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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment
of the requirement for the degree of Doctor of Philosophy

NUMERICAL SOLUTION OF INTEGRALS AND NONLINEAR
INTEGRAL EQUATIONS BY WAVELETS

By

MOHAMMAD HASAN BIN ABDUL SATHAR

April 2016

Chair: Anvarjon Ahmedov, PhD
Faculty: Institute for Mathematical Research

In recent years, wavelets have found their way into many different fields of science
and engineering. This is because wavelets possess several important properties, such
as orthogonality, compact support, exact representation of polynomials at certain
degree and the ability to represent functions on different levels of resolution. In this
thesis, new methods based on wavelet expansion are considered to solve problems
arising in approximation of functions, integrals and integral equations. Mainly we
deal with the numerical approximations by Haar wavelets, linear Legendre multi-
wavelets and Chebyshev wavelets.

Numerous work has been done to solve numerical integration in terms of quadrature
rule. Regardless of the simplicity of quadrature rule, there exist some drawbacks. In
order to overcome these existing drawbacks, new methods based on Haar wavelets
and linear Legendre multi-wavelets are proposed to obtain numerical solutions of
double, triple and N dimensional integrals. Main advantages of these methods are its
efficiency and simple applicability. Furthermore, the error analysis for double and
triple integral where functions belong in the class of C2(R) and C3(R) is worked out
to show the efficiency of the methods.

The second part of the thesis focus on obtaining error estimations for the approxi-
mation by Haar and Chebyshev wavelets and linear Legendre multi wavelets. Error
estimations are established for functions from Holder Hs[0,1] and Holder Zygmund
Cm.α[0,1] classes. Therefore functions can be consider in a wider class compared to
the previous work. The smoothness of functions from Holder and Holder Zygmund
classes is reflected in the error estimation.

Finally, new numerical techniques to solve nonlinear Fredholm and Volterra integral
equation of the second kind by Haar and Chebyshev wavelets are developed. These
methods reduce the nonlinear integral equation to a linear algebraic system of equa-
tion. Newton Kantorovich method is implemented to reduce the nonlinear integral
equations into linear integral equations. This allows us to establish approximation
solutions for nonlinear integrals. The comparison of error and accuracy between
other methods are shown.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Doktor Falsafah

PENYELESAIAN BERANGKA BAGI MASALAH KAMIRAN DAN
PERSAMAAN KAMIRAN TAK LINAR DENGAN MENGGUNAKAN

KAEDAH WAVELETS

Oleh

MOHAMMAD HASAN BIN ABDUL SATHAR

April 2016

Pengerusi: Anvarjon Ahmedov, PhD 
Fakulti: Institut Penyelidikan Matematik

Sejak kebelakangan ini, wavelets mendapat sambutan dalam pelbagai bidang sains
dan kejuruteraan. Ini kerana wavelets mempunyai beberapa ciri-ciri penting, seperti
ortogonal, sokongan padat, keupayaan mewakili polinomial pada darjah tertentu dan
keupayaan untuk mewakili fungsi pada tahap resolusi yang berbeza. Dalam tesis
ini, kaedah baru berasaskan pengembangan wavelet dipertimbangkan untuk menye-
lesaikan masalah yang wujud dalam penghampiran fungsi, kamiran dan persamaan
kamiran. Kami memberi lebih penekanan terhadap penghampiran berangka oleh
wavelet Haar, wavelet linear Legendre pelbagai dan wavelet Chebyshev.

Berbagai kajian yang telah dilakukan sebelum ini untuk menyelesaikan masalah
kamiran berangka dalam sebutan petua kuadratur. Walaupun dengan segala kemu-
dahan yang ada dengan menggunakan kaedah kuadratur, wujud beberapa kelemahan.
Bagi mengatasi kelemahan yang sedia ada ini, kaedah baru berdasarkan wavelet
Haar dan linear Legendre dicadangkan untuk mendapatkan penyelesaian kamiran
berangka berdimensi dua, tiga dan N. Kelebihan utama kaedah ini adalah keceka-
pan dan kebolehgunaan yang mudah. Tambahan pula, analisis ralat untuk kamiran
berdimensi dua dan tiga di mana fungsi dalam golongan kelas C2 (R) dan C3(R)

diselesaikan untuk menunjukkan kecekapan kaedah tersebut.

Bahagian kedua tesis ini tetumpu untuk mendapatkan anggaran ralat bagi pengham-
piran oleh wavelet Haar dan wavelet Chebyshev dan wavelet linear Legendre pelba-
gai. Anggaran ralat yang diperolehi adalah untuk fungsi dari kelas Holder Hs[0,1]
dan Holder Zygmund Cm. al pha[0,1]. Oleh sebab itu, fungsi yang digunakan boleh
diambill dari kelas fungsi yang lebih luas berbanding dengan kerja sebelumnya.
Kelicinan fungsi dari kelas Holder dan Holder Zygmund terserlah di dalam ralat
anggaran.

Akhir sekali, teknik berangka baru untuk menyelesaikan masalah persamaan kamir-
an tak linear Fredholm dan Volterra dari jenis yang kedua oleh Haar dan Chebyshev
wavelet dibentuk. Kaedah-kaedah ini menurunkan persamaan kamiran tak linear
kepada sistem persamaan linear algebra. Kaedah Newton Kantorovich dilaksanakan
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untuk menurunkan persamaan kamiran tak linear ke dalam persamaan kamiran lin-
ear. Ini membolehkan kami untuk membentuk penyelesaian hampiran untuk kamiran
tak linear. Perbandingan ralat dan ketepatan antara kaedah lain akan ditunjukkan.

iii



© C
OPYRIG

HT U
PM

ACKNOWLEDGEMENTS

Alhamdulilah, Im thankful to Allah Subhanahu Wa Taala to give me time, strength,
guidance, patience, and good health so that I could finish my thesis in time. May
blessing and peace be upon Prophet Mohamed (s.a.w) and their family.

This thesis would be incomplete without a mention of the support given to me by
my supervisor Assoc. Prof. Dr. Anvarjon Akhmedov for his excellent supervisor,
invaluable guidance, helpful discussions, precious patience and continuous encour-
agement. Im so lucky to have him.

I would like to thank Assoc. Prof. Dr.Zainnidin Eshkuvatov, Assoc. Prof. Dr
Hishamuddin bin Zainuddin, Assoc. Prof. Dr. Norihan binti Md Arifin, Assoc. Prof.
Dr. Zarina Bibi Ibrahim and also Assoc. Prof. Dr. Nik Mohd Asri Nik Long for their
guidance, patience, motivation and precious support during the period of my study.

I am also very grateful to my friend Ahmad Fadly Nurullah bin Rasedee that will
always be there to help, advice and give me good ideas to my research. He has spent
a lot of time to teach me during my study.

My deepest gratitude and love to my parents and wife for their support, patience and
prayers for my success.

Finally I will like to thank to all of my friend for their help and moral support during
my study in Universiti Putra Malaysia.

iv



© C
OPYRIG

HT U
PM



© C
OPYRIG

HT U
PM

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been
accepted as fulfilment of the requirement for the degree of Doctor of Philosophy.
The members of the Supervisory Committee were as follows:

Anvarjon Ahmedov, PhD
Assosiate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairperson)

Zainidin Eshkuvatov, PhD
Assosiate Professor
Faculty of Science
Universiti Putra Malaysia
(Member)

Hishamuddin bin Zainuddin, PhD
Assosiate Professor
Faculty of Science
Universiti Putra Malaysia
(Member)

BUJANG KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:

vi



© C
OPYRIG

HT U
PM

Declaration by graduate student

I hereby confirm that:
• this thesis is my original work;
• quotations, illustrations and citations have been duly referenced;
• this thesis has not been submitted previously or concurrently for any other

degree at any other institutions;
• intellectual property from the thesis and copyright of thesis are fully-owned

by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia
(Research) Rules 2012;

• written permission must be obtained from supervisor and the office of Deputy
Vice-Chancellor (Research and Innovation) before thesis is published (in the
form of written, printed or in electronic form) including books, journals, mod-
ules, proceedings, popular writings, seminar papers, manuscripts, posters, re-
ports, lecture notes, learning modules or any other materials as stated in the
Universiti Putra Malaysia (Research) Rules 2012;

• there is no plagiarism or data falsification/fabrication in the thesis, and schol-
arly integrity is upheld as according to the Universiti Putra Malaysia (Graduate
Studies) Rules 2003 (Revision 2012-2013) and the Unievrsiti Putra Malaysia
(Research) Rules 2012. The thesis has undergone plagiarism detection soft-
ware.

Signature: Date:

Name and Matric No: Mohammad Hasan bin Abdul Sathar , GS30540

vii



© C
OPYRIG

HT U
PM

Declaration by Members of Supervisory Committee

This is to confirm that:
● the research conducted and the writing of this thesis was under our supervision;
● supervision responsbilities as stated in the Universiti Putra Malaysia (Graduate
Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature:
Name of
Chairman of
Supervisory
Committee: Anvarjon Ahmedov

Signature:
Name of
Member of
Supervisory
Committee: Hishamuddin Zainuddin

Signature:
Name of
Member of
Supervisory
Committee: Zainidin Eshkuvatov

viii



© C
OPYRIG

HT U
PM

TABLE OF CONTENTS

Page

i
ii
iv

vii
xi

xiii

ABSTRACT
ABSTRAK 
ACKNOWLEDGEMENTS 
APPROVAL
DECLARATION
LIST OF TABLES
LIST OF FIGURES
LIST OF ABBREVIATIONS xiv

CHAPTER
1 INTRODUCTION 1

1.1 Motivation 1
1.2 Approximation Theory 1
1.3 Functional Analysis 2

1.3.1 Metric spaces. 2
1.3.2 Normed Spaces. 4
1.3.3 Hilbert Spaces. 5

1.4 Newton-Kantorovich Method 6
1.5 Approximation of function from Holder classes 8
1.6 Integral Equation 9
1.7 Wavelets 10

1.7.1 Haar wavelets 12
1.7.2 Chebyshev wavelets 14
1.7.3 Linear Legendre multi-wavelets (LLMW) 15

1.8 Problem statement 18
1.9 Research Objectives 18
1.10 Thesis Outline 19

2 LITERATURE REVIEW 21
2.1 Numerical integration using wavelets 22
2.2 Numerical integral equations using wavelets 23

3 NUMERICAL INTEGRATION BASED ON HAAR WAVELETS 26
3.1 Introduction 26
3.2 Haar wavelets 26

3.2.1 Numerical integration based on N-dimensional Haar wavelets 27
3.2.2 Numerical method for double and triple integrals with vari-

able limits. 31
3.3 Error Analysis for double integral 33
3.4 Numerical examples 37

ix

v



© C
OPYRIG

HT U
PM

393.5 Error Analysis for triple integral 
3.6 Discussion 44

4 NUMERICAL INTEGRATION OF MULTI-DIMENSIONAL DEFI-
NITE INTEGRALS USING HAAR AND LEGENDRE WAVELETS 45
4.1 Introduction 45
4.2 Approximation of function from Holder classes using Haar wavelets             45
4.3 Numerical Examples 47
4.4 Approximation of functions from Holder classes: two dimensional

50
56
59

case.
4.5 Numerical integration based on LLMW
4.6 Approximation of function from Holder classes by LLMW 4.7     

Discussion 67

5 NUMERICAL SOLUTION OF NONLINEAR INTEGRAL EQUA-
68
68

TIONS
5.1 Introduction
5.2 Solving nonlinear Fredholm integral equations of the second kind

68
72

by Newton-Kantrovich Haar Wavelets (NKHW)
5.3 Numerical examples
5.4 Solving nonlinear Volterra integral equations of the second kind us-

76
79

ing Newton-Kantrovich Chebyshev wavelets (NKCW)
5.5      Holder Zygmund spaces Cm,α [0,1]
5.6 Approximation of function from Holder classes by Chebyshev

80wavelets 
5.7 Discussion 87

6 SUMMARY AND FUTURE WORKS 89
896.1 Summary 

6.2 Future Work 89

BIBLIOGRAPHY 91
BIODATA OF STUDENT 98
LIST OF PUBLICATIONS 100

x



© C
OPYRIG

HT U
PM

LIST OF TABLES

Table Page

37

38

39

3.1 Absolute Errors of Example 1. 

3.2 Absolute Errors of Example 2. 

3.3 Absolute Errors of Example 3. 

3.4 Absolute Errors of Example 4. 44

48

49

50

4.1 Absolute error for different value of J of Example 1. 

4.2 Absolute error for different value of J for Example 2. 

4.3 Absolute error for different value of J of Example 3. 

4.4 Absolute Errors of Example 4: 55

56

64

64

65

4.5 Absolute Errors of Example 5: 

4.6 Absolute Errors of Example 6. 

4.7 Absolute Errors of Example 7. 

4.8 Absolute Errors of Example 8. 

4.9 Absolute Errors of Example 9. 65

4.10 Absolute error different ∫0
1

∣ f (t) − fM(t)∣2dt for Example 10. 66

4.11 Absolute error ∫0
1

∣ f (t) − fM(t)∣2dt for of Example 11. 66

73

74

75

84

85

5.1 Absolute error for N = 32 of Example 1

5.2 Absolute Errors of Example 1.

5.3 Absolute Errors of Example 2.

5.4 Absolute error for k=3 and M=4 of Example 3 

5.5 Absolute error for k=3 and M=4 of Example 4 

5.6 Absolute error for k=2 and M=3 of Example 5 86

xi



© C
OPYRIG

HT U
PM

5.7 Absolute error for k=2 and M=3 of Example 6 87

xii



© C
OPYRIG

HT U
PM

LIST OF FIGURES

Figure Page

13

17

17

1.1 The graph of function f (x) 

1.2     LLMW scaling φ0(x) 

1.3     LLMW scaling φ1(x) 

1.4     LLMW wavelet ψ0
00(x) 17

17

17

17

17

1.5     LLMW wavelet ψ1
00(x) 

1.6     LLMW wavelet ψ0
10(x) 

1.7     LLMW wavelet ψ0
11(x) 

1.8     LLMW wavelet ψ1
10(x) 

1.9     LLMW wavelet ψ1
11(x) 17

4.1    LLMW wavelet ψ1
00(x) 61

73

75

84

85

86

5.1 Result for x14(t)

5.2 Result for x4(t)

5.3 Result for x6(t) and x4(t) 

5.4 Result for x2(t) and x4(t) 

5.5 Result for x7(t)

5.6 Result for x7(t) 87

xiii



© C
OPYRIG

HT U
PM

LIST OF ABBREVIATIONS

MRA
C[a,b]
Cm,α [0,1]
ONB
Hs[0,1]
HW
DHW
LLMW
NKHW
NKCW

Multiresolution Analysis
Continuous space in the interval a ≤ x ≤ b 
Holder-Zygmund class in the interval 0 ≤ x ≤ 1 
Orthonormal Basis
Holder class in the interval 0 ≤ x ≤ 1
Haar Wavelets
Definite Haar Wavelets
Linear Legendre Multi Wavelets
Newton-Kantrovich Haar Wavelets
Newton-Kantrovich Chebyshev Wavelets

xiv



© C
OPYRIG

HT U
PM

CHAPTER 1

INTRODUCTION

The research in this thesis introduce new methods based on wavelet expansion to
solve problem arising in approximation of functions, integrals and integral equa-
tions. The significant part of the research depends on the new technique of the study
of special wavelets and their multiresolution analysis (MRA). This technique can be
applied to many areas of science and engineering. In recent years numerical approx-
imation by wavelets becoming one of the most popular, powerful and reliable tool in
this area.

1.1 Motivation

The wavelets are designed to approximate the functions and have an application in
many fields of science, such as to store fingerprint electronically, signal processing,
compress data and many more. Many statistical phenomena have wavelets structure
and the theory of wavelets help to better understand the reason for this phenom-
ena. Wavelets expansion theory is different from Fourier analysis and spectral theory
since it is based on the local frequency representation of the function being expanded.
The main idea behind the approximation for the solutions of nonlinear integral equa-
tions is by using the theory of derivatives of nonlinear operators in Banach space.
Classical approximation of nonlinear integral equations is based on the construction
of successive sequence of functions containing derivative of the nonlinear operator.
The challenge faced when solving linear and nonlinear integral equations is the ex-
istence of an unknown function appearing under the integral. The motivation comes
when we want to overcome this obstacle and for this reason the approximation by
wavelets of unknown functions is represented. The latter approximation method ex-
pands the unknown function which allows the integral equation to be reduced to a
system of algebraic equation. This then can be solved by any conventional methods,
such as polynomial, spline, pulse basic function and etc.

1.2 Approximation Theory

The theory of approximation of functions is the branch of mathematical analysis
which started with the work of Chebyshev and a well known theorem by Weiestrass
on the approximation of continuous functions by polynomials.

Theorem 1.2.1 (Weiestrass) (Christensen (2004)). For any continuous function
f (x),x ∈ [a,b] there exists a sequence of polynomials which converges uniformly
to f (x) on [a,b].
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Theorem 1.2.1 is of great importance in the development of the whole mathematical
analysis. The proof of Weierstrass theorem (refer to Christensen (2004)) is based on
the construction of the sequence of polynomials

Bn(x) = (b−a)−1
n

∑
k=0

f (a+
k
n
(b−a))(x−a)k

(b−x)n−k

, for each function f (x) in [a,b].

Research related to mathematical approximation has attracted the interest of many
mathematicians since Archimedes’s approximation of π which was two centuries
ago. In this thesis the branch of mathematical approximation that we will focus on
is approximation theory. Approximation theory can be divided into computational
methods and theoretical estimations. When referring to the computational methods,
its main aspect is the estimation of errors. Where as, the theoretical estimation deals
with existence and uniqueness problems. In the classical approximation theory, poly-
nomials are essential approximation tools. As an example, when solving problems
involving periodic functions the most efficient methods used are trigonometric poly-
nomials. To better understand the nature of these polynomials, many mathematicians
have studied their properties such as orthogonality, compact support and etc.

1.3 Functional Analysis

To understand the real picture of modern approximation theory, we introduce some
concepts related to this field.

1.3.1 Metric spaces.

Let consider the set X and a function d(x,y) defined on X with the following prop-
erties:

1. d(x,y) ≥ 0, ∀x,y ∈ X .

2. d(x,y) = 0 if and only if x = y.

3. d(x,y) = d(y,x), ∀x,y ∈ X .

4. d(x,z) ≤ d(x,y)+d(y,z). ∀x,y ∈ X (triangle inequality).

Such set X with d(x,y) is called metric space and will be denoted by (X ,d).

As an example, let the set X be all real valued functions defined and continuous on
[a,b] be denoted as C[a,b]. The following two functions:

d1(x,y) = max
t∈[a,b]

∣x(t)−y(t)∣ ,

2
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or

d2(x,y) = ∫
b

a
∣x(t)−y(t)∣dt.

are metric in C[a,b].

Definition 1.3.1 (Cauchy sequence) A sequence {xn} in a metric space (X ,d) is
said to be Cauchy sequence if for every ε > 0 there is an N ∈N such that

d(xm,yn) < ε f or every n,m ≥N.

Every convergent sequence in a metric space (X ,d) is a Cauchy sequence, but the
converse not necessarily be true. The following example shows this statement.

Example 1.1:
Let X = (0,1] and the metric function d(x,y) = ∣x−y∣. Consider the sequence xn =

1
n

in the metric space (X ,d). It is a Cauchy sequence, but is not a convergent sequence
because the sequence {xn} converge to a limit point 0 and its not the element in the
metric space.

Definition 1.3.2 (Complete) The metric space (X ,d) is said to be complete if every
Cauchy sequence in X converges to a limit within the metric space.

The above Example 1.1 shows the metric space (X ,d) is not complete.

Definition 1.3.3 (Density) A set M in a metric space (X ,d) is dence in X if M = X.

This means that, every x ∈ X is limit of elements in M.

Definition 1.3.4 (Contraction operator) Let (X ,d) be a metric space. A mapping
T ∶ X → X is a contraction mapping if there exists a constant λ , with 0 ≤ λ < 1, such
that

d (T x,Ty) ≤ λd(x,y), ∀x,y ∈ X .

Theorem 1.3.5 (Shestopalov (2002)) Let (X ,d) be a complete metric space. If T ∶

X → X is a contraction mapping, then there is exists a unique x0 ∈ X such that T x0 =

x0.

The proof of this Theorem 1.3.5 is very easy consequence of the definition of the
contraction operator. The point of x0 which satisfy in the Theorem 1.3.5 is called
fixed point of operator T and denoted by Fix(T) = x0.

3
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1.3.2 Normed Spaces.

Normed space X is a vector space with a norm defined on it. The norm on a real (R)

vector space V is a real-value function on X which satisfies:

1. ∥x∥ ≥ 0, ∀x ∈ X .

2. ∥x∥ = 0 if and only if x = 0.

3. ∥αx∥ = ∣α ∣∥x∥ , ∀x ∈ X and ∀α ∈R.

4. ∥x+y∥ ≤ ∥x∥+∥y∥ , (triangle inequality) ∀x,y ∈ X .

The metric function d(x,y) on a normed space X is defined as

d(x,y) = ∥x−y∥ ,

and is called the metric induced by the norm.

As an example, let consider the class Lp(Rn), p ≥ 1, which consists of all functions
f (x), such that ∣ f ∣p is integrable on (Rn):

Lp
(Rn

) ∶= { f ∶ ∣∫
Rn

∣ f (x)∣p dx <∞} .

The norm in Lp(Rn) is defined as follows:

∥ f ∥p = (∫
Rn

∣ f (x)∣p dx)
1
p
.

A bounded linear operator T from a normed space X1 to a normed space X2 is an
operator which satisfies:

1. T(αx+βy) = αT x+βTy, for all x,y ∈ X and α,β ∈ R.

2. ∥T x∥2 ≤ c∥x∥1 for some real number c ≥ 0.

Consider an integral operator T ∶C[a,b]→C[a,b] by

T x(t) = ∫
b

a
k(t,s)x(s)ds,

where k is the kernel function. We assume that k is continuous on the [a,b]× [a,b]
ts-plane which implies ∣k(t,s)∣ ≤K.

4
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1.

T(αx+βy) =∫
b

a
k(t,s)(αx(s)+βy(s))ds,

=α∫

b

a
k(t,s)x(s)ds+β ∫

b

a
k(t,s)y(s)ds,

=αT x+βTy.

2.

∥T x∥ = max
t∈[a,b]

∣∫

1

0
k(t,s)x(s)ds∣ ,

≤max
t∈[a,b
∫

b

a
∣k(t,s)∣ ∣x(s)∣ds,

≤K ∥x∥ , ∥x∥ = max
J∈[01]

∣x(s)∣ .

that T is bounded linear operator with c =K.

1.3.3 Hilbert Spaces.

Let X be a (complex) vector space. An inner product on X is a mapping ⟨⋅, ⋅⟩ ∶X×X →
C for which

1. ⟨αx+βy,z⟩ = α ⟨x,z⟩+β ⟨y,z⟩ ∀x,y,z ∈ X ,α,β ∈C.

2. ⟨x,y⟩ = ⟨y,x⟩ ∀x,y ∈ X .

3. ⟨x,x⟩ ≥ 0, ∀x ∈ X , and ⟨x,x⟩ = 0⇔ x = 0.

The function ⟨⋅, ⋅⟩ is called an inner product. A vector space with an inner product
that satisfies all the following conditions is called an inner product space.

If x and y are vectors in an inner product space then,

∣⟨x,y⟩∣ ≤ ∥x∥∥y∥ ,

this inequality is called Cauchy-Schwarz inequality.

Every inner product space X is a normed space with the norm defined as ∥x∥ =
√

⟨x,x⟩. Then the metric function d(x,y) can be denote as d(x,y) =
√

⟨x−y,x−y⟩.

A complete inner product space is called Hilbert space H. The Lp(Rn) space is not
a Hilbert space except when p = 2 that is L2(Rn) space.

5
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The space L2(Rn) is the set of all square-integrable function defined on

L2
(Rn

) = { f ∶ ∣∫
(Rn)

∣ f (t)∣2 dt <∞} ,

and can be equipped with an inner product as:

⟨ f ,g⟩ = ∫
(Rn)

f (x)g(x)dx, ∀ f ,g ∈ L2
(Rn

).

Consider some classes of linear operator on L2(R) :

1. ∀a ∈R, the translation operator Ta ∶ L2(R)→ L2(R) is defined as

Ta f (x) = f (x−a), a ∈R.

2. ∀c > 0, the dilation operator Dc ∶ L2(R)→ L2(R) is defined as

Dc f (x) = c
1
2 f (cx).

Note that if c > 1 the graph of Dc f (x) is a compressed version of the graph f (x),
while if 0 < c < 1 is a spread out version of f (x). For the translation operator if a > 0
the graph Ta f (x) will appear to the right of the graph f (x) by a units and verse vise
if a < 0.

The collection of vectors {ek}
∞

k=1 ∈H form an orthonormal system if

⟨ek,e j⟩ = {
1, k = j,
0, k ≠ j, ∀k, j ∈N.

An orthonormal system {ek}
∞

k=1 in Hilbert space H forms an orthonormal basis
(ONB) for H, if each f ∈H there exist unique scalar coefficient {ck}

∞

k=1 such that

f =
∞

∑
k=1

ckvk,

where ck = ⟨ f ,ck⟩.

1.4 Newton-Kantorovich Method

The important of Newtons method come into consideration when we face with the
problem of finding the root of nonlinear equation. Many scholars, contribute to the
development of the method, such Cauchy, Fourier, Thomas Simpson and many more.
Later an important contribution were established by Kantorovich (1948) where he
considers nonlinear operator equation and expand the work of Newton. Kantorovich
construct a new way for finding an approximate solution of the nonlinear operator
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equations which become a powerful tool in numerical analysis. The method is called
Newton-Kantorovich’s. To investigate the nonlinear operator we need to understand
how to differentiate an operator. Consider the first derivative of an operator P as
follow:

Let consider an operator P is a mapping from an open set Ω ⊂ X of Banach space X
into a set ∆ of another Banach space Y

P ∶Ω→ ∆.

Fix xo ∈Ω. If there exist a continuous linear operator U ∶ X →Y such that, ∀x ∈ X ,

lim
h→0

P(x0+hx)−P(x0)

h
=U(x),

then the linear operator U is called a derivative of P at point x0 and denoted as
follows:

U = P′(x0).

Let us consider the following cases to illustrate this statement.

Case 1: First derivative P′(x0)

Let operator P defined in X =C [a,b] as

P(x) = ∫
b

a
(t + s)ex(s)ds.

We will show that, U = P′(x0) is a continuous linear operator.

U = lim
h→0

P(x0+hx)−P(x0)

h
,

= lim
h→0

1
h ∫

b

a
(t + s)ex0(s)+hx(s)ds−∫

b

a
(t + s)ex0(s)ds,

= lim
h→0
∫

b

a
(t + s)ex0(s)

(
ehx(s)−1

hx(s)
)x(s)ds,

since lim
h→0

ehx(s)
−1

hx(s) = 1, then

U = lim
h→0
∫

b

a
(t + s)ex0(s)

(
ehx(s)−1

hx(s)
)x(s)ds,

=∫

b

a
(t + s)ex0(s) x(s)ds = ∫

b

a
K(s,t)x(s)ds,

where K(s,t) = (t + s)ex0(s) ∈C [a,b].

Now assume that operator P has first derivative in Ω ⊂ X . Let P′(x) be an operator
mapping from an open set Ω ⊂X of Banach space X into a Banach space Y . Hence, if
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the derivative of this operator exists at a given point x0 ∈Ω then, is called the second
derivative of the given operator denoted by U ′ = P′′(x0)(x,x′).

P′′(x0)(x,x′) = lim
h→0

P′(x0+hx′)x−P′(x0)x
h

=U ′
(x).

The second case will explain the second derivative of the operator.

Case 2: Second derivative P′′(x0)(x,x′)

Let choose

P′(x0)x = ∫
b

a
(t + s)ex0(s) x(s)ds,

and

P′(x0+hx′)x = ∫
b

a
(t + s)ex0(s)+hx′(s) x(s)ds,

be a continuous operator in C[a,b] ∈ X .

Thus,

P′′(x0)(x,x′) = lim
h→0

P′(x0+hx′)x−P′(x0)x
h

,

= lim
h→0

1
h ∫

b

a
(t + s)ex0(s)+hx′(s) x(s)ds−∫

b

a
(t + s)ex0(s) x(s)ds,

= lim
h→0
∫

b

a
(t + s)ex0(s)x(s)

⎛

⎝

ehx′(s)−1
hx′(s)

⎞

⎠
x′(s)ds,

=∫

b

a
(t + s)ex0(s)x(s)x′(s)ds = ∫

b

a
K(s,t)x(s)x′(s)ds.

1.5 Approximation of function from Holder classes

The non-differentiable functions are important in various application of signal analy-
sis. The importance of studying continuous but nowhere differentiable functions was
emphasized a long time ago. It is possible for a continuous function to be sufficiently
irregular so that its graph is a fractal. This observation points out to a connection be-
tween the lack of differentiability of such a function and the dimension of its graph.
These functions are known as Irregular functions.

Irregular functions arise naturally in various branches of physics. It is well known
that the graphs of projections of Brownian paths are nowhere differentiable and have
dimension 3/2. A generalization of Brownian motion called fractional Brownian
motion gives rise to graphs having dimension between 1 and 2. Typical Feynmann
paths, like the Brownian paths are continuous but nowhere differentiable. Also, pas-
sive scalars adverted by a turbulent fluid can have is scalar surfaces which are highly
irregular, in the limit of the diffusion constant going to zero. Attractors of some dy-
namical systems have been shown to be continuous but nowhere differentiable. All
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these irregular functions are characterized at every point by a local Holder exponent
typically lying between 0 and 1. Let proceed with the definition of the Holder classes
of order s ∈ (0,1)( Kolwankar and Gangal (1996), pp 2)

Definition 1.5.1 (Holder space) The set of all continuous functions on [0,1], which
satisfies the inequality:

∣ f (x)− f (y)∣ ⩽ L ∣x−y∣s ,∀x,y ∈ [0,1],L > 0,

is called a Holder space of order s and denoted by Hs[0,1] whereas, the norm is
given by

∥ f ∥Hs[0,1] = ∥ f ∥C[0,1]+ sup
x≠y

∣ f (x)− f (y)∣
∣x−y∣s

,

for all x,y ∈ [0,1].

The Holder spaces are nested as follows :

Hα
⊂Hβ , 0 < α < β < 1.

Holder spaces are medium spaces between C[0,1] and C1[0,1] such that:

C1
[0,1] ⊂Hα

[0,1] ⊂C[0,1], 0 < α < 1.

1.6 Integral Equation

Integral equation is an equation where the unknown variable, we are attempting to
solve appears under one or more integral sign. Consider the following integral equa-
tions

x(t)−λ ∫
D

K(t,s)x(t)ds = f (t), λ ≠ 0, (1.1)

where D = {R[0,1]m,m ≥ 1} and

∫
D

K (t,s)x(s)ds = f (t). (1.2)

The functions can be complex-value functions of the variable t and s.There are two
primary types of integral equations, known as the Fredholm equation and the Volterra
equation. Integral equations (1.1) and (1.2) are known as the Fredholm integral
equation of the second kind and first kind. Here x(s) are unknown function while
K(s,t), f (s) are known functions and λ is parameter.

The properties of K(s,t) will determine many things about the integral, how we can
solve the integral equation, what are the possible solutions and etc. K(s,t) is known
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as the kernel function of two variable defined in the square

Ω = {(s,t) ∶ a ≤ s ≤ b,a ≤ t ≤ b},

and must satisfy one of the following conditions:

1. K(s,t) is continuous function defined in Ω.

2. If K(s,t) is discontinuous, then the square integrable function must be finite

∫

b

a
∫

b

a
∥K(s,t)∥2dsdt <∞.

The Volterra integral of the second kind and the first kind are precisely the same as
the Fredholm integral equations (1.1) and (1.2) except that the upper limit of inte-
gration is variable. Model of the system in the physical, engineering such measured
the current flow in an electric circuit at certain times, image analysis, the displace-
ment moved by the spring by some pressured gives rise to the integral and differ-
ential equation. The integral equation is actually self sufficient means that the inte-
gral equation doesnt need to specify the boundary and initial condition separately,
whereas for the differential equation need to specify the boundary condition so that
we can solve the problem. Differentiable equations and integral equations are con-
nected to each other in the way that the differentiable equation can be transformed
to the integral equation and similarly it is possible to transformed the integral to
differentiable equation. Detail of this transformation can be found in Kanwal (1997)

1.7 Wavelets

Theory of wavelets is important in constructing an orthonormal bases in L2(R). The
analysis shall take place in L2(R) is because of the fact that many applications do
exist in this area. A wavelets is a function ψ(x) such that the collections ψ j,k(x)
form an orthonormal basis (ONB) in L2(R) as follows:

{ψ j,k(x)} j,k∈Z = {2
j
2 ψ(2 jx−k)}

j,k∈Z
= {D2 j Tkψ(x)} j,k∈Z ,

where Tk and D2 j is the translation and dilation operator. The ONB of wavelet func-
tions ψ j,k(x) that are form have very special structure such that all of them will be
scaled and translate version of a fixed function ψ(x) ∈ L2(R). The structure of all
functions f (x) ∈ L2(R) can be represent as

f (x) =∑
j∈Z
∑
k∈Z

⟨ f ,ψ j,k⟩ψ j,k(x),

= ∑
j,k∈Z

c j,kψ j,k(x).
(1.3)

is also important in application where c j,k are the coefficients.
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Mallat (1987) introduced Multiresolution Analysis (MRA) a framework to construct
an orthonormal wavelet bases. The MRA consists two main ingredient that is the
collection of subspace Vj ∈ L2(R) with certain conditions and the function φ(x) ∈
L2(Z).

A MRA for L2(R) consists of a sequence of closed subspaces {Vj} j∈Z of L2(R) and
a function φ ∈V0, such that the following conditions hold:

1. ⋅ ⋅ ⋅V−2 ⊂V−1 ⊂V0 ⊂V1 ⊂V2 ⋅ ⋅ ⋅ . (nested)

2. ∪
j∈Z

Vj = L2(R) (density) and ∩ j∈ZVj = {0} .(uniqueness)

3. For all j ∈Z, Vj+1 =D(Vj). (scaling)

4. f ∈V0→ Tk f ∈V0, ∀k ∈Z.

5. {Tkφ}k ∈Z is an ONB for V0.

For the second condition ∪ j∈ZVj =L2(R) means that ∪ j∈RVj is dense in L2(R), shows
that for any f (x) ∈ L2(R) and ∀ε > 0 there exists a function g(x) ∈ ∪ j∈RVj such that
∥ f −g∥ ≤ ε .

The condition of the MRA above show that the choice of function φ(x) actually
determined all the spaces Vj uniquely with j ∈ Z. Assume that 3 and 4 satified the
MRA conditons. Let V0 be the space of all functions of the form as

∑
k∈Z

ckφ(x−k) = span{Tkφ(x)} , ck ∈R

Then for any j ≥ 0

Vj =DVj−1 =D2Vj−2 = ⋅ ⋅ ⋅ =D jV0,

=D j
{span{Tkφ(x)}} ,

=span{D jTkφ(x)} .

Thus, the function φ(x) determine the space Vj uniquely.

In order to construct an orthonormal basis ψ j,k(x) for L2(R) we need to consider a
class of vector spaces associated with {Vj} j ∈Z. Assume that the property 1 in MRA
is satisfied, then there exist a subspace Wj which are orthogonal complement of Vj
in Vj+1 that is

Vj+1 =Vj⊕Wj, j ∈Z.

and for any j, j′ ∈ Z. with j ≠ j′ the space Wj�Wj′ . Furthermore the space Vj can be
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successively decomposed as an orthogonal direct sum,

Vj =Wj−1⊕Vj−1,

=Wj−1⊕Wj−2⊕Vj−2,

⋅ ⋅⋅

=Wj−1⊕Wj−2⊕⋅ ⋅ ⋅⊕W0⊕V0.

Here the decomposition {V} j∈Z plays an important part in filtering out noise problem
in application. Since by removing the spikes that belong in the Vj does not affect
members of Vj−1.

Let ψ(x) ∈W0 such that {ψ(x−k)}k∈Z form an orthonormal basis for the space W0,
then the set of all function

{ψ j,k(x)} j,k∈Z = {2
j
2 ψ(2 jx−k)}

j,k∈Z
= {D2 j Tkψ(x)} j,k∈Z ,

is an orthonormal basis of Wj. Therefore any function f (x) ∈ L2(R) can be represent
as equation (1.3).

1.7.1 Haar wavelets

As defined in Walnut (2013), the Haar scaling and wavelets function can be repre-
sented as follows:

φ(x) = {
1, for x ∈ [0,1)
0, elsewhere,

and

ψ(x) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1, for x ∈ [0, 1
2)

−1, for x ∈ [ 1
2 ,1)

0, elsewhere.

To decompose Vj to Wl for l < j the following relation between φ(x) and ψ(x) are
needed. The two-scale relation for Haar scaling and wavelets function are

φ(x) = φ(2x)+φ(2x−1),

and
ψ(x) = φ(2x)−φ(2x−1).

Then the equation can be rewrite as

φ(2 jx) =
(ψ(2 j−1x)+φ(2 j−1x))

2
, (1.4)

and

φ(2 jx−1) =
(φ(2 j−1x)+ψ(2 j−1x))

2
, (1.5)
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where x is replaced by 2 j−1x.

Suppose the function f (x) is

f (x) = φ(4x)+φ(4x−1)+2φ(4x−2)−2φ(4x−3),

and the graph of f (x) is given in Figure 1.1. Using equation (1.4) and (1.5) each of
functions V2 can be computed as below

φ(4x) =
(ψ(2x)+φ(2x))

2
,

φ(4x−1) =
(φ(2x)−ψ(2x))

2
,

φ(4x−2) =ψ (4(x−
1
2
)) =

ψ (2(x− 1
2))+φ (2(x− 1

2))

2
,

φ(4x−3) =ψ (4(x−
1
2
)−1) =

φ (2(x− 1
2))ψ (2(x− 1

2))

2
.

Substitute all the functions in f (x) to obtain

f (x) = 2ψ(2x−1)+φ(2x) = 2ψ(2x−1)+ψ(x)+φ(x).

The results show that the function can be decomposed as W1,W0 and V0 that is an
important tool in analyzing problem occurring in engineering and science.

Figure 1.1: The graph of function f (x)
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1.7.2 Chebyshev wavelets

The Chebyshev wavelets are defined on the interval [0,1) by

ψnm(t) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

2
k
2
∼

T m(2kt −2n+1), n−1
2k−1 ≤ t < n

2k−1 ,

0, otherwise,
(1.6)

where
∼

T m(t) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1√
π
, m = 0,

√
2
π

Tm(t), m > 0,

and m = 0,1, ...,M−1,n = 1,2, ...,2k−1. Here Tm(t),m = 0,1, ..., are Chebyshev poly-
nomials of first kind of degree m

Tm(t) = cos(mcos−1t), m ≥ 0.

Also, it can derived from the following recursive formula:

T0(t) = 1
T1(t) = t

Tm+1(t) = 2tTm(t)−Tm−1(t), n = 1,2,3, ...

Chebyshev polynomials are orthogonal with respect to the weight function w(t) =
1√
1−t2

defined on the interval [-1,1]. We should note that in dealing with Chbyshev
wavelets the weight function w(t) have to be dialated and translated as

wk(t) =w(2kt −2n+1),

which the Chebyshev wavelets will form an orthonormal set with the given weight
function:

⟨ψnm,ψn′m′⟩ = ∫

2−(k+1)n

2−(k+1)(n−1)
ψnm(t)ψNM(t)wk(t)dt =

⎧⎪⎪
⎨
⎪⎪⎩

1, n = n′, m =m′,

0, elsewhere.

Any function x(t) defined over the interval [0,1) may be expanded as:

x(t) =
∞

∑
n=1

∞

∑
m=0

cnmψnm(t), (1.7)

with cnm = ⟨x,ψnm⟩ .
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1.7.3 Linear Legendre multi-wavelets (LLMW)

For constructing the linear Legendre multi-wavelets, first we need to describe scaling
functions φ0(x) and φ1(x) as follows:

φ0(x) = 1, φ1 =
√

3(2x−1), 0 ≤ x < 1.

By the condition of MRA the scaling functions can be describe as the linear span
of 2

j
2 φ0(2 jx−n),2

j
2 φ1(2 jx−n). By applying suitable condition Khellat and Yousefi

(2006) on the corresponding mother wavelets ψ
0(x) and ψ

1(x), then explicit for-
mula for the linear Legendre mother wavelets are obtained as

ψ
0
00(x) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

−
√

3(4x−1), 0 ≤ x <
1
2
,

√
3(4x−3),

1
2
≤ x < 1,

ψ
1
00(x) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

6x−1, 0 ≤ x <
1
2
,

6x−5,
1
2
≤ x < 1,

and the family

ψ
j

kn(x) =
⎧⎪⎪
⎨
⎪⎪⎩

2
k
2 ψ

j
(2kx−n), n2−k

≤ x < (n+1)2−k,

0, otherwise,

n = 0,1, ...,2k−1, k,∈Z+, and j = 0,1, form an orthonormal basis for L2(R).

Any function f (x) ∈ L2(R) in the interval [0,1) can be expanded as

f (x) = c0φ0(x)+c1φ1(x)+
∞

∑
k=0

1

∑
j=0

2k
−1

∑
n=0

c j
knψ

j
kn(x), (1.8)

where, c j
kn = ⟨ f ,ψ j

kn⟩.
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The next four functions are defined below

ψ
0
10(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
√

6(8x−1), 0 ≤ x <
1
4
,

√
6(8x−3),

1
4
≤ x <

1
2
,

0,
1
2
≤ x < 1,

ψ
0
11(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, 0 ≤ x <
1
2
,

−
√

6(8x−5),
1
2
≤ x <

3
4
,

√
6(8x−7),

3
4
≤ x < 1,

ψ
1
10(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
2(12x−1), 0 ≤ x <

1
4
,

√
2(12x−5),

1
4
≤ x <

1
2
,

0,
1
2
≤ x < 1,

ψ
1
11(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, 0 ≤ x <
1
2
,

√
2(12x−7),

1
2
≤ x <

3
4
,

√
2(12x−11),

3
4
≤ x < 1,

and the graph of these eight functions is described in Figure 1.2-1.9
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Figure 1.2: LLMW scaling φ0(x)

Figure 1.3: LLMW scaling φ1(x)

Figure 1.4: LLMW wavelet ψ
0
00(x)

Figure 1.5: LLMW wavelet ψ
1
00(x)

Figure 1.6: LLMW wavelet ψ
0
10(x)

Figure 1.7: LLMW wavelet ψ
0
11(x)

Figure 1.8: LLMW wavelet ψ
1
10(x)

Figure 1.9: LLMW wavelet ψ
1
11(x)
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1.8 Problem statement

Numerical integrations by quadrature rule are widely used in the application of sci-
ence and engineering. A lot of work devoted to quadrature rule such as Trapezoid,
Gauss quadrature and Newton-Cotes quadrature are used to find numerical solution
of definite integrals. Unfortunately, quadrature rule bears some drawbacks. For in-
stance, the gaussian quadrature is based on polynomial interpolation. To derive this
method the unknown nodes as well as its weights are determined by solving 2n non-
linear equation. This procedure is quite difficult because the nonlinear equations
might have multiple solution. Due to the large number of node points needed to
achieve high accuracy, the quadrature rule may require dealing with a high degree of
polynomial interpolation. In the case of Newton-cotes quadrature, the use of large
number of equally spaced nodes may cause erratic behavior with high degree poly-
nomial interpolation. Therefore to overcome this problem, new methods based on
wavelets (Haar and Daubechies) were attempts by researchers (see section 2.1 of the
thesis) with the objective to find algorithms to solve definite integrals without finding
the optimum weight and the nodes.

When developing a new numerical method, establishing its error analysis is impor-
tant. The efficiency of the error analysis directly relates to the accuracy of the new
method. Therefore the error estimation by extension is a validation of the reliability
of the method. Previous attempts on new methods only established error estimations
by assuming functions belonging to the C1(R) or C2(R). While others only provide
the new method without considering the error estimation. In order to overcome these
error estimation issues, further theoretical analysis in the Holder classes need to be
investigate.

The popular technique uses wavelets to reduce non linear integral equations to non-
linear algebraic systems, then solve these nonlinear algebraic systems using some
other numerical methods (Gaussian integration, trapezoidal formula, etc) which
compromises the entire purpose of wavelet method. In this thesis, we propose a
new method to reduce the nonlinear integral equation to linear algebraic systems and
then solved by wavelets. By doing so, we are able to preserve the advantage of the
wavelet method.

1.9 Research Objectives

In this section, each research objective are elaborate to describe the method used
towards achieving the state objective as follows.

1. To obtain generalized solution for double, triple and N-dimensional definite
integrals by Haar wavelets.

In previous works, Haar wavelets are used to solve double and triple integral
with variable limits of integration. Algorithm based on Haar wavelets have
been obtain for single integral and assumed true for double and triple integral.
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Here not only are we able to validate those assumptions but also establish a
general algorithm for any N-dimensional integrals. Our next aim is to solve
these double and triple integral by changing the variable limit of integration to
definite integral by Haar wavelets.

2. To establish error estimation in differentiable functions.

The error estimation for single integral has been done for Haar wavelets where
as for double and triple integral remains open. We attempt to establish the error
estimation for double and triple integral in C2(R) and C3(R) respectively for
Haar wavelets. It is important to see how many bases are needed to solve the
integrals and why must we consider functions from C2(R) and C3(R).

3. To obtain generalized solution for double and triple definite integrals by
LLMV wavelets.

The LLMW is a type of wavelet which consists of 2 scaling functions and two
mother wavelet. LLMW displays properties similar to Haar wavelets. Due
to these similarity, the LLWM should be able to solve the multi dimensional
integral easily. To validate this, numerical results are compared to the Haar
wavelets.

4. To find error estimation for the Haar, LLMW and Chebychev wavelets of the
function from Holder classes.

The Holder class is a medium between the continuous function and a differen-
tiable C1(R) class. In this research, the error estimation is expanded to a wider
group of functions, which are functions from Holder class. By obtaining this
estimation, we are able extend the validity of the wavelet method to a larger
group of integral equations.

5. To approximate the solution of nonlinear Fredholm and Volterra integrals
equations of the second kind by Haar and Chebychev wavelets respectively.

The main aim is to construct new methods that is simple applicable and more
efficient to solve the nonlinear Fredholm and Volterra integral equation of the
second kind. Combination of Newton-Kantorovich and wavelets methods are
used to solve nonlinear integral equations of the second kind.

1.10 Thesis Outline

In this thesis, we have organized the chapter as following.

Chapter 1 provide background tools to guide the reader to the motivation of this
research. This chapter also highlight the problem statement and the objective of this
research.

In chapter 2, we present the literature and the main figure in developing of wavelets.
Moreover we review the research done by previous studies that dealt with issues
related to our topic.
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Chapter 3, we describe the method used in solving the double, triple and N-
dimensional definite integrals by Haar wavelets. We also developed a new technique
to solve the double and triple integrals with variable limit of integrations. This is fol-
lowed by providing the error estimation and numerical results for double and triple
integrals.

In Chapter 4 we look into the error estimation for the Haar and LLMW in Holder
class. Types of function that satisfy the Holder class are also discuss and proven.
Next, a new algorithm by LLMW was established to approximate 1,2,3-dimensional
definite integrals. Finally the error estimation and numerical validation for Haar and
LLMW in Holder class are given.

In Chapter 5, new approach for solving nonlinear Fredholm and Volterra integral
equations of the second kind by using Haar and Chebyshev wavelets are constructed.
Numerical examples are given in order to determined the accuracy of the new method
with the previous results.

In the last chapter of the thesis we will present the outcome of this thesis and its con-
tribution to the field of wavelets. We also discuss the possibility for future research
and give suggestions on open problems for future researchers of the subject.
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