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The robust correlation coefficient based on robust multivariate location and scatter 

matrix such as Fast Minimum   Covariance Determinant (Fast MCD) is not feasible 

option for high dimensional data due to its time consuming procedure. To overcome this 

problem, robust adjusted Winsorization correlation (Adj.Winso.cor) is put forward. 

Unfortunately, the Adj.Winso.cor yields very poor results in the presence of multivariate 

outliers. Hence, we propose  robust multivariate correlation matrix based on Reweighted 

Fast Consistent and High breakdown (RFCH) estimator. The findings show that the 

RFCH.cor is more robust than the Adj.Winso.cor in the presence of multivariate outliers. 

 

 

Forward selection (FS)  is  very effective variable selection procedure for selecting a 

parsimonious subset of covariates from a large number of candidate covariates. 

However, FS is not robust to outliers. Robust forward selection method (FS.Winso) 

based on partial correlations which is derived from Maronna’s bivariate M-estimator of 

scatter matrix and adjusted Winsorization pairwise correlation are introduced in a 

literatures to overcome the problem of outliers. We develop Robust Forward Selection 

algorithm based on RFCH correlation coefficient (RFS.RFCH) because FS.Winso is not 

robust to multivariate outliers. The results of our study indicate that the RFS.RFCH is 

more efficient than the FS and FS.Winso. 

 

 

The existing Robust-LARS based on Winsorization correlation (RLARS-Winsor) has 

some drawbacks whereby it is not robust in the presence of multivariate outliers. Hence, 

Robust-LARS (RLARS-RFCH) based on √  consistent multivariate (RFCH) correlation 

matrix is developed. The proposed method is computationally efficient and its 

performance outperformed the RLARS-Winsor 

 

 

The algorithm of all possible subsets is greedy and it is inefficient and unstable in the 

presence of autocorrelated errors and outliers.  To overcome the instability selection 

problem, a stability selection approach is put forward to enhance the performance of 

single-split variable selection method. Unfortunately, the classical stability selection 

procedure is very sensitive to outliers and serially correlated errors.  The stability 
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procedure based on RFCH estimator is therefore developed. The results of the study 

show that our propose  Robust Multi Split based on RFCH successfully and consistently 

select the correct variables in the final model.  

 

 

Thus far, there is no variable selection procedure in literature that deal with the problem 

of high magnitude of multicollinearity in the presence of outliers. Hence,  Robust Non-

Grouped variable selection(RNGVS.RFCH) in the presence of high multicollinearity 

problem and outliers is developed.  The results signify that our  proposed 

RNGVS.RFCH method able to correctly select the important variables in the final 

model.   

 

 

Not much research is focused on the problem of large data in the presence of outliers 

and autocorrelated errors. In this situation, the existing Elastic-Net and RE-Net methods 

are not capable of selecting the important variables in the final model. Thus, a new 

method that we call before and after elastic-net (BAE-Net) regression is proposed. The 

Reweighted Multivariate Normal (RMVN) algorithm is incorporated in the algorithm of 

the BAE-Net. The BAE-Net is found to do a credible job in selecting the correct 

important variables in the final model. 
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Pekali korelasi teguh berdasarkan lokasi multivariat  teguh dan matrik serakan seperti 

Penentu Kovarians Minimum Pantas (Fast-MCD) tidak dapat dilaksanakan bagi data 

berdimensi tinggi disebabkan tatacaranya  mengambil masa yang panjang. Untuk 

mengatasi masalah ini, korelasi Winsorization Terlaras teguh (Adj.Winso.cor) 

diketengahkan. Malangnya, Adj.Winso.cor memberikan keputusan yang lemah dengan 

kehadiran titik terpencil multivariat teguh. Oleh itu, kami mencadangkan matriks 

korelasi multivariat teguh berdasarkan Penganggar Berpemberat Konsisten Laju dan 

Titik Musnah Tinggi  (RFCH).  Hasil kajian menunjukkan bahawa RFCH.cor adalah 

lebih teguh daripada Adj.Winso.cor dengan kehadiran titik terpencil multivariat. 

 

 

Pemilihan hadapan (FS) adalah tatacara pemilihan pembolehubah yang sangat berkesan 

bagi memilih subset kovariat parsimonius daripada sejumlah besar kovariat. 

Walaubagaimanapun FS tidak teguh terhadap titik terpencil. Kaedah pemilihan teguh 

hadapan (FS.Winso) berasaskan korelasi separa yang terhasil daripada serakan matrik 

penganggar-M bivariate Maronna dan korelasi Winsorization terlaras diperkenalkan 

dalam literature bagi mengatasi masalah titik terpencil. Kami bangunkan tatacara 

pemilihan teguh hadapan berasaskan pekali korelasi RFCH (RFS.RFCH) kerana 

FS.Winso tidak teguh terhadap titik terpencil multivariat. Keputusan kajian kami 

menunjukkan RFS.RFCH adalah lebih cekap berbanding FS dan FS.Winso. 

 

 

Kaedah  tersedia LARS-Teguh berasaskan korelasi Winsorization (RLARS-Winsor) 

mempunyai kelemahan dimana ianya tidak teguh dengan kehadiran titik terpencil 

multivariat.  Oleh itu, LARS-Teguh (RLARS-RFCH) berasaskan matrik korelasi 

multivariat  konsisten √   (RFCH) dibangunkan.  Kaedah yang dicadangkan 

berkomputasi efisien dan prestasinya menandingi RLARS-Winsor. 

 

Tatacara semua kemungkinan subset adalah tamak dan tidak efisien dan tidak stabil 

dengan kehadiran ralat berautokorelasi dan titik terpencil.  Untuk mengatasi masalah 

pemilihan yang tidak stabil, tatacara pemilihan stabil diketengahkan bagi meningkatkan 

prestasi kaedah pemilihan pembolehubah pecahan tunggal.  Malangnya, kaedah 

pemilihan stabil klasik sangat peka terhadap titik terpencil dan siri ralat berkorelasi. 
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Oleh yang demikian, tatacara stabil berasaskan penganggar RFCH dibangunkan. 

Keputusan kajian menunjukkan bahawa kaedah Teguh Pecahan berganda yang kami 

bangunkan berasaskan RFCH  berjaya dan secara konsisten memilih pembolehubah 

yang betul ke dalam model akhir. 

 

 

Setakat ini, tiada tatacara pemilihan pembolehubah dalam literatur yang mengendalikan 

masalah multikolinearan  paras tinggi dengan kehadiran titik terpencil. Oleh itu, 

pemilihan teguh pembolehubah tidak berkumpulan (RNGVS.RFCH)  dengan kehadiran 

multikolinearan paras tinggi dan titik terpencil, di bangunkan. Keputusan kajian 

menunjukkan kaedah RNGVS.RFCH yang di cadangkan berupaya memilih dengan betul 

pembolehubah penting kedalam model akhir. 

 

 

Tidak banyak penyelidikan menumpukan masalah data besar dengan kehadiran titik 

terpencil dan ralat berautokorelasi. Dalam keadaan ini, kaedah tersedia Elastic-Net dan  

RE-Net  tidak berupaya memilih pembolehubah penting kedalam model akhir.  Oleh itu, 

kaedah baru yang kami namakan regresi  sebelum dan selepas elastic-net (BAE-Net) 

dicadangkan. Tatacara Multivariat Normal Berpemberat (RMVN) di gabungkan dalam 

tatacara BAE-Net.  Kaedah BAE-Net didapati menunjukkan prestasi yang baik dalam 

memilih dengan betul  pembolehubah penting kedalam model akhir. 
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CHAPTER  1 

 

 

INTRODUCTION 

 

 

1.1 Introduction and Background of the Study 

 

The process of collecting large data has become an easy issue as a result of the 

fantastic growth in computer and networking technologies in the recent years. The 

collected data not only concerned the sample size, but also concerned the possibility 

of selecting large number of variables under study.  This situation may give rise to a 

problem of curse dimensionality which forms a major challenge to variable selection 

researchers.   

 

 

The curse of dimensionality refers to how certain algorithms such as algorithms 

in  numerical analysis, sampling, combinatorics, machine learning, data mining 

and  variable selection, that may perform poorly in high-dimensional data.   The 

common  theme of these problems is that when the dimensionality increases, 

the volume of the space increases so fast that the available data become sparse.  This 

sparsity is problematic for any method that requires statistical significance. In high 

dimensional data, a matrix related to some algoritms may become singular and some 

additional information such as regularization, Bayesian prior and others  need to be 

added to obtain standard solution. 

 

 

In the traditional statistical inference,  the estimates of the population parameters can 

be substantially refined as the sample size increases toward infinity. A traditional 

requirement of estimators is consistency, that is, the convergence to the unknown 

true value of the parameter. High dimensional data is another setting of statistical 

problems, in which the dimension of variables   increases along with the sample 

size   so that the ratio     tends to a constant. It was called the “increasing 

dimension asymptotics” or “the Kolmogorov asymptotics (Aivasian et al., 1989).  

This procedure is allowing to analyze effects of inaccuracies accumulation in 

estimating a great number of parameters. 

 

 

The curse of dimensionality is not a problem of high-dimensional data, but a 

combined problem of data and the algorithm being employed create a problem. It 

arises when the algorithm does not scale well to high-dimensional data, typically due 

to extensive amount of time or memory that is exponential in the number of 

dimensions of the data.  

 

 

In the last decade,  variable selection for high dimensional data has attracted much 

attention to  researchers. High dimensional data can be classified into three cases, 

whereby the first case refers to the situation when the number of observations ( ) is 

more than or equals to ten times  the number of  predictors ( ), where     .  We 

call this case as large scale data in which the traditional approach of using Least 

https://en.wikipedia.org/wiki/Numerical_analysis
https://en.wikipedia.org/wiki/Sampling_(statistics)
https://en.wikipedia.org/wiki/Combinatorics
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Data_mining
https://en.wikipedia.org/wiki/Volume
https://en.wikipedia.org/wiki/Statistical_inference
https://en.wikipedia.org/wiki/Consistency_(statistics)
https://en.wikipedia.org/wiki/Exponential_growth
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Squares (LS) is not appropriate due to time consuming. The second case of high 

dimensional data is when    . In this case, the algebric method is more suitable 

than the LS method.  Finally, high dimensional data is also refers to a situation  

when      in which  the solution of the LS cannot be uniqe.  Nonetheless, in this 

thesis we only focused for the case of large scale  data.  

 

 

The panelized methods which are introduced to overcome the problem of curse 

dimensionality, can also be used to analyze data when    , or      This can be 

done because the line of LS is flexible and hence the penalty terms tend to reduce the 

overfitted problem ( James et al., 2013). The problem becomes more complicated 

than the curse of dimensionality when outliers, multicollinearity and serial correlated 

residuals are present in the original data. 

 

 

Khan et al. (2007a) pointed out that when the robust fit takes 0.001 cpu second, the 

all subsets regression need          (           ) years to select the final 

model where   is the number of candidate predictors. As a results of this new 

challenge, reducing the time of computation has become  important target of modern 

variable selection methods.  

 

 

The geometric interpretation of standardized data assists in introducing the concept 

of orthogonal design to variable selection methods, such that the cosine of specific 

angle equals to a value of regression coefficient, in which it is equivalent to the value 

of correlation between a covariate and a response variable. This concept has become 

indispensable in the modern variable selection method the last ten years, and it is 

considered faster than those that are based on original observations. Unfortunately, 

the classical and modern methods performed very poorly in the presence of outliers, 

multicollinearity and serialy correlated  errors.  

 

 

Multicollinearity problem may be present even though the magnitude of correlations 

between explanatory variables are small  (Alley ,1987). The problem becomes more 

serious when  the degree of  correlation increases and resulting in a large standard 

error of regression coefficients. Consequently the   statistics become small which 

makes the regression coefficients not  significant (Schroeder et al., 1986).  Hence, 

more attention should be given in the field of data collection, to make decision, 

whether the selection method should be grouped or not. Determining the relevance 

of variable selection method rely on the interest of  scientific field of applied science. 

Some researchers of chemical research ignore the highly correlated covariates, but 

this is not statistically proven because removing one covariate may affect the 

significant explanatory power of a  model. On the other hand, research on gene 

expression considers grouped variable selection whereby the highly correlated 

covariates (genes) that share the same traits as one group. In this situation,  whereby 

selecting one gene substantially needs select others (grouped variable selection).  
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In the traditional statistical approach when  two covariates are correlated,  one of the 

covariate should be dropped. The problem with this approach is to determine which 

one of the two covariates that need to be removed from the model.  To deal with this 

problem, variable selection procedure should be considered because it has the ability 

to determine the important variable to be included in the final model.  

 

 

1.2 Importance and Motivation of the Study.  

 

It is well known that the Pearson’s correlation is sensitive to outliers. As such it is 

important to use robust correlations as an altervative to the classical correlation. 

However, robust correlation creates problem of computational burden when its 

formulation is based on multivariate location and scatter matrix, such as Fast 

Minimum Covariance Determinant (FMCD) method of Rousseeuw and Van 

Driessen (1999). Khan et al. (2007a,b) pointed out that FMCD algorithm is not fast 

enough for any type of high dimensional data. Olive and Hawkins (2010) showed 

that FMCD is only outlier’s diagnostic method since it is not known whether or not it 

is  consistent.  Hence, the construction of  robust correlation based on FMCD gives 

rise to computational burden and it  is infeasible option.   Khan et al. (2007 b) 

proposed  pairwise robust correlation which is called adjusted-Winsorized 

correlation estimate to solve the  computational burden when  bivariate outliers are 

present in a data.  Unfortunately, this type of robust correlation is affected in the 

presence of multivariate outliers. Bivariate and high dimensional outliers refer to the 

existence  of outliers in two variables /predictors and more than two predictors / 

variables, respectively. 

 

 

This problem has motivated us to propose a new robust multivariate correlation 

matrix based on Reweighted Fast Consistent and High breakdown point (RFCH) 

location and dispersion estimator introduced by Olive and Hawkins (2010). To the 

best of our knowledge research on the RFCH correlations has not been considered in 

the literature. This is the first attempt to develop such robust correlation to overcome 

the problem of multivariate outliers and computational burden.  

 

 

The Forward Selection (FS) is a commonly used method in variable selection. 

However, this method is very sensitive to the presence of outliers. To remedy this 

problem Khan et al. (2007a) and Khan et al. (2007b) developed robust forward 

selection based on adjusted winsorization (FS.Winso). They used Maronna’s M 

estimate of the multivariate location and scatter matrix to formulate pairwise 

correlation. Subsequently, FS.Winso is developed. Unfortunately, such bivariate 

correlation is resistant only to bivariate outliers but  not to multivariate outliers. 

However, outliers often exist in more than two variables (predictors). Moreover, 

FS.Winso is greedy algorithm due the original forward selection which is a greedy 

(Guyon and Elisseeff, 2003). In another word, the algorithm of FS.Winso does not 

consider all variables before making decision which variables to be included in the 

final model. This is due to the nature of the algorithm where it will stop when the 

next variable enters is not significant. The shortcomings of the FS.Winso has 

inspired us to develop new Robust Forward Selection based on √  consistent 
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Reweighted Fast Consistent High breakdown estimator which is robust not only to 

bivariate but also to multivariate outliers.  

 

 

This thesis also addresses  another variable selection technique that deals with large 

number of covariates, using Least Angle Regression Selection (LARS)  [ see Efron 

et al. ,2004; Zou ,2006; Khan et al., 2007b; Agostinelli and Salibian-Barrera, 2010]. 

They noted that fitting all possible subsets and using stepwise selection procedure is 

not practical because it is very time consuming algorithm. Moreover, such methods 

suffer from correlated predictors. One solution to this problem is by employing 

LARS in the variable selection procedure.  However, the classical LARS is very 

sensitive to the presence of outliers because it is based on classical correlation 

matrix.  

 

 

Khan et al. (2007b) proposed robust LARS based on robust bivariate winsorization 

correlations. As already mentioned, this bivariate correlation is not resistant to 

multivariate outliers. This issue has encovrageed us to develop a robust LARS based 

on RFCH correlation matrix which is known to be  √  consistent estimator.  

 

 

Splitting data into two parts is common in data analysis. Wasserman and Roeder 

(2009) proposed single-split data approach for variable selection. Nonetheless, this 

approach does not guarantee reproducible result due to arbitrarily splitting the data. 

In order to enhance the performance of single split variable selection, stability 

selection or multisplit approach is put forward (Meinshausen and Buhlman,2010; 

Shah and Samworth,2013). The weakness of this procedure is that, it is very 

sensitive to outliers. Additionally, this method cannot remedy the problem of serially 

correlated errors in a model. However, to the best of our knowledge, no research has 

been done to rectify the problem of outliers and serially correlated errors in 

multisplit variable selection approach. The gap in the literature regarding this issues 

has motivated us to take up the challenge to propose robust stability selection 

procedure for autocorrelated errors and  in the presence of outlier.  

 

 

Multicollinearity adds a new complication to variable selection technique especially 

when the degree of collinearity between variables is high (> 0.90). Mantel (1970) 

pointed out that Forward Selection (FS) technique failed to select important variables 

when collinearity problem is present in a data. Tibshirani (1996), Zou (2006) and Lin 

et al. (2012) noted that multicollinearity problem has an adverse effect on the 

variable selection procedure. Yang (2013) proposed Standard Error Adjusted 

Adaptive lasso ( SE-lasso) and two stages model selection based on lasso (NSE-

lasso) to rectify high collinearity among variables in variable selection technique. 

Unfortunately, these methods are very sensitive to the presence of outliers. The 

weakness of these methods has inspired us to develop robust variable selection 

procedure for extremely correlated variables in the presence of outliers. To the best 

of our knowledge, this is indeed the first attempt to overcome the problem of high 

correlated variables and the existence of outliers in variable selection procedure.    
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 Huge and massive data form is a major challenge to statistics practitioners who 

utilize classical statistical methods because it is now evident that such methods do 

not perform well in massive setting. Massive data is often related to high 

dimentional data when the number of predictors is more than  . High dimensional 

data also usually refer as those data set with large number of predictors  and large 

sample size. As the value of   increases, the computational burden of all subsets 

selection increases very quickly ( Khan et al., 2007a). In this situation, many 

traditional variable selection techniques such as forward, backward and stepwise 

selection are computationaly intensive, unstable and time-consuming. Penalization 

methods such as LASSO ( Tibshirani,1996), adaptive LASSO (Zou, 2006) , Elastic-

Net (Zou and Hasti,2005), LARS ( Efron et al. ,2004) and Dantzig Selector (Candes 

and Tao, 2007) are put forward as an alternative solution. Nonetheless, these 

methods are not robust when both outliers and autocorrelated errors exist in a data 

set. As a result of this, those methods are not sufficient enough to select important 

variables to a model and lead to bias estimate. Hence, It will select inaccurate 

number of variables to be included in a model. The shortcomings of those methods 

have inspired us to develop another variable selection method that is able to reduce 

the effect of outliers and correlated errors. 

 

 

1.3 Research Objectives  

 

The main objective of this thesis is to propose robust variable selection via 

concentrated data. The classical variable selection methods ( traditional and modern) 

are based on LS estimates. Unfortunately, the LS estimate is not robust in the 

presence of outliers.  The estimators of  concentrated algorithms such as RFCH and 

RMVN are high breakdown and √   consistent. With some modification to some 

existing variable selection procedures, the RFCH correlation matrix is formulated 

and incorporated in the forward selection, LARS, all subsets regression, adaptive 

lasso and Elasti Net to establish new improved variable selection methods. The 

foremost objectives of our research can be outlined systematically as follows. 

 

1. To formulate  a new robust correlations based on  RFCH correlations matrix 

that is robust against multivariate outliers.  

2. To develop a new robust forward selection method based on √   consistent   

correlations matrix  that is  robust against multivariate outliers.  

3. To formulate a new robust LARS  method based on  RFCH correlation 

matrix  that   can remedy the problem of  multivariate outliers.  

4.  To develop a new  robust stability selection procedure for autocorrelated 

errors in the presence of outliers.  

5. To develop a new robust non-group variable selection procedure for 

extremely correlated variables and in the presence of outliers. 

6. To develop  robust Elastic NET variable selection procedure in the presence 

of serially  correlated errors  and  in the presence of outliers. 
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1.4 Significance of The Study  

 

Linear regression variable selection has many practical applications and it is an 

important issue for  many areas of studies such as gene's expression, health, 

business, engineering, education, medicine and social science. In research studies, 

the statistics practitioners often obtained many independent variables, but they are 

not certain which variables are important to be included in the final model. In this 

situation, they may employ variable selection proceudre.  There are a number of 

traditional variable selection procedures in the literatures, such as all possible subsets 

, stepwise regression and recently, the penalized methods such as lasso, adaptive 

lasso, Elastic net and Least Angle Regression.  Unfortunately, the traditional 

methods fall short in one or more of the variable selection goals. For instance, all 

subsets may become impractical option for high dimensional data due to the 

expensive computational cost. Small change in data may result in large changes in a 

subset of predictors used, that is  associated  with the coefficients, predictions and so 

on.  

 

 

Although, modern variable selection methods are put forward to overcome these 

deficiencies, many statistics practitioners are not aware of the fact that most of these 

methods are based on objective function which is sensitive to outliers, affected by 

multicollinearity and autocorrelation problems. The problems are further complicated 

for  high dimensional or large scale dataset. This type of data may contain some 

fraction of outliers, highly correlated covariates, and other violations of LS 

assumptions. The robust variable selection procedures which are suggested in this 

thesis perform well in good and contaminated data. Their excellence performances 

are verified by the assessments done by Monte Carlo simulation study together with 

some real and artificial data.    
 
 

This research also pointes out that the general framework of forward selection 

procedure can be very useful to overcome the problem of highly correlated variables 

based on the sequence of correlations. Therefore, the robust partial correlation for 

the scaled data is very crucial before any remedial action is taken.   

 

 

A credible robust variable selection procedures are suggested  in this thesis to 

enhance the performance of robust forward selection and Elastic net  for  

autocorrelated errors. The RFCH and RMVN estimators perform excellently well in 

all types of outliers scenarios.  

 

 

In this research, the RFCH estimator is used to construct a robust multivariate 

correlation and plug-in variable selection in terms of correlation. We use  the 

concentrated  data which are formed from the last step of RFCH algorithm to obtain 

robust regression estimates. Similar to the last procedure, we use RMVN estimator 

to eliminate the effect  of outliers and Elastic net is computed with controlling 

procedure. A novel robust variable selection is offered in this thesis, when at least 

two independent variables are perfectly correlated.  For all these discoveries, we 

expect there will be a good application for researchers in the future. 
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1.5 Scope and Limitation of the Study 

 

Six objectives are studied in this thesis. We propose robust procedure which is 

connected with either plug-in of variable selection or concentrated  data before 

applying our proposed method. The target of the first procedure is to robustify the 

forward selection, while the second target is to  propose concentrated variable 

selection  in the outset by reducing the effect of outliers in the original dataset and 

then applying the classical variable selection methods.  

 

 

1.6 Outline of the Thesis 

 

In accordance with the objectives and the scope of the study, the contents of this 

thesis are organized in nine chapters. The thesis chapters are structured so that the 

research objectives are apparent and are conducted in the sequence outlined.  

 

 

Chapter 2: This chapter presents a brief literature review of the OLS estimations of 

linear regression parameters and the violations from least squares assumptions. A  

review on variable selection problems are also discussed. Moreover, basic concepts 

of robust regression and some important existing robust regression methods are also 

highlighted. Diagnostic methods of outlying observations are also reviewed. Finally, 

stability selection and  robust variable selections  methods are discussed briefly.  

 

 

Chapter 3: This chapter presents the robust correlations matrix. Two approaches of 

robust correlation are discussed. The first is the adjusted Winsorization correlation 

and the second is our proposed procedure that is based on RFCH estimator.  The 

adjusted Winsorization correlation is not resistant to multivariate outliers. The 

advantages of using robust correlation matrix based on RFCH is supported by the 

evidence from the Montle Carlo simulation and modified real data.  

 

 

Chapter 4: This chapter discusses the robust forward selection based on 

correlations. Both approaches of robust correlation, namely the adjusted 

Winsorization correlation and the RFCH correlations, are considered  The forward 

selection based on adjusted Winsorization correlation is not resistant to multivariate 

outliers. The advantages of using forward selection based on RFCH is supported by 

the evidence from the Montle Carlo simulation and modified real data.  

 

 

Chapter 5: In this chapter, we propose another variables selection method that is 

based on RFCH correlation matrix. In the robust literature, robust LARS is proposed 

in 2007, and is constructed based on adjusted Winsorization correlation. We 

incorporated the RFCH correlation matrix in the formulation of the new robust 

version of LARS.  A study through Monte Carlo simulation and artificial dataset are 

done to support our conclusion that our proposed method, LARS.RFCH is more 

efficient than LARS.Winso. The univariate, bivariate and multivariate outliers 

cannot be visualized together in one set of  real data. Hence, we contaminated the 
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original  artificial dataset three times to consider three outlier scenarios (univariate, 

bivariate and multivariate outlier).   

  

 

Chapter 6: This chapter investigates robust stability selection procedure as a 

solution to the problem of variable selection in the presence of autocorrelated errors 

and outliers. The autocorrelation problem is first remedied and then employed the 

RFCH estimator to obtain data set without any outlying observation. Lastly, classical 

stability selection  on the clean  unautocorrelated data is employed to produce robust 

selection procedure.  A study through Monte Carlo simulation and  real Air quality 

data in Malaysia support the finding that in the presence of autocorrelated errors and 

outliers, our proposed robust stability selection is more efficient than the existing 

methods. 

  

 

Chapter 7: In this chapter we propose robust variable selection procedure for 

exteremely correlated variables in the presence of outliers. We call this procedure robust 

variable selection for exteremely correlated variables, for ungrouped data.  Similar to the 

previous chapter, the RFCH is employed to clean the data. The merit and the excellent 

performance of  our proposed method is assessed by using Monte Carlo simulation 

experiments and artificial data.  

 

 

Chapter 8: This chapter deals with an alternative method of robust variable 

selection procedure using  Elastic net in the presence of autocorrelation and outliers. 

Unlike chapters 6 and 7, the RMVN estimator is used to clean the data.  We propose  

adjusting the robust Elastic Net estimator to solve the overfitting  problem. Similar 

to chapter 5, the problem of autocorrelation should be first be solved before running  

the algorithm. The performance of our proposed method is evaluated by using Monte 

Carlo simulation experiments and real datasets.  

 

 

Chapter 9: This chapter presents the contributions, conclusions and   

recommendations for future studies.  
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