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Abstract of thesis presented to the Senate of Universiti Putra Malaysian in
fulfilment of the requirement for the degree of Doctor of Philosophy

SLICE SAMPLER AND METROPOLIS HASTINGS APPROACHES 
FOR BAYESIAN ANALYSIS OF EXTREME DATA

By

MOHAMMAD ROSTAMI

February 2016

Chairman: Mohd Bakri Adam, PhD 
Faculty    : Institute For Mathematical Research

Modelling the tails of distributions is important in many areas of research where the
risk of unusually small or large events are of interest. In this research, application
of extreme value theory within a Bayesian framework using the Metropolis Hast-
ings algorithm and the slice sampler algorithm as an alternative approach, has been
introduced.

Selection of prior distributions are very crucial in Bayesian analysis. Here, we have
exhaustedly studied all the possible priors for location and scale parameters and
come out with a few suggestions for the prior selection of a Gumbel model.

The slice sampler method can adaptively change the scale of changes made, which
makes it easier to tune than Metropolis Hastings algorithm. Another important ben-
efit of the slice sampler algorithm is that it provides posterior means with low er-
rors for the shape parameters of the monthly maximum and threshold exceedances
models. The slice sampler algorithm has been extended for more complex bivariate
extreme value model with logistic dependence structure and exponential margins. A
simulation study shows that the slice sampler algorithm provides posterior means
with low errors for the parameters along with a high level of stationarity in iteration
series. Furthermore, the slice sampler algorithm has been successfully applied to
Malaysian gold returns which has been calculated using Malaysian daily gold prices
from 2000 to 2011. By using a Bivariate extreme model and the slice sampler algo-
rithm, the relationship between the gold and American dollar returns in Malaysian
market has been considered.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Doktor Falsafah

KAEDAH PENSAMPEL IRISAN DAN METROPOLIS HASTINGS BAGI
ANALISIS BAYES UNTUK DATA EKSTRIM

Oleh

MOHAMMAD ROSTAMI

Februari 2016

Pengerusi: Mohd Bakri Adam, PhD 
Fakulti   : Institut Penyelidikan Matematik

Permodelan di hujung taburan sangat penting di kebanyakan bidang di mana risiko
luarbiasa yang melibatkan kepentingan terhadap kejadian peristiwa kecil atau be-
sar. Di dalam penyelidikan ini, applikasi teori nilai ekstrim dalam kerangka Bayes
menggunakan algoritma Metropolis Hastings dan algoritma pensampel irisan seba-
gai kaedah alternatif, telah diperkenalkan dalam kes univariat ekstrim mudah kepada
yang lebih kompleks iaitu kes bivariat ekstrim.

Pilihan taburan prior sangat kritikal dalam analisis Bayes. Di sini, kajian mendalam
terhadap semua kemungkinan prior bagi parameter lokasi dan skala di jalankan dan
beberapa cadangan pilihan taburan prior terhadap model Gumbel telah diberikan.

Algoritma pensampel irisan boleh menghindari daripada mensampel taburan tidak
piawai dengain lebih berkesan. Tambahan lagi, kaedah pensampel irisan boleh
menyesuaikan perubahan terhadap perubahan parameter skala yang dibuat, di mana
kaedah pensampel irisan lebih mudah ditala berbanding algoritma Metropolis Hast-
ings. Kebaikan utama lain bagi algoritma pensampel irisan ialah ianya memberikan
posterior purata dengan ralat lebih rendah bagi parameter bentuk bagi model mak-
simum bulanan dan batas kekangan. Algoritma pensampel irisan ini telah juga di-
gunakan terhadap model nilai bivariat nilai ekstrim dengan struktur logistik bersan-
dar dan juga margin eksponen. Kajian simulasi menunjukkan algoritma pensampel
irisan memberikan posterior purata dengan ralat yang rendah untuk semua param-
eters dengan aras pegun yang tinggi dalam siri iterasi. Selanjutnya, agoritma pen-
sampel irisan in telah berjaya diaplikasikan terhadap data pulangan harga emas di
Malaysia dan juga perhubungan di antara harga emas dengan pulangan nilai dolar
Amerika di pasaran Malaysia.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

During recent 50 years, extreme value theory (EVT) has been broadly applied in
many areas of interest such as hydrology, financial studies and actuarial analysis
(Coles (2001) and Tancredi et al. (2006)). Rare events can have catastrophic con-
sequences for human activities, through their impact on the constructed and natural
environments. The recent development of a sophisticated methodology for the pre-
diction and estimation of functionals of rare events has contributed to saving endan-
gered natural resources and to modelling earthquakes, climate and other environmen-
tal phenomena, like temperature, floods and precipitation, situations where we have
to deal with large risks or with very low probabilities of overpassing a high (low)
level (Gomes and Guillou, 2014). The distinguishing feature of an extreme value
analysis is that it assesses a data generating processes of rare events- in other words,
tail behaviour. The extrapolation of tail behaviour is accomplished by the asymp-
totic EVT. This theory supplies the asymptotic motivated approximate distributions
in describing extremes, providing flexible and simple parametric models for fitting
tail-related distributions. However, application of extreme value models is not al-
ways straightforward and there are some issues and difficulties in practice. Inherent
sparsity of the extremal observations is a typical problem in modelling of extreme
values that can reduce accuracy of the model (Coles and Powell, 1996).

1.2 Extreme Value Modelling

The field of EVT goes back to 1927, when Frechet (1927) formulated the functional
equation of stability for maxima, which later was solved with some restrictions by
Fisher and Tippett (1928) and finally by Gnedenko (1943) and De Haan (1970).
There are two main approaches in the modelling of extreme values. First, under
certain conditions, the asymptotic distribution of a series of maxima (minima) can
be properly approximated by Gumbel, Weibull and Frechet distributions which have
been unified in a generalized form named generalized extreme value (GEV) distri-
bution (Coles, 2001). The second approach is related to a model associated with
observation over (below) a given threshold. EVT indicates that such approximated
model represents a generalized Pareto distribution (GPD) (Davison and Smith (1990)
and Hosking and Wallis (1987)). Both extreme value distributions can be used to re-
liably estimate very high quantiles, permitting examination of the tail behaviour even
out of the scope of observations (Danielsson and de Vries, 1997).

1.2.1 Generalized Extreme Value Distribution

Generalized extreme value (GEV) distribution is explained by the following theorem
from Coles (2001).
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Theorem 1.1 Assume X1, · · · ,Xn be a sequence of random variables with common
distribution function F, and let an and bn be two sequences of constants. By consid-
ering Mn = max{X1, · · · ,Xn}:

Pr {(Mn−bn)/an ≤ z}→ G(z) as n→ ∞.

If G be a non-degenerate distribution function, G belongs to the GEV family

G(z) = exp

{
−
[

1+ξ

(
z−µ

σ

)]−1/ξ
}
,

for {z : 1+ξ (z−µ)/σ > 0}, where µ ∈ R, σ > 0 and ξ ∈ R.

The GEV distribution has three parameters: the location µ , scale σ and shape ξ . The
GEV model can represent three types of tail behaviour determined by the value of
shape parameter ξ : Weibull type (upper bounded) tail (ξ < 0), Frechet type (slowly
decaying) tail (ξ > 0) and GEV ξ=0 or Gumbel type (exponentially decay, like upper
tail of normal distribution) which is defined in the limit as the shape parameter ξ →
0. The EVT proves that, if a limiting distribution for the maxima (minima) of a
sequence of independent and identically distributed random variables exists, then it
must fall into one of these three types.

1.2.1.1 GEVξ=0 Model

The GEVξ=0 model is named after Emil Julius Gumbel (1891-1966), based on his
original papers describing the model (Gumbel (1935) and Gumbel et al. (1941)).
The GEVξ=0 model is a particular case of the GEV distribution (also known as the
Fisher-Tippett model). This model might be applied to represent the distribution of
the maximum level of a river in a particular year if there was a list of maximum values
for the past ten years. The potential applicability of the GEVξ=0 model to represent
the distribution of maxima relates to EVT which indicates that it is likely to be use-
ful if the distribution of the underlying sample data is of the normal or exponential
type. In real application, therefore, the GEVξ=0 model is applied to analyze such
variables as monthly and annual maximum daily values (Oosterbaan and Ritzema,
1994). The book by Kotz and Nadarajah (2000) which describes the GEVξ=0 model,
presents some of its application areas in engineering include network engineering,
flood frequency analysis, , offshore engineering, space engineering, nuclear engi-
neering, structural engineering, wind engineering and software reliability engineer-
ing. See also Nadarajah (2006), Prescott and Walden (1980) and Cooray (2010) for
some generalizations of the GEVξ=0 model.

Let X1, · · · ,Xn be a sequence of independent and identically distributed sample which
follow GEVξ=0 distribution denoted as G(µ,σ). The cumulative function is

F(x | µ,σ) = exp
{
−exp

[
−
(

x−µ

σ

)]}
x ∈ R, µ ∈ R, σ > 0, (1.1)

where µ and σ are the location and scale parameters, respectively. The probability
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density function is given by

f (x) =
1
σ

exp
[
−
(

x−µ

σ

)]
F(x | µ,σ). (1.2)

1.2.2 Generalized Pareto Distribution

Davison and Smith (1990) introduce an asymptotic extreme value model to represent
distribution of the excess over (below) a given threshold u, called GPD which has
advantage of containing more samples for estimation of the parameters compared
with GEV distribution. Hence, GPD has potential power to reduce problem of the
information wasting.

Let X be an independent and identically distributed random variable of a GPD model
and indicates the excess above the selected threshold u. The distribution function of
X is in form

FX (x|u,σ ,ξ ) =

{
1−
[
1+ξ

( x−u
σ

)]−1/ξ
ξ 6= 0,

1− exp
(
− x−u

σ

)
ξ = 0,

(1.3)

where the probability density function is given by

fX (x|u,σ ,ξ ) =

{
1
σ

[
1+ξ

( x−u
σ

)](1+1/ξ )
ξ 6= 0,

1
σ

exp
(
− x−u

σ

)
ξ = 0,

(1.4)

with

x≥ u, σ > 0, 1+ξ

(
x−µ

σ

)
> 0.

where, σ is the scale parameter, ξ is the shape parameter and u is the threshold.
There are three type of tail distributions associated with GPD regarding to the shape
parameter value. The excesses distribution has an upper bound of the distribution if
ξ < 0. A exponential decayed type tail correspond to ξ = 0, considered in the limit
ξ → 0. The excesses above the threshold has a slowly decaying tail and no upper
bound if ξ > 0. Therefore, the shape parameter of GPD is dominant in determining
the qualitative behaviour of the tail.

1.3 Relationship Between the GEV and GPD

The following theorem (see Coles (2001)) gives the relationship between the GEV
and GPD models.

Theorem 1.2 By considering assumption of Theorem 1.1, for a large size of n and
large enough value of u, the distribution function of (X −u), conditional on X > u,
is approximated by

H(y) = 1−
(

1+
ξ y
σ̃

)
, (1.5)
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for {y : y > 0 and (1+ξ y/σ̃)> 0}, where

σ̃ = σ +ξ (u−µ). (1.6)

Proof:
Let X as an arbitrary term in the Xi with the distribution function F . For a large size
of n

Fn(z)≈ exp

{
−
[

1+ξ

(
z−µ

σ

)]−1/ξ
}
,

for µ ∈ R, σ > 0 and ξ ∈ R. Consequently,

n logF(z)≈−
[

1+ξ

(
z−µ

σ

)]−1/ξ

, (1.7)

by using a Taylor expansion

logF(z)≈−{1−F(z)},

substitution into (1.7), gives

1−F(u)≈ 1
n

[
1+ξ

(
u−µ

σ

)]−1/ξ

,

for large enough u.

In a similar way, for y > 0,

1−F(u+ y)≈ 1
n

[
1+ξ

(
u+ y−µ

σ

)]−1/ξ

. (1.8)

Therefore,

Pr{X > u+ y | X > u} ≈
1
n

[
1+ξ

(
u+y−µ

σ

)]−1/ξ

1
n

[
1+ξ

(
u−µ

σ

)]−1/ξ

=

1+
1+ξ

(
u+y−µ

σ

)
1+ξ

(
u−µ

σ

)
−1/ξ

=

[
1+

ξ y
σ̃

]−1/ξ

,

(1.9)

where
σ̃ = σ +ξ (u−µ).
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1.4 Bayesian Theory

Term of Bayesian theory is named after Thomas Bayes, who introduced a special
case of what is now called as the Bayes’ theorem or Bayes’ rule, see (Bayes, 1764).
Bayes (1764) presents idea of revising and updating parameters of a density function
based on the new information. Practically, by using Bayes’ theorem, we obtain a
posterior distribution through combination of marginal distribution and conditional
probability distributions.

Theorem 1.3 (Bayes’ theorem) Let A and B represent two events. The probability
of A given B is in form:

Pr(A | B) =
Pr(B | A)Pr(A)

Pr(B)
,

where Pr(A) represents the marginal probability or prior probability of A and Pr(B |
A) denotes the conditional probability of B given A or called likelihood of B. The
Pr(B) represents the marginal probability of B.

Bayes’ theorem provides a procedure for calculation of the posterior distribution by
combination of likelihood function and prior distribution as follows:

π(A | B) = L(B | A)×π(A)
Pr(B)

∝ L(B | A)×π(A),
(1.10)

where π(A | B) is the posterior distribution, π(A) is the prior probability and L(B | A)
is the likelihood function. The likelihood function, likelihood, or L(x | Θ), contains
the available information provided by the sample. The likelihood function is defined
as

L(x |Θ) =
n

∏
i=1

f (xi |Θ).

The data x affects the posterior distribution f (Θ | x) only through the likelihood
function L(x | Θ). In this way, Bayesian inference obeys the likelihood principle,
which states that for a given sample of data, any two probability models f (x | Θ)
that have the same likelihood function yield the same inference for Θ, see Koch
(1990).

Bayes’ theorem has been broadly used in many disciplines such as operational re-
search and economical analysis. Cyert and DeGroot (1987) develop Bayes’ theorem
for both continuous and discrete random variables. Cyert and DeGroot (1987) point
out if θ has a prior distribution denoted as π(θ), for any X = x, the posterior distribu-
tion denoted as π(θ | x) is obtained through following formula derived from Bayes’
theorem:

π(θ | x) = f (x | θ) π(θ)∫
θ

f (x | θ) π(θ) dθ

∝ f (x | θ)×π(θ).

(1.11)
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Equation (1.11) is widely applied in data analysis. Now, assume x denotes the data
or given information which comes from a probability distribution f (. | θ). We would
like to revise or update the probability distribution of θ given x. If we have informa-
tion about the behaviour of the parameter and know the prior distribution, then the
posterior distribution is obtained through Formula (1.11). Otherwise, when there is
no information about the parameter, we can use uninformative prior such as conju-
gate and Jeffrey’s priors, see Kass and Wasserman (1996).

1.5 Prior Distribution

In Bayesian inference, a prior probability distribution, often called simply the prior,
of an uncertain parameter θ or latent variable is a probability distribution that ex-
presses uncertainty about θ before the data are taken into account. The parameters
of a prior distribution are called hyper parameters, to distinguish them from the pa-
rameters (Θ) of the model. When applying Bayes’ theorem, the prior is multiplied
by the likelihood function and then normalized to estimate the posterior probability
distribution, which is the conditional distribution of Θ given the data. Moreover,
the prior distribution affects the posterior distribution. Prior probability distributions
have traditionally belonged to one of two categories: informative priors and uninfor-
mative priors. Here, four categories of priors are presented according to information
and the goal in the use of the prior. The four categories are informative, weakly
informative, least informative, and uninformative.

1.5.1 Informative Priors

When prior information is available about θ , it should be included in the prior dis-
tribution of θ . For example, if the present model form is similar to a previous model
form, and the present model is intended to be an updated version based on more cur-
rent data, then the posterior distribution of θ from the previous model may be used
as the prior distribution of θ for the present model. In this way, each version of a
model is not starting from scratch, based only on the present data, but the cumulative
effects of all data, past and present, can be taken into account. To ensure the current
data do not overwhelm the prior, Ibrahim and Chen (2000) introduce the power prior.
The power prior is a class of informative prior distribution that takes previous data
and results into account. If the present data is very similar to the previous data, then
the precision of the posterior distribution increases when including more and more
information from previous models. If the present data differs considerably, then the
posterior distribution of θ may be in the tails of the prior distribution for θ , so the
prior distribution contributes less density in its tails. Hierarchical Bayes is also a
popular way to combine data sets. Sometimes informative prior information is not
simply ready to be used, such as when it resides in another person, as in an expert.
In this case, their personal beliefs about the probability of the event must be elicited
into the form of a proper probability density function. This process is called prior
elicitation.
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1.5.2 Weakly Informative Priors

Weakly informative prior (WIP) distributions use prior information for regulariza-
tion and stabilization, providing enough prior information to prevent results that
contradict our knowledge or problems such as an algorithmic failure to explore the
state-space. Another goal is for WIPs to use less prior information than is actually
available. A WIP should provide some of the benefit of prior information while
avoiding some of the risk from using information that doesn’t exist. WIPs are the
most common priors in practice, and are favoured by subjective Bayesians. Select-
ing a WIP can be tricky. WIP distributions should change with the sample size,
because a model should have enough prior information to learn from the data, but
the prior information must also be weak enough to learn from the data. After up-
dating a model in which WIPs exist, the user should examine the posterior to see if
the posterior contradicts knowledge. If the posterior contradicts knowledge, then the
WIP must be revised by including information that will make the posterior consistent
with knowledge, see Gelman et al. (2014).

1.5.2.1 Vague Priors

The first formal move from vague to weakly informative priors is Lambert et al.
(2005). Typically a vague prior, also called a diffuse prior, is a conjugate prior with
a large scale parameter. After conjugate priors were introduced (Raiffa, 1974), most
applied Bayesian modelling has used vague priors, parametrized to approximate the
concept of uninformative priors (better considered as least informative priors). Often
researchers want the data to dominate when there is no prior information and thus
attempt to use vague prior distributions (Lambert et al., 2005). A vague prior is
defined here as usually being a conjugate prior that is intended to approximate an
uninformative prior (or actually, a least informative prior).

1.5.3 Least Informative Priors

The term ‘Least Informative Priors’, or LIPs, is used here to describe a class of prior
in which the goal is to minimize the amount of subjective information content, and
to use a prior that is determined solely by the model and observed data.

1.5.3.1 Flat Priors

The flat prior was historically the first attempt at an uninformative prior. The un-
bounded, uniform distribution, often called flat prior, is

θ ∼ u(−∞,+∞),

where θ is uniformly-distributed from negative infinity to positive infinity. Although
this seems to allow the posterior distribution to be affected solely by the data with no
impact from prior information, this should generally be avoided because this proba-
bility distribution is improper, meaning it will not integrate to one since the integral
of the assumed p(θ) is infinity (which violates the assumption that the probabilities
sum to one). This may cause the posterior to be improper, which invalidates the
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model. Thomas Bayes (1701− 1761) was the first to use inverse probability and
Bayes and Price (1763) use flat prior for his billiard example so that all possible
values of θ are equally likely a priori (Gelman et al., 2014). Pierre-Simon Laplace
(1749−1827) also use the flat prior to estimate the proportion of female births in a
population, and for all estimation problems present or justify as a reasonable expres-
sion of ignorance. Laplace’s use of this prior distribution was later referred to as the
’principle of indifference’ or ’principle of insufficient reason’, and is now called the
at prior Gelman et al. (2014). Laplace was aware that it was not truly uninformative,
and used it as a LIP. Another problem with the flat prior is that it is not invariant to
transformation. For example, a flat prior on a standard deviation parameter is not
also at for its variance or precision.

1.5.4 Uninformative Priors

Traditionally, most of the above descriptions of prior distributions were categorized
as uninformative priors. However, uninformative priors do not truly exist and all
priors are informative in some way (Irony and Singpurwalla, 1997). Traditionally,
there have been many names associated with uninformative priors, including diffuse,
minimal, non-informative, objective, reference, uniform, vague, and perhaps weakly
informative.

Prior Distributions For This Study

When analysing data from a Bayesian perspective it is necessary to specify prior
distributions for all unknown parameters. This can be a potential advantage, but in
many situations there is a desire for the data to dominate when no prior information
is available (or when MCMC methods are being used for computational convenience
and the researcher does not want to include prior information), which has led to the
use of vague or reference priors (Kass and Wasserman, 1996). In this study, we
use some informative priors for the location and scale parameters of the GEVξ=0
model. Here, Metropolis Hastings algorithm initiates the parameter values from
the parameter space. Multiple starting value under the support of parameter values
are used in testing the convergency of the chain and the sensitivity to the initial
value (Gelman et al., 2003). The simulation results show the chain can converge (in
probability) to the true value quickly even with the initial value which is relatively
far from the true parameter value. In contrast, we define vague priors on the location,
scale and shape parameters of the GEV, GPD and bivariate extreme value distribution
(BEVD) along with a flat prior defined on the dependence parameter of the BEVD,
to show our little prior information allowing the data to speak for themselves which
demonstrates the worst case for estimation performance (Coles and Tawn (1996),
Coles et al. (2003), Coles and Tawn (2005), Reis Jr and Stedinger (2005) and Yoon
et al. (2010)).

1.6 Credible Interval

In Bayesian inference, a credible interval is a probabilistic region around a posterior
moment, and is similar in use to a frequentest confidence interval. In fact, the idea

8



© C
OPYRIG

HT U
PM

of a credibility interval is to give an analogue of a confidence interval in classical
statistics. The reasoning is that point estimates give no measure of accuracy, so it is
preferable to give a interval within which is likely that the parameter lies. In frequen-
tist approach, confidence intervals have the interpretation that if the sampling were
repeated, there is a specified probability that the interval so obtained would contain
the parameter- it is the interval which is random and not the parameter. There is no
such difficulty in the Bayesian approach because parameters are treated as random.
A Bayesian analysis can provide credible intervals for parameters or any function
of the parameters which are more easily interpreted than the concept of confidence
interval in classical statistics (Congdon, 2007). A credible interval, incorporates in-
formation from the prior distribution into the estimate, while confidence intervals are
based solely on the data. An interval C is a 100(1−α)% credible interval for θ if∫

C

π(θ | X)dθ = 1−α. (1.12)

That is, there is a probability of 1−α , based on the posterior distribution, that θ

lies in C. Note that, if the parameter space is discrete, a sum replaces the integral in
equation (1.12). There are a variety of Bayesian probability intervals. For example,
when generalized to multivariate forms, it is called a probability region (or credible
region). Aside from whether it is univariate or multivariate, there are quantile based
probability intervals, uni-modal Highest Posterior Density (HPD) intervals, multi-
modal HPD intervals, and the Lowest Posterior Loss (LPL) interval, among others.

In this study, we use quantile based credible interval to obtain a probabilistic region
around the posterior means. If θ∗L be the α/2 posterior quantile for θ , and θ∗U be the
1−α/2 posterior quantile for θ , then (θ∗L ,θ

∗
U ) is a 100(1−α)% credible interval

for θ .

P{θ ∈ (θ∗L ,θ
∗
U ) | X}= 1−P{θ /∈ (θ∗L ,θ

∗
U ) | X}

= 1− [P(θ < θ
∗
L | X)+P(θ > θ

∗
U | X)]

= 1−α.

1.7 Markov Chain Monte Carlo

Practically, we sometimes face some obstacles in analytical calculation of the poste-
rior distributions. One effective method to overcome this problem is using a Monte
Carlo simulation technique. By performing this method, we can estimate some fea-
tures of the posterior distribution, such as marginal distribution, covariance and pos-
terior mean.

1.7.1 Monte Carlo Sampling

Suppose we need to calculate an expectation that cannot be expressed in a closed
form. An acceptable approach would be to use random sampling to evaluate the an-
alytical or numerical integration. For example, we can collect a large sample from
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a population and consider the corresponding sample mean as an approximation of
the population mean. Based on the law of large numbers, we know that when the
sample size is large enough, the estimate may be acceptably accurate. So if we
want to estimate a posterior mean, we attempt to generate independent and identi-
cally distributed observations from the posterior distribution and consider the sample
mean as an approximation of the posterior mean. However, one of the usual draw-
backs of this approach is that often we encounter posterior distributions which are
non-standard and are difficult to sample from. In such event, the notion of impor-
tance sampling introduced by Metropolis et al. (1953), provides a new algorithm for
sampling points from a given probability density function. When the original den-
sity function is difficult or computationally burdensome to sample from directly, the
importance sampling approach suggests finding a probability density function that
is very close to the original density function and easier to sample from. In other
words, importance sampling involves choosing a ”good” distribution from which to
simulate the random variables of interest. As a result, it yields the expectation of
a quantity that varies less than the original integral over the region of integration.
This approach is one of the basic Monte Carlo sampling methodologies. Since it is
believed that certain values of an input random variable in a simulation have more
impact on the estimation than others, and by emphasizing these ”important” values
more frequently, the variance of the estimator can be reduced. Hence, importance
sampling can also be viewed as a variance reduction technique.

One drawback of the traditional Monte Carlo sampling or Monte Carlo importance
sampling is that the functional form of the posterior density function needs to be
specified. Otherwise, this sampling technique would be difficult to implement for
cases where the posterior distributions are handled indirectly or incompletely. Such
cases are not rare, especially for Bayesian hierarchical models that involve the joint
posterior distribution of the parameter set specified in combination of conditional
and marginal distributions. This is due to the fact that while the joint posterior dis-
tribution is difficult to specify directly, the conditional posteriors, given the relevant
parameter values at different hierarchy levels, are easier to derive.

Usually, the generation of random vectors is not an easy task. Devroye (1986) argues
that most of the rejection based algorithms are practically limited to relatively small
dimensions (up to at most 10). Also, there exist a large number of distributions which
are difficult to sample from in even as few as three or four dimensions. Under these
circumstances, constructing a Markov chain, which has the desired fixed multivariate
distribution as its unique stationary distribution, is a better choice. The basic idea
of this method is to use a Markov chain to simulate from random vectors. This
technique has attracted considerable research attention recently.

To overcome the problem of evaluating multidimensional integrals, necessary in
Bayesian statistics, Markov chain Monte Carlo (MCMC) techniques have been used
frequently over the last three decades. The hierarchical prior structure in Bayesian
computations can lead to analytically tractable conditional posteriors, which makes
it possible to adopt the MCMC procedure for obtaining random draws from the tar-
get joint posterior distribution. Ghosh et al. (2007) state that these iterative Monte
Carlo procedures typically generate a random sequence with the Markov property
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such that this Markov chain is ergodic with the limiting distribution being the target
posterior distribution.

1.7.2 Metropolis Hastings Algorithm and Slice Sampler Technique

Among the Monte Carlo sampling techniques, the well-known Markov chain Monte
Carlo (MCMC) method is widely used for handling complex computational prob-
lems, especially in multivariate cases. Given an initial vector X0 ∈ Rd and a con-
ditional distribution K(Xt+1 | Xt) that depends only on the current state vector Xt ,
we can generate a sequence of random vectors X0,X1, · · · ,Xn which form a Markov
chain with the transition kernel K(Xt+1 | Xt). When the transition kernel does not
depend on t, this Markov chain is called a time homogeneous Markov chain. One
question that arises here involves the effect of the starting vector X0 on the distribu-
tion of Xt , denoted by Kt(Xt | X0). In the Markov chain sampling process, we require
Kt(Xt | X0) to converge to a unique stationary distribution, which neither depends on
t nor on X0. These Markov chain based generators produce dependent random vari-
ables and the first vectors of these sequences do not replicate the target distribution
and, thus, need to be discarded. This is called the ”burn-in” phase of such a Markov
chain sampling procedure. The length of the burn-in period should be long enough
to guarantee the convergence of the Markov chain. Theoretically speaking, when
applying Monte Carlo sampling based approaches, it is necessary to wait until the
Markov chain converges to the invariant target distribution, and then sampling from
the resulting distribution. It is a good idea to start a large number of chains beginning
with different starting points, and pick the draws after allowing these chains to run
over a sufficiently long period of time. In other words, it may be necessary to use
many different chains to ensure that convergence occurs and we need to discard the
samples obtained during the burn-in phase. Nevertheless, the law of large numbers
for dependent chains implies that one could just use a single Markov chain as long
as this chain is ”long” enough.

1.8 Problem Statement

In recent years, there have been increasing number of researches that propose adopt-
ing the Bayesian approach by application of Monte Carlo simulation methods to
achieve optimal making of decisions. For instance, Jensen (2001) introduces an esti-
mator based on Markov chain Monte Carlo (MCMC) technique for a long-memory
stochastic volatility in a financial model.

EVT based models are based upon an asymptotic approximation for the tail dis-
tributions, which are very flexible in terms of the allowable tail shape behaviour.
The attraction of the EVT based techniques is that they can provide statistically and
mathematically justifiable parametric model for the tails of distribution which can
give reliable extrapolations beyond the range of the observed data. The typical prob-
lem with fitting extreme value models is the inherent lack of observations (Coles and
Powell, 1996). Moreover, a large sample size is required to estimate parameter of
the shape (ξ ), see Coles (2001). Therefore in EVT, other information of the dis-
tribution can be useful if the estimation method can take account these information
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such as expert knowledge. Hence, MCMC techniques have been frequently used in
the EVT. For example, Coles and Powell (1996) apply a Bayesian framework for the
GEV model in three different cases by defining various prior distributions including
gamma as informative prior, a flat distribution as non informative prior and multivari-
ate normal as empirical prior. Coles and Powell (1996) use Gibbs sampler algorithm
to estimate the posterior distributions. According to the findings, in the situation of
both informative and empirical priors, the estimations are at least as trustworthy as
MLE, but remarkably more informative and flexible.

A key issue in the Bayesian analysis is subjectivity in choosing the prior distribu-
tion. In fact, there is no standard procedure for specifying the prior distribution on
the parameters and it can be completely subjective. According to Kass and Wasser-
man (1996) and Skold (2005), prior selection can be different from researcher to
researcher and this result in subjectivity in choice of prior distribution for a parame-
ter. Consequently, one of the greatest challenges of applying Bayesian approach for
EVT is that such subjectivity in prior selection necessarily leads to some errors in
the final conclusion. Another obstacle for Bayesian analysis of extreme data is re-
lated to the computation of the posterior distribution. Since in most cases, posterior
distributions are high dimensional and complex, it is difficult to calculate the param-
eter estimation through analytical methods. In such situations, MCMC technique
provides some procedures to overcome this problem. Thus, there are high level of
interest to use this technique in Bayesian computation by researchers. For example,
Bray (2002) presents a usage of MCMC techniques for projecting mortality and can-
cer incidence. Also, San Martini et al. (2006) apply MCMC techniques to inference
aerosol observations and forecast gas phase concentrations. Monte Carlo sampling
techniques contain the well-known Gibbs sampler introduced by Geman and Geman
(1984) and Gelfand and Smith (1990), Metropolis-Hastings algorithm proposed by
Metropolis et al. (1953) and generalized by Hastings (1970), and hit-and-run sam-
pler, for which a detailed discussion may be obtained in Smith (1984), Bélisle et al.
(1993), Schmeiser and Chen (1991) and Chen and Schmeiser (1993).

However, in analysis of the features of extreme value posterior distributions, Gibbs
sampler and Metropolis Hastings algorithms are popular, it is often problematic for
researchers to gain satisfactory simulation results. Metropolis Hastings algorithm
requires a good candidate density functions for efficient sampling. But, sometimes,
it is difficult to find a proper proposal density function even in the one dimensional
states. Further, in Gibbs sampler somebody may face problem to sample from a
complex non-standard conditional distribution. Therefore, it seems that researchers
need to introduce a more efficient algorithm for collecting sample from non-standard
extreme value posterior distributions.

Despite many studies conducted on Bayesian analysis of extreme data using MCMC
methods such as Metropolis Hastings and Gibbs sampler algorithms, the Bayesian
analysis of extreme data using the slice sampler approach has not been undertaken
by the time of this study. Therefore, the current research attempts to fill the gap in
the body of literature on Bayesian analysis of extreme data. The objectives of this
research are to consider the prior selection and develop the slice sampler algorithm
for extreme value models.
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1.9 Data

Two data sets are used in the current study, including simulated data and real data.
The simulated data are generated by using the inversion technique for various ex-
treme models such as GEV, GEVξ=0, GPD and bivariate extreme value. For real
data analysis, we adopt Malaysian daily gold returns from January 3, 2000 to De-
cember 19, 2011, taking a total of 3120 days.

1.9.1 Simulation Using Inversion Technique

The inversion method transforms a single uniform random variable into the random
variable. This method is based on (inverses of) cumulative distribution functions F .
Inversion method is the only truly universal method: If all we can do is compute
distribution function F(x) for all x, and we have enough (i.e., infinite) time on our
hands, then we can generate random variate with distribution function F (Devroye,
1986).

Let F(x), x ∈ R, denote any cumulative distribution function (cdf) (continuous or
not). Recall that F : R→ [0,1] is thus a non-negative and non-decreasing (monotone)
function that is continuous from the right and has left hand limits, with values in
[0,1]; moreover F(∞) = 1 and F(−∞) = 0. Our objective is to generate (simulate)
random variable X distributed as F ; that is, we want to simulate a random variable X
such that P(X ≤ x) =F(x), x∈R. Define the generalized inverse of F , F−1 : [0,1]→
R, via

F−1(y) = min{x : F(x)≥ y}, y ∈ [0,1]. (1.13)

If F is continuous, then F is invertible (since it is thus continuous and strictly increas-
ing) in which case F−1(y) = min{x : F(x) ≥ y}, the ordinary inverse function and
thus F(F−1(y)) = y and F−1(F(x)) = x. In general it should that F−1(F(x)) ≤ x
and F(F−1(y)) ≥ y. F−1(y)1 is a non-decreasing (monotone) function in y. This
simple fact yields a simple method for simulating a random variable X distributed as
F :

Theorem 1.4 Let F(x), x ∈ R, denote any cumulative distribution function (cdf)
(continuous or not). Let F−1(y), y ∈ [0,1] denote the inverse function defined in
(1.13). Define X = F−1(U), where U has the continuous uniform distribution over
the interval (0,1). Then X is distributed as F, that is, P(X ≤ x) = F(x),x ∈ R.

Proof:
We must show that P(F−1(U) ≤ x) = F(x), x ∈ R. First suppose that F is contin-
uous. Then we will show that (equality of events) {F−1(U) ≤ x} = {U ≤ F(x)},
so that by taking probabilities (and letting a = F(x) in P(U ≤ a) = a) yields the
result: P(F−1(U) ≤ x) = P(U ≤ F(x)) = F(x). To this end: F(F−1(y)) = y and
so (by monotonicity of F) if F−1(U) ≤ x, then F(F−1(U)) ≤ F(x). Similarly
F−1(F(x)) = x and so if U ≤ F(x), then F−1(U) ≤ x. We conclude equality of
the two events as was to be shown (Devroye, 1986).
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1.9.2 Real Data Collection

Data collection is referred to the sources that are used in the study. There are mainly
two forms of data collections, primary and secondary data. Primary data is data that
has been observed, experienced or recorded directly from immediate experience and
that has not been analysed. Secondary data, on the other hand, is gathered data estab-
lished by a third party (Walliman, 2010). Saunders et al. (2011) claim that secondary
data is not always intentionally published for the research subject. Journals, news-
papers, policy documents, annual reports and all other type of data that already exist
are some example of secondary data

The documents and information that are gathered for the current study are mainly
based on secondary data. The secondary data that were are in this study is generated
specifically from daily reports of Malaysian gold returns from January 3, 2000 to
December 19, 2011, which have been downloaded from www.kitco.com. Over the
past two decades, many countries have been turning their attention to the issue of
economic stability more and more because of the occurrence of several economic
crises repeatedly, such as the Asian financial crisis in 1970, the sub-prime mortgage
crisis in the United States in 2007, the European sovereign-debt crisis in 2009, and,
lastly, the Cyprus crisis. These crises introduced adverse economic impacts that
spread widely from country to country and, subsequently, reached global levels. All
nations around the world have suffered from this economic impact in one way or
the other, in terms of international trade, foreign investment, international financial
market, foreign capital movement, stock index, and foreign exchange rate market.
These impacts affected each and every country’s economic goals, and, ultimately, it
is bound to influence the Gross Domestic Production (GDP) growth. For centuries,
investors have been found to protect their capital by investing in assets that offer
safer stores of value (World Gold Council, 2008).

Gold is widely regarded as representative of precious metals. In the history of inter-
national currencies, gold has not only contributed significantly to the stabilization of
the international money market, but has also served as an important financial asset
in international currency reserves. For instance, most countries around the world
hold a certain proportion of their foreign exchange reserves in gold. Apart from its
superior industry characteristics, gold has also served as a medium of exchange for
several thousand years. According to a report prepared by the World Gold Council,
there are around 166,000 tons of gold in the world, and the growth rate of the stock
of gold on earth increases by only 2% per year. In 2011, the global demand for gold
was 4067.1 tonnes, which was 6.5% higher than the previous years’ level of 3818.2
tonnes. However, the total supply of gold was 3994 tonnes in 2011, which was 8%
below the previous years’ level of 4163.9 tonnes. When the smaller global gold re-
serves are in even shorter supply, the cost of gold production reduces the shortfall
in supply increases, and vice versa. Since the global financial crisis began in late
2007, global investors have not aggressively sought complicated portfolios of finan-
cial assets, but have rather resorted to simpler financial and risk management. In-
vesting in gold can provide a store of value and hedge risks (Kolluri (1981), Moore
(1990), Dooley et al. (1995), Taylor (1998), Capie et al. (2005) and Hammoudeh
et al. (2010)). Even though gold prices will change due to fluctuations in market
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prices, gold will not lose its value over time. In order to avoid currency depreciation
and low interest rates, particularly during times of recession, investors prefer to pro-
vide a store of value for their wealth by holding gold (Koutsoyiannis (1983), Mishra
and Rahman (2005) and Hammoudeh et al. (2011)). An increase in the demand for
gold can increase gold prices, which can subsequently lead to a high value of the
gold investment. Consequently, this can push up gold prices even further. When
all factors are considered, there is still optimism that the gold market will remain
bullish. In fact, the price and production behaviour of gold differs from most other
mineral commodities. Gold is an important asset that provides stability to interna-
tional money markets and international currency reserves (Chang et al., 2013). In
the late 2007 financial crisis, the gold price increased by 6% while many key mineral
prices fell and other equities dropped by around 40%.

Given the importance of gold price in the global market, for the application part of
the current study, we attempt to conduct Bayesian analysis of Malaysian extreme
gold returns by using the slice sampler algorithm. EVT has been shown to be a
very useful tool in estimating and predicting the extremal behaviour of actuarial and
financial products, such as predicting the largest claim in insurance and the Value-
at-Risk (VaR), see Embrechts et al. (1997). Financial data is well known to exhibit
relatively heavy (heavier than normal) tails, and typically show clusters of obser-
vations in the tails, often termed volatility clustering which creates challenges when
applying extreme value models, since classical EVT assume independence of the un-
derlying process. However, the assumption of independence can be easily dropped
and the theoretical results follow through (McNeil, 1997). Moreover, under certain
conditions, Beirlant et al. (2004) show that a stationary process with short range de-
pendence between the observations can also lead to the same extreme distribution
family.

1.10 Scope of the Report

This report is divided into 7 chapters. Chapter 1 looks at the general overview of
the EVT and some issues that exist in Bayesian analysis of extreme values in terms
of prior selection and computation of the posterior distribution. It also looks into
some background studies of Markov chain Monte Carlo (MCMC) techniques and
the objectives of this research.

Chapter 2 reviews some background studies and literatures in the fields of extreme
value modelling, Bayesian analysis and slice sampler algorithm in order to support
the current work.

Chapter 3 focuses on the prior selection of GEVξ=0 model using the Metropolis
Hastings algorithm. The posterior distributions are computed by multiplying the
likelihood function and various pairs of prior distributions. A simulation study is
conducted to compare the performance of the priors defined on the location (µ) and
scale (σ) parameters.

Chapter 4 concentrates on the development of slice sampler algorithm for block max-
ima (BM) approach and GEV distribution. Both the simulation study and real data
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application are used to show the performance of the slice sampler algorithm in the
computation of the GEV posterior distribution and to model the tail behaviour of
Malaysian monthly maximum gold returns.

Chapter 5 focuses on the development of slice sampler algorithm for the peaks over
a threshold (POT) and generalized Pareto distribution (GPD), since this model can
minimize the problem of being wasteful of extreme information for collecting more
extreme observations compared to the BM approach as used for the GEV. A simu-
lation study is carried out to demonstrate the performance of the slice sampler al-
gorithm for fitting the POT and GPD posterior models. Moreover, the slice sam-
pler technique is employed to estimate the return and risk values of investment in
Malaysian gold market.

Chapter 6, concentrates on the development of slice sampler algorithm for the bi-
variate extreme value distribution (BEVD) with logistic dependence structure and
exponential margins. This is an extension of the model discussed in chapter 4. By
conducting a simulation study, the performance of the slice sampler algorithm in the
computation of the posterior distributions is considered. Further, by using the slice
sampler algorithm, the relationship between returns of the gold and united states
dollar in Malaysian market is examined.

Finally, chapter 7 offers some concluding remarks and suggestions for future work.

1.11 Research Objectives

It is clear that to date the slice sampler algorithm for Bayesian analysis of extreme
data have not been developed. More specifically, some studies have focused on
the Bayesian analysis of extreme values by using other MCMC algorithm such as
Metropolis Hastings and Gibbs sampler. Thus, in this study, the slice sampler al-
gorithm contributes to Bayesian analysis of GEV, GPD and bivariate extreme value
distribution (BEVD). Moreover, since there is no standard approach for defining the
prior distribution on the parameters of extreme value models and it should vary ac-
cording to application, this research also provides an analysis of prior selection of the
GEVξ=0. In addition, this study attempts to perform Bayesian analysis of Malaysian
extreme gold returns using the slice sampler algorithm. Briefly, this research embark
on the following objectives:

1. Analysis for prior selection for the GEVξ=0 model by using Metropolis-
Hastings algorithm.

2. To develop the slice sampler algorithm for the GEV model.

3. To develop the slice sampler algorithm for the GPD model.

4. To develop the slice sampler algorithm for the bivariate extreme with logistic
dependence structure.

5. Applying the slice sampler algorithm for Malaysian extreme gold returns from
2000 to 2011.
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1.12 Summary

The EVT makes it possible to model those phenomena which happen rarely such
as earthquake, flood, financial risk and insurance losses. The typical problem in
extreme value modelling is the inherent sparsity of extreme observations, for which
Bayesian framework supplies a procedure to take advantage of prior information
such as expert knowledge. In this study, we will develop the slice sampler algorithm
for extreme value models such as GEV, GPD and bivariate extremes. For application
part, we will concentrate on the Bayesian inference of Malaysian gold returns using
the slice sampler algorithm.
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Gençay, R., Selçuk, F., and Ulugülyaci, A. (2003). High volatility, thick tails and
extreme value theory in value-at-risk estimation. Insurance: Mathematics and
Economics, 33(2):337–356.

Ghosh, J. K., Delampady, M., and Samanta, T. (2007). An introduction to Bayesian
analysis: theory and methods. Springer.

Gilli, M. et al. (2006). An application of extreme value theory for measuring financial
risk. Computational Economics, 27(2-3):207–228.

Gnedenko, B. (1943). Stir la distribution limite du terme maximum d’une sarie
alaatoire.

Goldstein, J., Mirza, M., Etkin, D., and Milton, J. (2003). J2. 6 hydrologic assess-
ment: Application of extreme value theory for climate extremes scenarios con-
struction. In 14th Symposium on Global Change and Climate Variations, Ameri-
can Meteorological Society 83rd Annual Meeting.

Gomes, M. I. and Guillou, A. (2014). Extreme value theory and statistics of univari-
ate extremes: a review. International Statistical Review.
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