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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of
the requirement for the degree of Doctor of Philosophy

BLOCK HYBRID METHODS FOR NUMERICAL TREATMENT OF
DIFFERENTIAL EQUATIONS WITH APPLICATIONS

By

YAP LEE KEN

August 2016

Chairman : Professor Fudziah Binti Ismail, PhD
Institute : Mathematical Research

This thesis focuses mainly on deriving block hybrid methods for solving Ordinary Dif-
ferential Equations (ODEs). Block hybrid methods are the methods that generate a block
of new solutions at the main and off-step points concurrently. The first part of the thesis
is about the derivation of the explicit block hybrid methods based on Newton-Gregory
backward difference interpolation formula for solving first order ODEs. The regions
of stability are presented. The numerical results are shown in terms of total steps and
accuracy.

The second part of the thesis describes the mathematical formulation of explicit and
implicit one-point block hybrid methods for first order ODEs whereby the derivation
involves the divided differences relative to main and off-step points. The stability prop-
erties are discussed. The explicit and implicit block hybrid methods are implemented
in predictor-corrector mode of constant step size to obtain the numerical approximation
for first order ODEs. The implementation of block hybrid methods in variable step size
is also presented. Some numerical examples are given to illustrate the efficiency of the
methods.

The one-point block hybrid methods are then implemented for numerical solution of first
order delay differential equations (DDEs). The Q-stability of the methods is investigated.
Since the block hybrid methods include the approximate solution at both the main and
additional off-steps points, more computed values that surrounding the delay term can be
used to provide a better estimation in interpolating the delay term.

The third part of the thesis is mainly focused on block hybrid collocation methods for ob-
taining direct solution of second-, third- and fourth-order ODEs. The derivation involves
interpolation and collocation of the basic polynomial. The stability properties are inves-
tigated. Illustrative examples are presented to demonstrate the efficiency of the methods.
The block hybrid collocation methods are also applied to solve the physical problems
such as Lane-Emden equation, Van Der Pol oscillator, Fermi-Pasta-Ulam problem, the
nonlinear Genesio equation, the problem in thin film flow and the fourth order problem
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from ship dynamics.

As a whole, the block hybrid methods for solving different orders of ordinary differen-
tial equations have been presented. The illustrative examples demonstrate the accuracy
advantage of the block hybrid methods.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Doktor Falsafah

KAEDAH BLOK HIBRID UNTUK RAWATAN BERANGKA PERSAMAAN
PEMBEZAAN DENGAN APLIKASI

Oleh

YAP LEE KEN

Ogos 2016

Pengerusi : Professor Fudziah Binti Ismail, PhD
Institut : Penyelidikan Matematik

Tumpuan utama tesis ini adalah untuk menerbitkan kaedah blok hibrid untuk menye-
lesaikan Persamaan Pembezaan Biasa (PBB). Kaedah blok hibrid adalah kaedah yang
menghasilkan satu blok penyelesaian baru di titik utama dan titik separa secara serentak.
Bahagian pertama tesis ini adalah mengenai terbitan kaedah blok hibrid tak tersirat
berdasarkan rumus interpolasi beza ke belakang Newton-Gregory untuk menyelesaikan
PBB peringkat pertama. Rantau kestabilan dipersembahkan. Keputusan berangka ditun-
jukkan dari segi jumlah langkah dan kejituan.

Bahagian kedua menerangkan rumus matematik kaedah blok hibrid satu-titik tak tersirat
dan tersirat untuk PBB peringkat pertama di mana terbitan melibatkan beza bahagi yang
relatif kepada titik utama dan titik separa. Ciri kestabilan dibincangkan. Kaedah blok
hibrid tak tersirat dan tersirat dilaksanakan dalam mod peramal-pembetul dengan saiz
langkah malar untuk mendapatkan penghampiran berangka bagi PBB peringkat pertama.
Pelaksanaan kaedah blok hibrid dalam panjang langkah berubah juga dipersembahkan.
Beberapa contoh berangka diberi untuk menunjukkan keberkesanan kaedah tersebut.

Kaedah blok hibrid satu-titik tersebut dilaksanakan untuk penyelesaian berangka Per-
samaan Pembezaan Lengah (PBL) peringkat pertama. Kestabilan-Q kaedah tersebut
dikaji. Kaedah blok hibrid melibatkan penyelesaian anggaran untuk kedua-dua titik
utama dan titik separa, lebih banyak nilai-nilai yang dikira sekitar sebutan lengah boleh
digunakan untuk memberikan anggaran yang lebih baik dalam interpolasi sebutan lengah.

Bahagian ketiga tesis memberi tumpuan utama kepada kaedah blok hibrid kolokasi untuk
penyelesaian PBB peringkat kedua, ketiga dan keempat secara langsung. Penerbitan
melibatkan interpolasi dan kolokasi daripada polinomial asas. Ciri kestabilan kaedah
dikaji. Contoh-contoh ilustrasi dipersembahkan untuk menunjukkan kecekapan kaedah.
Kaedah blok hibrid kolokasi juga digunakan untuk menyelesaikan masalah fizikal seperti
persamaan Lane-Emden, pengayun Van Der Pol, masalah Fermi-Pasta-Ulam, persamaan
tidak linear Genesio, masalah dalam aliran filem nipis dan masalah peringkat keempat
dari dinamik kapal.
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Secara keseluruhannya, kaedah blok hibrid untuk menyelesaikan persamaan pembezaan
biasa pada peringkat yang berbeza telah dipersembahkan. Contoh-contoh ilustrasi me-
nunjukkan kelebihan kejituan kaedah blok hibrid.
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CHAPTER 1

INTRODUCTION TO NUMERICAL ORDINARY AND DELAY
DIFFERENTIAL EQUATIONS

Ordinary differential equations (ODEs) are equations that involve an unknown function
with independent variable and one or more of its derivatives. ODEs arise in many con-
texts of engineering and science such as fluid dynamics, radioactive decay and population
growth. Many theoretical and numerical studies for such equations have appeared in the
literature. The analytical way of solving ODEs is via application of integration technique.
However, it is difficult or impossible to determine the anti-derivatives for most of the re-
alistic systems of ODEs. Thus, numerical methods for ODEs have attracted considerable
attention.

1.1 Numerical Methods for ODEs

Here, we consider the nth order ordinary differential equations

y(n) = f (x,y, . . . ,y(n−1)), where n = 1,2,3,4 (1.1)

with initial conditions

y(a) = y0 and y(i)(a) = ηi, 0 < i < n−1, x ∈ [a,b].

In first order ODEs, the quantity being differentiated, y is named as the dependent
variable, while the quantity with respect to which y is differentiated, x is named as
independent variable.

The following standard theorem asserts the sufficient conditions for a unique solution to
exist. We shall assume that the hypotheses of this theorem are satisfied.

Theorem 1.1 :(Existence and Uniqueness)
Let f (x,y) be defined and continuous for all points (x,y) in the region D defined by
a ≤ x ≤ b, −∞ < y < ∞, where a and b are finite, and let there exists a constant L such
that for any x ∈ [a,b] and any two numbers y and y∗,

| f (x,y)− f (x,y∗)| ≤ L|y− y∗|.

This condition is known as Lipschitz condition. Then there exists exactly one function
y(x) with the following three properties:

i. y(x) is continuous and differentiable for x ∈ [a,b],
ii. y′ = f (x,y(x)), x ∈ [a,b],

iii. y(a) = η .

The proof is given by Henrici (1962).

1
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Basically, the numerical methods for ODEs are classified as one-step method and
multistep method. One-step method requires the information from only one previous
point, xn to find the approximation at the mesh point, xn+1. On the other hand, multistep
method requires the usage of information from more than one previous points to find the
next approximation.

In general, the linear k-step method for first order ODEs can be written as

k

∑
j=0

α jyn+ j = h
k

∑
j=0

β j fn+ j (1.2)

where α j and β j are constants with the conditions αk 6= 0 and |α0|+ |β0|> 0. Since (1.2)
can be multiplied by the same constant without altering the relationship, the coefficient
α j and β j are arbitrary to the extent of a constant multiplier. This arbitrariness has been
removed by assuming that αk = 1. Method (1.2) is explicit if βk = 0 and implicit if
βk 6= 0.

According to Lambert (1973), hybrid method is the modified linear multistep method
which incorporate the function evaluation at off-step point. It retaining certain charac-
teristic of linear multistep method whilst it has the property in utilizing data at off-step
points besides the standard step points.

Following Lambert (1973), the k-step hybrid method for first order ODEs can be defined
as

k

∑
j=0

α jyn+ j +
k

∑
j=1

αν j yn+ν j = h

(
k

∑
j=0

β j fn+ j +
k

∑
j=1

βν j fn+ν j

)
(1.3)

where α0 and β0 are not both zero, αk = 1 and ν j is not integer.

Definition 1.1 : [See Lambert (1973)]
The linear difference operator L associated with the hybrid method (1.3) is defined by

L[y(x);h] =
k

∑
j=0

[
α jy(x+ jh)−hβ jy′(x+ jh)

]
+

k

∑
j=1

[αν j y(x+ν jh)−hβν j y
′(x+ν jh)] (1.4)

where y(x) is an arbitrary function that is sufficiently differentiable on [a,b]. Expanding
the test function and its first derivative as Taylor series about x and collecting the terms
to obtain

L[y(x);h] =C0y(x)+C1hy′(x)+ . . .Cqhqy(q)(x)+ . . .

2
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where the coefficients Cq are constants independent of y(x). In particular,

C0 =
k

∑
j=0

α j +
k

∑
j=1

αν j

C1 =
k

∑
j=1

jα j +
k

∑
j=1

ν jαν j −

(
k

∑
j=0

β j +
k

∑
j=1

βν j

)

C2 =
1
2!

[
k

∑
j=1

j2α j +
k

∑
j=1

ν
2
j αν j −2

(
k

∑
j=1

jβ j +
k

∑
j=1

ν jβν j

)]
...

Cq =
1
q!

[
k

∑
j=1

jqα j +
k

∑
j=1

ν
q
j αν j −q

(
k

∑
j=1

jq−1
β j +

k

∑
j=1

ν
q−1
j βν j

)]
.

Definition 1.2 :
The hybrid method (1.3) and the associated linear difference operator defined by (1.4)
are said to be of order p if

C0 =C1 =C2 = . . .=Cp = 0 and Cp+1 6= 0.

The first non-vanishing coefficient, Cp+1, is called the error constant.

Definition 1.3 :
The hybrid method (1.3) is said to be consistent if it has order at least one. It follows that
the method (1.3) is consistent if and only if

k

∑
j=0

α j +
k

∑
j=1

αv j = 0 (1.5)

and

k

∑
j=1

jα j +
k

∑
j=1

v jαv j =
k

∑
j=0

β j +
k

∑
j=1

βv j . (1.6)

The first and second characteristic polynomials of the hybrid method (1.3) are defined as
follows

ρ(ξ ) =
k

∑
j=0

α jξ
j +

k

∑
j=1

αv j ξ
v j

σ(ξ ) =
k

∑
j=0

β jξ
j +

k

∑
j=1

βv j ξ
v j .
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It follows from (1.5) and (1.6) that the hybrid method is consistent if and only if

ρ(1) = 0 and ρ
′(1) = σ(1).

Thus, the first characteristic polynomial ρ(ξ ) always has a root at one for a consistent
method. The root is named as principal root and labelled as ξ1. The remaining roots, ξs,
s = 2,3, . . .k are known as spurious roots.

Definition 1.4 :
The hybrid method (1.3) is said to be zero-stable if no root of the first characteristic
polynomial ρ(ξ ) has modulus greater than one, and if every root with modulus one is
simple.

Detailed in Lambert (1973).

Theorem 1.2 :
The necessary and sufficient conditions for a method to be convergent are that it be
consistent and zero-stable.

The proof of the theorem can be found in Butcher (1966).

Definition 1.5 :
The hybrid method is said to be absolutely stable for a given h if all roots ξs of stability
polynomial, Π(ξ ,h) = ρ(ξ )−hσ(ξ ) = 0, where h = hλ satisfy |ξs|< 1, s = 1,2, . . . ,k,
and to be absolutely unstable otherwise. The region of absolute stability consists of all h
in the complex plane for which the method is absolutely stable.

1.2 Delay Differential Equations

Most of the numerical methods for solving first order initial value problems (IVPs) are
adapted to solve delay differential equations (DDEs). From mathematical point of view,
DDEs are similar to ODEs except that DDEs involve the past values of the dependent
variable and derivatives. DDEs arise in many area of mathematical modelling such as
infectious diseases, population dynamics and driver reaction time. In general, DDEs can
be classified as retarded and neutral delay differential equations.

Retarded delay differential equations (RDDEs) are the ODEs that involve the solution of
the delay terms given by

y′(x) = f (x,y(x),y(x− τ1(x,y(x))),y(x− τ2(x,y(x))), . . . ,

y(x− τν (x,y(x)))) for x > x0

y(x) = ϕ(x) for x≤ x0 (1.7)
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where y, f and ϕ are N-vector functions and τi for i = 1,2, . . .ν are scalar functions that
represent the delay. If the delay is a constant, we call it a constant delay. If the delay is a
function of time x only, it is called a time dependent delay. If the delay is a function of
time x and the solution y(x), it is called the state dependent delay. A delay argument that
passes the current time, (x− τ(x,y(x)))> x, is called an advanced delay.

Neutral delay differential equations (NDDEs) are the ODEs that involve both the solution
and the derivative of the delay terms as follows

y′(x) = f (x,y(x),y(x− τ1(x,y(x))),y(x− τ2(x,y(x))), . . . ,y(x− τν (x,y(x))),

y′(x− τν+1(x,y(x))), . . .y
′(x− τν+ω(x,y(x)))) for x≥ x0

y(x) = ϕ(x), y′(x) = ϕ
′(x) for x≤ x0

where y, f , ϕ and ϕ ′ are N-vector functions and τi for i = 1,2, . . .ν +ω are scalar func-
tions.

1.3 Problem Statement

It is possible to solve the first order ODEs (1.1) by applying various multistep methods
in the literature, the numerical methods consist of the main and off-step points can be
derived via numerical integration using divided differences. These approaches should
provide significant improvement in accuracy.

We consider the simple RDDEs (1.7) with single delay term. The conventional approach
for solving RDDEs is to adapt the standard ODEs solver and incorporates the inter-
polation technique. One of the major difficulties is the severe limitation of the points
that surrounding the delay argument for interpolation. Hence, larger interpolation errors
occur and affect the accuracy. With the inclusion of off-step points in the block hybrid
methods, we aim to improve the accuracy.

The conventional multistep methods for direct solution of higher order ODEs (1.1) re-
quire the subroutine to provide the starting values. It lead to complicated computational
work. Here, we propose the block hybrid collocation methods which can be implemented
as self-starting methods for solving higher order ODEs (1.1) directly. These approaches
should provide significant improvement in accuracy and decrease in computational work.

1.4 Objective of the Studies

The main objective of the research is to derive the block hybrid methods for solving or-
dinary differential equations. The implementation of block hybrid methods are expected
to generate the approximation of y at both the main and off-step points simultaneously.
These approaches should provide significant improvement in accuracy. The objective of
the thesis can be accomplished by:
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1. deriving the explicit block hybrid methods for first order ODEs based on Newton-
Gregory backward difference interpolation formula.

2. deriving the implicit block hybrid methods for first order ODEs based on divided
differences that incorporate the main and off-step points and implementing in con-
stant step size and also variable step size.

3. adapting the implicit block hybrid methods for the numerical treatment of first
order DDEs.

4. deriving the block hybrid collocation methods for second-, third- and fourth-order
ODEs via interpolation and collocation of the basic polynomial.

5. investigating the stability properties of the methods.

6. comparing the performances of the newly proposed methods with the existing
methods.

7. applying the newly proposed methods to solve physical problems.

1.5 Outline of the Thesis

The brief description for the organization of the thesis will be provided here. Chapter 1
discusses the brief overview of ODEs and DDEs. The theories and definitions that are
related to the proposed methods are provided.

Chapter 2 reviews some of the previous works on the numerical solutions of ODEs and
DDEs. In Chapter 3, the formulation of explicit block hybrid methods based on Newton
backward difference formula is provided. The newly proposed methods include explicit
1-point with 1 off step point method, 2-point with 2 off-step points method and 3-point
with 3 off-step points method.

Chapter 4 comprises the implicit block hybrid methods of order three, four and five
for first order ODEs. The derivation of the methods is based on the divided difference
relative to main and off-step points. The stability of the these methods is also discussed
in this chapter. The implementation of the implicit block hybrid methods for first
order ODEs using constant step size and the numerical treatment using variable step
size technique are presented. Chapter 5 is concerned with the application of implicit
block hybrid methods for the solution of first order retarded DDEs. The analysis of the
Q-stability for one-point block hybrid methods is presented.

Chapters 6, 7 and 8 deal with the block hybrid collocation method for higher order
ODEs. The derivation involves the interpolation and collocation of basic polynomial.
Chapter 6 focuses on the five point block hybrid collocation method for direct solution
of second order ODEs. In Chapter 7, the three point block hybrid collocation method
with two off-step points for solving third order ODEs directly is discussed. The four
point block hybrid collocation method with three off-step points for fourth order ODEs

6
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is developed and presented in Chapter 8. The applications of these block hybrid methods
for solving some well-known physical problems are shown.

Finally, Chapter 9 summarizes the thesis. Future work is also recommended.
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