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IDENTIFICATION OF SUITABLE EXPLANATORY VARIABLE IN
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HETEROSCEDASTICITY AND HIGH LEVERAGE POINTS

By

ADAMU ADAMU MUHAMMADU

May 2016

Chairman : Md. Sohel Rana, PhD
Institute : Institute For Mathematical Research

Violation of the assumption of homogeneity of variance of the errors in the linear regression
model, causes heteroscedasticity. In the presence of heteroscedastic errors, the ordinary least
squares (OLS) estimates are unbiased and consistent, but their covariance matrix estimator
is biased and not consistent. As a consequence, this problem negatively affects inference
made with biased standard errors. As such, before making any inferences from the OLS,
it is very important to check whether or not heteroscedasticity is present. It is now evident
that Goldfeld-Quandt (GQ) test is a very powerful test of heteroscedasticity among its com-
petitors. The GQ test requires ordering observations of one explanatory variable in increas-
ing order such that arrangement of observations from the other explanatory variables and
the dependent variable in the model follows. When the model involves more than one ex-
planatory variables, identifying suitable variable to be used in the ordering becomes problem
when there is no prior knowledge of which variable causes the heteroscedasticity problem.
This study has developed an algorithm of identifying this variable prior to conducting the
Goldfeld-Quandt test in multiple linear regression model.

To overcome the heteroscedasticity problem, many adjustment methods have been proposed
in the literature to correct the biased covariance matrix estimator . These heteroscedasticity
correcting estimators are known as heteroscedasticity-consistent covariance matrix estima-
tors (HCCME) which include among others HC0, HC1, HC2, HC3, HC4, HC4m and HC5.
However, HC4 and HC5 were designed to take into account, the combined problems of het-
eroscedasticity and high leverage points in a data. For the same purpose, Furno (1996) used
a weighted least squares approach and Lima et al. (2009) extended the idea to HC4 and HC5.
This study has modified the weighted HCCME used by Furno and Lima et al. to come out
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with two new weighted HCCME that perform well in quasi t inference, in the presence of
heteroscedasticity and high leverage points in small to moderate sample size.
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PENGECAMAN PEMBOLEHUBAH PENJELAS YANG SESUAI DALAM
UJIAN GOLDFELD-QUANDT DAN INFERENS TEGUH BAGI

HETEROSKEDASTISITI DAN TITIK TUASAN TINGGI

Oleh

ADAMU ADAMU MUHAMMADU

Mei 2016

Pengerusi : Md. Sohel Rana, PhD
Institut : Institut Penyelidikan Matematik

Penentangan terhadap andaian kehomogenan varians bagi ralat model regresi linear, menye-
babkan heteroskedastisiti. Dengan kehadiran ralat berheteroskedastik, anggaran kuasadua
terkecil biasa (OLS) adalah tidak pincang dan konsisten, tetapi penganggar kovarians ma-
triknya pincang dan tidak konsisten. Akibatnya, ia menyebabkan inferens yang dibuat mem-
beri kesan negatif dengan ralat piawai yang pincang. Oleh yang demikian, sebelum mem-
buat sebarang inferens dari OLS , adalah sangat penting untuk menyemak kehadiran het-
eroskedastisiti. Ujian Goldfeld- Quandt (GQ ) bagi menguji heteroskedastisiti telah ter-
bukti sangat berkuasa diantara pesaing-pesaing yang lain. Ujian GQ memerlukan cerapan
bagi satu pembolehubah penerang disusun secara menaik sedemikian hingga susunan bagi
pembolehubah penerang yang lain dan pemboleh bersandar dalam model mengikuti susunan
tersebut. Apabila model tersebut melibatkan lebih dari satu pembolehubah penerang, penge-
caman pembolehubah yang sesuai untuk digunakan dalam penyusunan menjadi masalah
apabila tidak ada maklumat awal tentang pembolehubah yang menyebabkan masalah het-
eroskedastisiti. Kajian ini telah membangunkan suatu tatacara bagi pengecaman pembole-
hubah tersebut sebelum menjalankan ujian GQ bagi model linear regresi.

Bagi mengatasi masalah heteroskedastisiti, banyak kaedah pelarasan telah dicadangkan
dalam literatur untuk membetulkan penganggar kovarians matriks yang pincang. Pengang-
gar pembetulan heteroskedastisiti ini dikenali sebagai penganggar kovarians matriks het-
eroskedastisiti konsisten (HCCME) yang melibatkan antara lain HC0, HC1, HC2, HC3,
HC4, HC4m dan HC5. Walau bagaimanapun, HC4 dan HC5 telah direkabentuk untuk
mengambil kira gabungan masalah heteroskedastisiti dan titik tuasan tinggi dalam data. Bagi
tujuan yang sama, Furno (1996) menggunakan pendekatan kuasa dua terkecil berpemberat
dan Lima et al. (2009) melanjutkan ide ini untuk HC4 dan HC5. Kajian ini telah mengubah
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suai HCCME berpemberat yang digunakan oleh Furno dan Lima et al. bagi menghasilkan
dua HCCME berpemberat yang baru yang dapat berfungsi dengan baik dalam inferens kuasi
t, dengan kehadiran heteroskedastisiti dan titik tuasan tinggi bagi saiz sampel kecil hingga
saiz sederhana.
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CHAPTER 1

INTRODUCTION

1.1 Background of the study

One of the assumptions of classical least squares regression model is assumption of ho-
moscedasticity which says the variance of the error term in the regression model is constant.
In other words, population variance of each disturbance irrespective of the explanatory vari-
ables chosen in the regression model is same with one another (is some positive constant
number equal to σ2). If this assumption failed, implies the error terms do not come from
populations with constant variance. The model in this case is said to be heteroscedastic re-
gression model. In heteroscedastic regression model, the ordinary least squares (OLS) esti-
mator of the parameters, though unbiased and consistent, but lost efficiency (it does not have
the minimum variance in the class of unbiased estimators). To curtail this problem, quite
a number of Heteroscedasticity - Consistent Covariance Matrix Estimators (HCCME) were
proposed in the literature to be used as consistent estimate of OLS standard error in mak-
ing inference in linear regression. These consistent standard errors were found useful under
both heteroscedasticity and homoscedasticity. Heteroscedasticity is known, that is when for
each yi, there is a known σ2 corresponding to it, thus each observation yi in the regression
stands as an average value of its corresponding other observations. In this case, method of
correcting heteroscedasticity is weighted least squares approach.

Another issue regarding heteroscedasticity, is to know in the first place, whether or not it is
present in your model under study. To this end, various methods of detecting the presence or
otherwise of heteroscedasticity have been proposed. Most important, when heteroscedastic-
ity is present in the model, one cannot go ahead to make an inference using the OLS standard
error. Doing so will undermine the result of such inference. One will then resort to using the
heteroscedasticity consistent standard error in making unbiased inference.

Various HCCME known as HC0, HC1, HC2, HC3, HC4, HC5 and HC4m were proposed
in the literature. Furno (1996), suggested weighted least squares (WLS) (with a defined
weight) to obtain the parameters and weighted HCCME to obtain the consistent standard
errors in making inference under heteroscedasticity and leveraged data. Lima et. al. (2009)
extended the application of Furno’s weighting method on HC4 and HC5. We modified the
weight due to Furno and the new approach is useful in making inference involving quasi-t
test under heteroscedasticity and leveraged points in small sample to moderate sample size.

In the first phase of the research, this study has found a solution to one of the issues in
Goldfeld-Quandt (GQ) test of heteroscedasticity. In this test, when involves multiple re-
gression, there is problem of identifying the correct X variable with which causes the het-
eroscedasticity problem. Since the Goldfeld-Quandt test requires a single predictor to be
identified for ordering, thus it is very important to identify the correct X variable which
brings the heteroscedasticity problem. The study has come out with suggestion on how this
variable can be identified in large samples and simulations study being made to prove the
case.

1
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1.2 Linear Regression Model and Heteroscedasticity - Consistent Covariance Matrix
Estimators

The general linear regression model is of the form,

y = β0 +β1x1 + ...+βp−1xp−1 + εi (1.1)

which can also be written in matrix form as

Y = Xβ + ε (1.2)

where Y is an n×1 column vector of the dependent variable; X is an n× p matrix of the inde-
pendent variable (the first column takes values 1), p is the number of parameters (including
the intercept β0 ) and n is the sample size; β is a column vector of the unknown parameters
(including the intercept β0 ); ε is a column vector of unobservable random errors.

Under homoscedasticity (constant error variances), E(ε2
i ) = σ2 for i = 1,2,3, ...,n. σ2 > 0.

cov(β ) = σ2
X ′X which was estimated by σ̂2

X ′X where σ2 = e
2

n−p
i , i = 1,2,3, ...,n are residuals

of the regression.

Under heteroscedasticity (non constant error variances), E(ε2
i ) = σ2

i for i = 1,2,3, ...,n.

cov(β ) = σ2
X ′X is biased and not consistent. To shed more light on this, consider a two-

variable model,
y = β1 +β2x2 + ε

2
i (1.3)

var(β̂2) =
∑x2

i σ2
i(

∑x2
i
)2

However, in heteroscedasticity of unknown form, the true values of σ2 are not directly ob-
servable, White suggests using û2

i , the squared residual for each i, and estimates the var(β̂2)
as

var(β̂2) =
∑x2

i û2
i(

∑x2
i
)2 (1.4)

White has shown that (1.5) is a consistent estimator of (1.4) that is, as the sample size in-
creases indefinitely, (1.5) converges to (1.4) (see Gujarati, 2009).

Heteroscedasticity-Consistent Covariance Matrix (HCCM) is a regression covariance matrix
consisting of covariances between the parameters of the regressors as its off diagonal ele-
ments and variances (corrected to suit heteroscedasticity) of the parameters as its diagonal
elements. HCCM can be defined as

HCCM = (X ′X)−1X ′Ψ̂0X(X ′X)−1 (1.5)

2
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where X is n× k matrix of regressors (including the intercept which takes set of value 1 in
its column). The definition of Ψ̂0 varies just as the different heteroscedasticity - consistent
covariance matrix estimators vary. The common practice when heteroscedasticity is present,
is to use the OLS parameters together with the consistent standard errors obtained from the
HCCM in order to make a reliable inference.

1.3 Problem Statement

This study addresses two problems regarding heteroscedasticity, that is, its detection and its
estimation. The first issue considered in this study is in GQ test for detecting heteroscedas-
ticity. The test when involves more than one explanatory variables, requires one to choose
and order one of the explanatory variables such that other variables in the model follow. If
an investigator has no prior knowledge of this suitable variable, there is no straightforward
method of identifying this variable prior to conducting the test. One may conduct the test on
each variable in turn. This study addresses this issue by suggesting a method of identifying
this variable prior to conducting the test when sample size is large.

The second issue considered estimation of heteroscedastic model. There are many consistent
standard error estimation methods in the presence of heteroscedasticity in linear regression,
nevertheless, some of these estimators are affected by the presence of high leverage points.
HC4 and HC5, although were designed such that they take care of the high leverage points,
yet their performance is negatively affected when there are many high leverage points if
OLS is used. Lima et al. (2009) extended the application of Furno’s WLS approach (Furno,
1996) to HC4 and HC5 and found them performing. We have discovered in this study, that
there is still a need of some adjustment in the weighting procedure in order to improve the
performance of HC4 and HC5 when the number of high leverage points is large and the level
of heteroscedasticity is increases, in small to moderate sample size.

1.4 Objectives of the Study

This study has two main objectives:

1. To identify explanatory variable suitable for ordering observations, in Goldfeld-
Quandt test of heteroscedasticity in multiple regression involving large samples.

2. To develop a robust heteroscedasticity - consistent covariance matrix estimator, when
there are combined problems of heteroscedasticity and high leverage points, in small
to moderate sample sizes.

1.5 Structure of the Thesis

Chapter Two reviews some literature on high leverage point (HLP) and its identifi-
cation, some heteroscedasticity-consistent covariance matrix Estimators and weighted

3
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heteroscedasticity-consistent covariance matrix Estimators (HCCMEw) under leverage
points. It briefly explains weighted least squares (WLS) method under heteroscedasticity,
heteroscedasticity test and its graphical method of detection. It mentions some formal tests
of heteroscedasticity and briefly talks on two of the methods.

Chapter Three explains the GQ test of heteroscedasticity and the proposed procedure of
identifying the suitable explanatory variable with which to arrange the observations, when
the test involve multiple regression. It discusses the simulation technique used in order to
get the numerical confirmation of the said proposed method, presents the simulation results
and summarily discusses the results. It also assesses the new technique based on real data
example and finally displays some pictorial results.

Chapter Four discusses how the inference in this study based on HCCME and HCCMEw is
being done. It explains the proposed weighting procedure, the simulation techniques used
in generating the required data and other things relating to the numerical assessment of the
proposed procedure in comparison with other methods. It presents the numerical results of
the simulation and summarily explains the results. Chapter Five summarises the outcomes
of the study, gives some concluding notes and include the future research.

4
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