI MATRIKS BERHIERARKI PADA FAMILI
KAEDAH LELARAN UNTUK MENYELESAIKAN

PERSAMAAN POISSON

Oleh

NIK AMIR SYAFIQ NIK MAZLAN

Jun 2016

Pengerusi : Profesor Mohamed Othman, PhD
Fakulti : Institut Penyelidikan Matematik

Tesis ini berkaitan dengan adaptasi teknik matriks hierarki (H -matriks)
dalam kaedah lelaran untuk menyelesaikan persamaan Poisson, yang mewak-
ili persamaan pembezaan separa. Kajian ini mengkaji teknik lelaran yang
berbeza dan strategi susunan dalam kaedah Gauss-Seidel yang mudah untuk
dilaksanakan pada komputer. Teknik-teknik H -matriks membolehkan per-
golakkan yang cekap kepada matriks padat. Pergolakkan ini akan membawa
kepada penggunaan memori yang kurang.

Tiga jenis anggaran perbezaan terhingga dalam bentuk pendekatan sapuan
penuh (FS), separuh sapuan (HS) dan suku sapuan (QS) yang dipertim-
bangkan dalam kajian ini. Lanjutan daripada pendekatan ini adalah di mana
kadar penumpuan yang lebih cepat boleh dicapai dengan mengumpulkan titik
lelaran ke dalam satu unit lelaran tunggal. Apabila dilaksanakan dengan
skema perbezaan terhingga yang dinyatakan di atas, pendekatan ini meng-
hasilkan kaedah Kumpulan Tak Tersirat (EG), Kumpulan Tak Tersirat Nyah
Pasangan (EDG) dan Kumpulan Tak Tersirat Terubahsuai (MEG). Semua
kaedah ini belum pernah dilaksanakan dengan H -matriks.

Pembinaan sebuah H -matriks bergantung kepada pembahagian hierarki ma-
triks padat. Untuk menyediakan pembahagian ini, satu keadaan yang dipang-
gil syarat kebolehterimaan mesti berpuas hati. Terdapat dua jenis syarat ke-
bolehterimaan iaitu kebolehterimaan lemah dan kebolehterimaan biasa akan
dipertimbangkan dalam kajian ini. Ini akan menghasilkan dua struktur H -
matriks yang berbeza, matriks-matriks HW - dan HS-, yang terdiri daripada
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penggunaan memori yang berbeza.

Objektif utama tesis ini adalah untuk membangunkan adaptasi daripada struk-
tur H -matriks dengan kaedah lelaran. Kedua-dua struktur akan diband-
ingkan antara satu sama lain. HW -matriks akan menghasilkan penyelesaian
yang lebih tepat dengan masa pelaksanaan yang lebih cepat dan kurang meng-
gunakan memori apabila dibandingkan dengan HS-matriks.

iv
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CHAPTER 1

INTRODUCTION

1.1 Overview

In mathematical modeling of many physical phenomena, a greater number of
processes can be represented through Partial Differential Equations (PDEs),
particularly the Poisson equation, which involve functions of several variables.
Generally, the Poisson equation is very complicated to solve analytically, hence
numerical methods are applied. The operational speed of modern computers
makes it possible to obtain a fast approximate solutions, taking into account a
satisfactory computational error. For such equations, the theory of numerical
methods has become one of the most sought-after research areas of modern
science.

In 1998, Hackbush and his colleagues introduced a hierarchical (H -)matrix
technique. This technique acts as an efficient treatment of dense matrices as
it stores them in a special data-sparse way in the sense that these matrices
are described by only few data. This treatment will eventually reduce the
memory utilization of the matrices. In the up coming chapter we will discuss
more on the fundamentals of H -matrix and how it is constructed.

1.2 Problem Statement

Many scientific problems, involving the Poisson equation, occur in fast and
real time applications. Fast solutions with minimal absolute error require big
sizes of discretization which in return requires a large-capacity computational
memory. One of the earlier methods when solving the PDEs, in particular the
Poisson equation, is using the finite-difference approximation where the full-
sweep (FS) point iterative method was considered as a foundation for newer
iterative methods. Recent research then discovered the half-sweep (HS) point,
quarter-sweep (QS) point, Explicit Group (EG), Explicit Decoupled Group
(EDG), and Modified Explicit Group (MEG) iterative methods. All of these
methods were also studied with the basic Gauss-Seidel (GS) scheme. However,
none of these methods have been applied with H -matrix. This shows that
there is a high demand in improving the performance of the methods for
solving the Poisson equation but not many researches are concern about the
memory utilization.

1
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1.3 Objectives

The primary objective of this thesis is to propose a more data-sparse algo-
rithms, which will outstrip the existing methods by memory utilizations. The
objective is accomplished through research on the H -matrix technique. This
technique will be adapted to all of the point and group iterative methods
mentioned above. The performance of the new algorithms comprises such
characteristics as accuracy, computational time and memory utilization.

1.4 Research Scope

The thesis is focusing on adapting the H -matrix technique onto the iterative
method. The solution domain will be discretize using the finite difference ap-
proximations and solved using the FS point, HS point, QS point, EG, EDG
and MEG iterative methods based on GS scheme. This thesis will only con-
sider domains with group cases which is why the discretized domain for EG
and EDG iterative methods will be of the same size. This will differ from the
discretized domain for MEG iterative method. The discretized domain for
point iterative methods will follow their respective group iterative methods
according to their sweeping approach. This will be explained further in the
upcoming chapters. In the following literature, it will show that there are
two types of H -matrix structures that can be constructed. Both of these
structures will be adapted on all of the mentioned points and group iterative
methods.

1.5 Research Methodology

In order to develop a new adaptive H -matrix on iterative methods for solving
the Poisson equation, there are several research methodology steps to follow,
which are

1. Literature review on:

� the Poisson equation and general theory of PDEs;

� point and group iterative methods;

� the fundamentals of H -matrix.

2. Implementation of the recent methods on the solution of Poisson equa-
tion and on H -matrix for benchmarking, such as:

� FS, HS and QS point iterative methods;

� EG, EDG and MEG iterative methods;

2
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� different ordering strategies for all of the methods mentioned above;

� an H -matrix structure proposed by Börm et al. (2003) (HS-).

3. Constructing the H -matrix structures with respect to:

� standard admissibility conditions which will result in an HS-matrix;

� weak admissibility conditions which will result in an HW -matrix.

4. Proposed a new algorithm for adapting an HW -matrix structure with:

� FS point and EG iterative methods;

� HS point and EDG iterative methods;

� QS point and MEG iterative methods.

5. Implementation of different ordering strategies with the new algorithm.

6. Experiments to benchmark the new method with the iterative methods
and HS-matrix studied in Step 2 with different grid sizes.

The (HS-) and (HW -) notation will be futher explained in the next chap-
ter. The computer hardware, software and initial values that will be used to
conduct the experiments is shown in Table 1.1.

Figure 1.1 shows the research methodology framework of this thesis.
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Figure 1.1: The research methodology framework.
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Table 1.1: The computer hardware, software and initial values used
to conduct the experiments.

Test
Problem

The Poisson equation:
∂2u

∂x2
+
∂2u

∂y2
= (x2 + y2)exy, (x, y) ∈ Ω = [0, 1]× [0, 1],

subject to the Dirichlet boundary conditions and satisfying
the exact solution u(x, y) = exy.

Hardware
Intel(R) Core(TM)2 Duo, 3.16 GHz CPU, 4.00 GB(RAM),
32-bit OS, Windows 7.

Software Matlab R2011a, 32-bit, for Windows.

Matrix
Sizes

n = 16, 32, 64, 128 for FS point, HS point, EG and EDG
iterative methods.

n = 17, 33, 65, 129 for QS point and MEG iterative
methods.

Performance
metrics

Total memory cost: Measured at computer’s task manager

Execution time: Time taken for new method to con-
verge, measured in MATLAB software.

Accuary: Average absolute error =
1

n

n∑
i=1

n∑
j=1
|ui,j − ei,j |,

where ei,j is the exact solution.

Error
tolerance

ε = 10−10 which is similar to researches in Othman et al.
(2000) and Othman and Abdullah (2000b).

1.6 Thesis Structure

The remaining chapters of this thesis are organized as follows. Chapter 2
presents the Poisson equation and the approximate solution of it. An intro-
duction to point and group iterative methods to solve the discrete Poisson
equation is given. Moreover, the fundamentals of H -matrix technique are
also considered. Recent research related to these subjects of this thesis is
reviewed and analyzed at the end of the chapter.

Chapter 3 is devoted to the derivation and formulation of the FS GS and
EG GS iterative methods and their H -matrix adaptations. Several ordering
strategies are applied with the new method. To benchmark the new method,
an experimental comparison with the mentioned point iterative methods is
given. An experiment to determine the optimal ordering strategy is con-
ducted and discussed.

The derivation of the HS GS and EDG GS iterative methods with their H -
matrix adaptations is given in Chapter 4. The chapter is then continued with
description and comparison of different ordering strategies. In the experi-
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mental part of this chapter, the new method is compared with the mentioned
group iterative methods. The results are presented and the performance of
the method is evaluated.

Chapter 5 is focused on the derivation of the QS GS and MEG GS itera-
tive method with their H -matrix adaptations. The chapter is then continued
with description and comparison of different ordering strategies. An experi-
ment to determine the optimal ordering strategy is conducted and discussed.

Finally, conclusions and recommendations for future research are given in
Chapter 6.
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Hierarchical Matrices. Mathematica Bohemica, 127(2):229–241.

Hackbusch, W. and Khoromskij, B. N. (2000). A Sparse H -Matrix Arith-
metic. Part II: Application to Multi-Dimensional Problems. Computing,
64:21–47.

Hackbusch, W., Khoromskij, B. N., and Kriemann, R. (2004). Hierarchical
Matrices Based on a Weak Admissibility Criterion. Computing, 73:207–243.

Hasan, M. K., Sulaiman, J., and Othman, M. (2008). Implementation of
Red Black Strategy to Quarter Sweep Iteration for Solving First Order
Hyperbolic Equations. In Information Technology, 2008. ITSim 2008. In-
ternational Symposium, volume 3, pages 1–5. IEEE.

Hoe, N. Y. and Hasan, M. K. (2013). Investigation of Steady State Problems
via Quarter Sweep Schemes. Sains Malaysiana, 42(6):837–844.

Izadi, M. (2012). Hierarchical Matrix Techniques on Massively Parallel Com-
puters. PhD thesis, Fakultät für Mathematik und Informatik, Universität
Leipzig.
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