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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment 

of the requirement for the Degree of Doctor of Philosophy 

MAGNETOHYDRODYNAMICS BOUNDARY LAYER FLOW AND HEAT 

TRANSFER OVER A PERMEABLE STRETCHING/SHRINKING SHEET 

By 

SITI SUZILLIANA PUTRI BT MOHAMED ISA 

August 2016 

Chairman 

Institute 

: Associate Professor  Norihan Md. Arifin, PhD 

: Mathematical Research 

A theoretical study that describes boundary layer flow and heat transfer, which is 

induced by a moving plate in a quiescent ambient fluid has been presented herein. In 

this study, five problems are discussed in details. First problem related to the fluid 

flow and heat transfer in the  boundary  layers  on  a nonlinearly  stretching  sheet  with  

a variable  sheet  temperature  and suction, in the presence of magnetic field and non-

uniform  heat source. The effects of magnetic parameter, suction parameter, the 

temperature parameter, the space dependent heat source parameter and the 

temperature dependent heat source parameter have been studied. 

Magnetohydrodynamics (MHD) boundary layer flow and heat transfer of a viscous 

fluid over an exponentially permeable stretching sheet is analysed in the second 

problem, where the system is suppressed by thermal radiation. Velocity, thermal as 

well as mass slips are considered at the boundary. The boundary layer flow and heat 

transfer of a viscous fluid on an exponentially shrinking sheet is described in the third 

problem. The shrinking sheet is permeable and the system is suppressed by an 

exponential variation of magnetic field. The impacts of the magnetic parameter, the 

suction parameter and the mixed convection parameter are considered in the third 

problem. Fourth problem contains steady MHD mixed convection boundary layer 

flow of a Casson fluid over an exponentially permeable shrinking sheet. The results 

exhibit that the Casson fluid parameter, mixed convection parameter, magnetic 

parameter and suction parameter would significantly affect the number of multiple 

solutions obtained from numerical calculations. The final problem is about the 

unsteady boundary layer flow of a viscous fluid past a permeable curved 

stretching/shrinking surface in the presence of a uniform magnetic field. The effects 

of magnetic parameter, dimensionless curvature, suction parameter, unsteadiness 

parameter and mixed convection parameter are calculated numerically. For all the 

tested problems, the governing nonlinear partial differential equations are converted 

into ordinary differential equations by a similarity transformation. The converted 

equations are then solved numerically using the shooting method in Maple 

programming software. The results showed that the values of skin friction coefficient, 

local Nusselt number, local Sherwood number and the profiles of velocity, 
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temperature and concentration are changed by the governing parameters on the 

system. Additionally, the existences of multiple solutions are contributed by the 

applied numerical method (shooting) and the involvement of certain parameters in the 

system. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk Ijazah Doktor Falsafah 

ALIRAN LAPISAN SEMPADAN MAGNETOHIDRODINAMIK DAN 

PEMINDAHAN HABA KE ATAS KEPINGAN TELAP 

MEREGANG/MENGECUT 

Oleh 

SITI SUZILLIANA PUTRI BT MOHAMED ISA 

Ogos 2016 

Pengerusi 

Institut 

: Profesor Madya  Norihan Md. Arifin, PhD 

: Penyelidikan Matematik 

Kajian teori yang menerangkan aliran lapisan sempadan dan pemindahan haba, yang 

telah diaruhkan oleh plat bergerak di dalam lingkungan bendalir yang tenang telah 

dibentangkan di sini. Dalam kajian ini, lima persoalan telah dibincangkan dengan 

lebih lanjut. Persoalan pertama berkaitan dengan aliran bendalir dan pemindahan haba 

dalam lapisan sempadan terhadap kepingan meregang secara tidak linear dengan suhu 

kepingan yang berubah-ubah dan sedutan, dengan kehadiran medan magnet dan 

ketidakseragaman sumber haba. Kesan parameter magnet, parameter sedutan, 

parameter suhu, parameter ruang bersandar sumber haba dan parameter suhu 

bersandar sumber haba telah dikaji. Aliran lapisan sempadan Magnetohidrodinamik 

(MHD) dan pemindahan haba di dalam bendalir yang likat ke atas kepingan telap 

meregang secara eksponen telah dianalisis di dalam persoalan kedua, di mana sistem 

telah dikenakan sinaran terma. Gelinciran halaju, terma serta jisim telah 

dipertimbangkan di sempadan. Aliran lapisan sempadan dan pemindahan haba di 

dalam cecair likat ke atas kepingan mengecut secara eksponen telah diterangkan dalam 

persoalan ketiga. Kepingan mengecut bersifat telap dan sistem dikenakan medan 

magnet yang berubah secara eksponen. Kesan parameter magnetik, parameter sedutan 

dan parameter olakan campuran telah dipertimbangkan dalam persoalan ketiga. 

Persoalan keempat mengandungi kestabilan olakan bercampur dalam aliran lapisan 

sempadan magnetohidrodinamik (MHD) di dalam bendalir Casson ke atas kepingan 

telap meregang secara eksponen. Keputusan menunjukkan bahawa parameter bendalir 

Casson, parameter olakan campuran, parameter magnetik dan parameter sedutan 

berpengaruh besar terhadap bilangan penyelesaian berganda yng diperoleh daripada 

pengiraan berangka. Persoalan terakhir berkenaan dengan ketidakstabilan aliran 

lapisan sempadan dalam bendalir likat merentasi permukaan telap melengkung yang 

meregang/mengecut dengan kehadiran medan magnet yang seragam. Kesan parameter 

magnetik, lengkungan berdimensi, parameter sedutan, parameter ketidakstabilan dan 

parameter regangan/kecutan telah dihitung secara berangka. Untuk semua persoalan 

yang diuji, persamaan pembezaan separa tak linear dijelmakan kepada persamaan 

pembezaan biasa menggunakan penjelmaan keserupaan. Persamaan yang telah 
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dijelmakan seterusnya diselesaikan secara berangka dengan menggunakan kaedah 

tembakan dalam perisian pengaturcaraan Maple. Keputusan menunjukkan bahawa 

nilai-nilai pekali geseran kulit, nombor Nusselt setempat, nombor Sherwood setempat 

dan profil-profil halaju, suhu dan kepekatan berubah disebabkan parameter-parameter 

yang mengawal sistem. Selain itu, kewujudan penyelesaian berganda telah 

disumbangkan oleh aplikasi kaedah berangka (tembakan) dan penglibatan parameter-

parameter tertentu di dalam sistem. 
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CHAPTER 1 

 

 
INTRODUCTION 

 

 

1.1 History of Fluid Dynamics 

 

Fluid dynamics is a branch of fluid mechanics, whereas aerodynamics and 

hydrodynamics are sub-branches of fluid dynamics. Fluid dynamics deals with fluids 

(liquids and gases), and how they are influenced by forces. Aerodynamics, on the other 

hand, deals with the study of air and other gases that are in motion. Hydrodynamics 

deals with the study of liquids in motion. The study of fluid dynamics was begun by a 

scientist known as Euler in 1977. In his book “General Principles of Motion of Fluids,” 

he described most of the equations necessary for ideal in viscid fluids (Johnson, 1998). 

The history of fluid dynamics is well reported by Rouse and Ince (1957) and Tokaty 

(1971). Meanwhile, Anderson (1997) also presented the history of both fluid dynamics 

and aerodynamics. 

 

 

The law of conservation of energy, mass and momentum govern the field of fluid 

dynamics. In a closed system, the total amount of mass, energy and linear momentum 

based on the law remains constant. Additionally mass and energy cannot be created 

nor destroyed rather can only change forms. Conclusively, this law contributes a lot 

of basic assumptions involving the study of fluid. 

 

 

1.2 Heat Transfer and Convection 

 

1.2.1 Heat Transfer 

 

Heat transfer can be described as the process of exchange of thermal energy between 

physical systems, through the dissipation of heat. The process of transferring heat is 

induced by pressure and temperature difference that occurs within the involved 

physical systems. Moreover, the mechanism of heat transfer is started from an area of 

high temperature to that of low temperature, which can be described by the second 

law of thermodynamics. In the case an object or fluid has a different temperature than 

the surroundings, heat transfer will occur.  This mechanism will occur until thermal 

equilibrium is attained in the object and its surroundings. The process of transferring 

heat between the surrounding and object when their temperature differences in 

proximity cannot be stopped but rather can be slowed down. Generally, heat transfer 

can further be subdivided into convection, conduction and radiation. Therefore, this 

thesis will concentrate on the first type of heat transfer, also known as convective heat 

transfer.   

 

 

1.2.2 Convection 

 

Convection describes the heat transfer from one place to another through the mass 

motion of fluids, for instance, air and water. This type of heat transfer occurs when 
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the heated fluid moves away from the source of heat and carries away with it the 

energy acquired. Therefore, convection describes the main way by which heat is 

transferred to gases and fluids. The ideal gas law describes that convection on a hot 

surface occurs when heated air (temperature increases) is expanded (volume 

increases), becomes less dense (more buoyant), and then rises. 

Circulation in a liquid is an illustration of the principles of convection. One of the best 

ways to describe the mechanism of circulation in a liquid is when water is heated in a 

cooking pot. The hot water at the bottom once heated, becomes less dense and then 

rises making the cold water at the top which is denser to flow to the bottom as 

illustrated in Figure 1.1. Additionally, Figure 1.2 describes convection in the air 

induced by a heater. These two figures illustrate a circulation pattern due to the 

ascending of heated fluid and descending of cooled fluid. 

Figure 1.1 : Convection circulation in a water heated in cooking pot in accordance 

with ideal gas law 
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Figure 1.2 : Demonstration of convection due to a heater in accordance with ideal 

gas law 

1.2.3 Types of Convection 

Convection can further be subdivided into various forms that include natural 

convection, forced convection and mixed convention. Natural convection occurs when 

the fluid has density differences. This density difference results from temperature 

variations in a fluid. During heating, a density variation at boundary layer causes the 

less dense heated liquid to rise and then replaced by the denser cooler liquid. Then, 

this cooler liquid heats up, expands and rises, therefore, resulting in a natural 

convention phenomenon. Forced convention, on the other hand, describes fluid flow 

that is induced by external forces that may be caused by a suction device, pump or a 

fan. Refrigeration, central heating and air conditioning describe the best example of 

an application in forced convention (Rathore & Kapuno, 2011). 

Mixed convention occurs when forced and natural convections occur simultaneously. 

This type of convention describes the interaction of buoyant forces and pressure during 

the heat transfer process. Nature of fluid, orientation, geometry, temperature and flow 

describes the extent to which the form of convention influences the process of heat 

transfer (Rathore & Kapuno, 2011). 

In general, mixed convection can further be subdivided into three cases. The first case 

arises when the forced convention is supported by natural convention. In this case, 

buoyant forces move in the same direction to facilitate heat transfer. The second case 

occurs when the forced convection and natural convection are in opposite direction, 

therefore, reducing the heat transferred. The final case also known as transverse flow 

occurs when the vectors of buoyant forces and the forced motion are orthogonal.  As 
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a result, the result of fluid mixing in the third case leads to the increment of heat 

transfer (Rathore & Kapuno, 2011). 

1.3 Boundary Layer 

In 1905, the concept of fluid viscosity was introduced by Prandtl (Andersson, 1997). 

Before he published the reports, the viscosity effects were neglected in the ideal flow 

solutions, therefore, the equations regarding viscosity became complicated. In 

addition, before the concept of boundary layer was introduced, the Navier-Stokes 

equations were noted to give correct solutions for flows with small Reynolds number. 

The Reynolds number in the Navier-Stokes equations is defined as the ratio of inertial 

forces to viscous forces. In contrast, the Navier-Stokes equations gave insignificant 

solutions for flows with high Reynolds number. The equations for flows with high 

Reynolds number are highly non-linear, second order and elliptic in space. As a result, 

solutions of the boundary layer equations pose great mathematical difficulties. 

Therefore, the concept introduced by Prantl (Andersson, 1997) stated that viscosity 

has large impact at the solid boundary, and this effect is insignificant in areas further 

away from the solid boundary. Consequently, the flow past a solid boundary can be 

divided into two regions. The first region is thin and very close to the solid boundary, 

which is termed as boundary layer. In the boundary layer, fluid has great significant 

effects on the flow. The second region is one that is away from the solid boundary, but 

bordering the boundary layer. The fluid viscosity has very low effect in second region. 

Referring to the concept presented by Prantl, there are various terms that can be 

neglected in the Navier-Stokes equations through the assumption of a thin boundary 

layer. The transformation of elliptic equations to parabolic ones made them easier to 

solve.  

1.4 Types of Fluid 

Substances that have the ability to flow freely, include both liquids and gases are 

known as fluids. The Newton’s law of viscosity is the basic principles that govern the 

fluid flow. Therefore, Newton’s law of viscosity holds that there is a direct proportion 

between the shear stress with the fluids viscosity and shear rate. In the Newton’s law 

of viscosity, shear stress is a measure of friction force from a fluid that is exerted on a 

body in the path of that fluid. Besides, the shear rate in the Newton’s law of viscosity 

is defined as the rate of change of the velocity fluid at which adjacent layers of fluid 

move with respect to each other (Papaioannou and Stefanadis, 2005). 

Therefore, fluids can be categorized as either non-Newtonian or Newtonian based on 

the above principles. Newtonian fluid refers to the fluid that obeys the Newton’s law 

of viscosity. Besides, any fluid that flows unabated regardless of an applied force or 

the rate at which is stirred or mixed is referred as a Newtonian fluid. A good example 

of this fluid is water, honey, thin motor oil, organic solvents and air.  

On the other hand, non-Newtonian fluid is a fluid with different characteristics in any 

way from those of Newtonian fluids. These fluids demonstrate either shear thickening 
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or shear thinning. Shear thinning happens when the viscosity of the fluid reduces as 

the shear rate enhances. On the contrary, shear thickening produces when the viscosity 

of the fluid increases due to the decrement of shear rate. A good example of these 

fluids is magma, saliva, lava, soap solutions, mucus, ketchup and shampoo. For a 

proper insight, ketchup and toothpaste flow more easily when the tube is pressed 

harder.   

Casson fluid is a good example of the non-Newtonian fluid. This kind of fluid is 

assumed to have an infinite viscosity when a shear rate is zero, and a zero viscosity 

when a shear rate has an infinity value. A model of blood flow through narrow arteries 

is an example of demonstrating the Casson fluid behaviours. 

Rheogram is a plotted relationship shear stress τ versus the shear rate γ, as illustrated 

in Figure 1.3. The rheogram of a Newtonian fluid is a straight line that passes through 

an origin and has a slope given by the value of dynamic viscosity of the fluid. The 

viscosity of a Newtonian fluid is independent of the shear rate. Rheograms of non-

Newtonians fluid does not pass through the origin and or does not result in a linear 

relationship between shear stress τ and rate of shear γ. The viscosity of a non-

Newtonian fluid is not constant, but rather dependent on the shear rate.  

Figure 1.3 : Rheogram of a Newtonian and Non-Newtonian fluid 
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1.5 Types of Flow 

1.5.1 Steady and Unsteady Flows 

The condition of fluid properties at any point of a fluid flow can either be categorized 

to be steady or unsteady. In a steady flow, the fluid properties at each point in the flow 

do not change with time and they remain constant. This means that the variation of 

time does not influence the properties of the fluid. Steady flows can be represented 

mathematically by 0,P t   where  , ,P P x y z  which refers to fluid properties

such as velocity, pressure and density. On the other hand, unsteady flow fluid 

properties that include velocity, pressure and density are usually time dependent. 

Therefore, this signifies that fluid properties at any point in the flow vary with time.  

1.5.2 Compressible and Incompressible Flows 

For starters, it is vital to note that gases are usually compressible. A flow in which 

fluid density varies especially when subjected to high-pressure differences defines a 

compressible flow. Large pressure differences in unsteady conditions may make a 

fluid to completely compressible. It is significant to point out that in a compressible 

fluid the application of a force on one end of a system does not lead to an immediate 

flow throughout the system. Instead, the density of the fluid rises near where the force 

was applied, in reaction to the force. Consequently, the fluid compresses at the point 

near the applied force. Specifically the neighbouring particles are affected as the 

compressed fluid expands which therefore makes the particles to compress. 

Subsequently, the neighbouring particles create a motion wave pulses throughout the 

system.  

On the other hand, the flow of a fluid whose density remains constant to the changing 

pressure refers to an incompressible fluid flow. However, where conditions are steady 

and provided that pressure changes are small, it is assumed that the density of the fluid 

is constant to simplify the analysis of the flow as incompressible.  An example of 

incompressible fluids used commonly is liquids.  

1.5.3 Magnetohydrodynamics (MHD) 

Magnetohydrodynamics is one of the latest Fluid Mechanics branches. It is mainly 

concerned with the study of electrically conducting fluids and how they are influenced 

by magnetic fluids. Based on Faraday’s laws of electromagnetism, when a conductor 

is passed through a magnetic flux, a current gets induced in the conductor. This current 

is in a direction that is mutually perpendicular to both the direction of the motion of 

the conductor and magnetic field. On the other hand, when a conductor carrying an 

electric current is placed in a magnetic flux, a conductor experiences a significant force 

that is in a direction that is mutually perpendicular to both the direction of the current 

and the magnetic field. Based on these it is, therefore, true to state that electromagnetic 

forces result within an electrically conducting fluid when in the influence of a 

magnetic field. Hydrodynamic forces within the fluid combine with the 
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electromagnetic forces resulting to what is termed as magnetohydromagnetic (MHD) 

flow.  

The model of MHD flow can be described by considering that the equations of motion 

account for the effects of electromagnetic forces and other forces such as inertial and 

hydrodynamic forces. The equations of motion are a combination of the Maxwell’s 

equations of electromagnetism and Navier-Stokes equations of fluid dynamics. 

Therefore, they need to be solved simultaneously. Electrofluid mechanical energy 

conversion is linked to the interaction of the magnetic fluids with the electrically 

conducting fluids. The impacts of this interaction can clearly be observed in plasmas, 

two-phase mixtures, gases and liquids.  

The latter presented applications have diverse technological applications ranging from 

heating and flow control in metals processing, two-phase mixtures resulting in power 

generation and the magnetic confinement of high-temperature plasmas. 

Magnetogasdynamics, magnetofluidmechanics, and the widely used 

magnetohydrodynamics can be used to describe the extensive effects of 

electromagnetism in the electrically conducted fluids.  

1.5.4 Stretching or Shrinking Sheet Flow 

Stretching sheet flow defined as the flow of fluid is induced when the elastic sheet in 

the incompressible fluid being extended by an application of a stress. This sheet has 

an elasticity behaviour, means by an ability of a sheet to resist a distorting stress and 

to return to its original size and shape when the stress is removed. The movement of 

the stretched or shrieked sheet has velocity varying with the distance from a fixed 

point. In spite of that, shrinking sheet has an opposite nature with stretching one; the 

sheet is compressed and influences the fluid flow and the rate of transferring heat. 

1.6 Factors Applied in the Mathematical Formulation of the Problem 

In this thesis, the effect of suction, heat source (heat generation/absorption), thermal 

radiation, and partial slip at boundary conditions are included in mathematical 

formulation of the problems. 

1.6.1 Suction Effects 

Suction is one of the factor that influences the boundary layer control. Reduction of 

the pull on bodies in an external flow or reduction of the losses of energy in channels 

is one of the purpose of adding the effect of suction. In 1904, Prandtl suggested suction 

as one of the methods in the impediment of boundary layer separation (Andersson, 

1997). Suction implementation requires the surface to have holes which can be 

expounded to refer as perforations, slots and porous sections. The holes are vital for 

the sucking the portion of the boundary layer that is closest to the wall and which is 

travelling to the lowest possible velocity.  
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Injection or suction of a liquid or fluid through the bounding surface, for instance, in 

the mass transfer cooling has a significant variation in the flow field which 

consequently influences the heat transfer rate from the plate.  Generally suction 

alleviates the heat transfer coefficients and skin frictions (Al-Sanea, 2004).  

Practically, to increase the efficiency of diffusers that have a greater compression ratio 

of the working fluid (with large convergence angles), suction is applied to delay early 

boundary layer separation. Additionally, the increase in the lift and decrease drag of 

aerofoils operating at great incidence angles occur when the boundary layer suction 

through slots is exerted located close the trailing edge. Practically it has been 

demonstrated that suction through slots is less effective compared to suction in a 

porous wall. For instance, for aerofoil, a similar increase of lift force can be attained 

by sucking a smaller amount of fluid through pores than slots.  

1.6.2 Internal Heat Generation/Absorption Effects 

The latter two variables (coefficient of space and temperature dependent heat 

source/sink) are additionally included in the heat generation/absorption formulae. The 

definition of heat generation is when the coefficient of space and temperature 

dependent heat source/sink is greater than zero. Move over, the internal heat is 

absorbed when these two variables are less than zero. The heat source/sink formulation 

is part of the energy equation which is managed together with both momentum and 

mass equations. Therefore, a mathematical formulation of the three equations is 

presented of the heat and flow problems.  

The study of heat generation is vital in several physical problems which include fluids 

that are undergoing endothermic and exothermic chemical reaction. Alteration of the 

temperature distribution may result due to possible heat generation. Subsequently, the 

changes of temperature distribution affect the rate of particle deposition in electric 

chips, nuclear reactors and semiconductor wafers.  The process of melting and 

impediment of freezing increase due to the effect of internal heat generation, which 

occur in material processing, cryogenic, nuclear and geologic. However, the 

mechanism of heat absorption is opposite compared to heat generation. Dealing with 

problems such as fluids undergoing exothermic or endothermic chemical reaction can 

be tackled by the study of the heat generation and absorption in the moving fluids as 

it is vital. (Dinesh et al., 2014). 

1.6.3 Thermal Radiation Effects 

Radiation is a system for transmission of heat that does not need any contact between 

heated object and the heat source. Infrared radiation defines as the thermal radiation 

of heat through an empty space. Electromagnetic radiation from an object caused by 

temperature simply defines thermal radiation. Thermal radiation increases in both 

power and frequency with the increasing temperature. The conversion of thermal 

energy to electromagnetic radiation by movement of protons and electrons leads to 

thermal radiation generation. Thermal radiation examples are a radiant bulb emitting 
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light. Additionally other examples include sun electromagnetic radiation, common 

electric heater and household radiator.  

Moreover, the effect of thermal radiation plays a vital role in the heat transfer control 

in the polymer manufacturing. The quality of the final product as discussed earlier in 

the paper greatly affects the heat transfer; therefore any heat controlling features is of 

great importance in such processes. The thermal radiation additionally have great 

influence on the flow and transmission of heat processes which is vital to the design 

of all advanced power convection systems that operate at a greater temperature. The 

emission from a hot wall surfaces as well as from a fluid flow determine the rate of 

thermal radiation in such systems.  

Particularly the influences of thermal radiation are more pronounced in the cases of 

the great differences between ambient temperature and surfaces. Therefore in the 

control of mass and heat transfer, thermal radiation is one of the major factors. 

Moreover in the stretching problem, thermal radiation has a crucial role in the 

enhancement of the thermal diffusivity of the cooling liquid in the stretching sheet 

problem. The production of components that have desired features can be boosted by 

the knowledge on thermal radiation.  

1.6.4 No Slips and Partial Slips Boundary Conditions 

When the velocity component of the fluid parallel to the sheet  ,u x y  gets equal to

the velocity of the sheet   ,wu x  the flow fields is assumed to obey the no-slip

condition at the boundary. The velocity of the fluid at the wall is assumed to be similar 

to the velocity of the moving surface and it changes continuously within the fluid 

based on the non-slip boundary condition. This condition is additionally used in the 

modelling of the viscous flows and contributes significantly to the diffusion 

coefficient close to the sheet.  

However in certain situation the no slip assumption does not apply and therefore needs 

to be replaced with a partial slip boundary condition. The latter function is represented 

by      *, wu x y u x L u y     at 0,y  which relates the fluid velocity u to the 

shear stress u y   at the boundary,   0wu x   is the velocity of the stretched sheet 

proportional to the distance of the origin 0,x   whereas the velocity of the shrieked 

surface refer to   0.wu x   Here, velocity slip is defined as  * ,L u y   *L  is the slip 

length, and y denotes the coordinate perpendicular to the surface. The length *L  is 

zero if there is no slip. Based on the fact that partial no slip boundary condition is more 

consistent to the physical features within the practical flow situations approves the 

selection of partial slip instead of no slip. The partial slip between the moving surface 

and the fluid happens in circumstances where the fluid is particulate. The examples of 

fluid particulates are suspensions, foams, emulsions and finally polymer solutions. 

The technology such as internal cavities and polishing heart valves are applications of 
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the boundary slip in the flow field (Mahantesh et al., 2013). In the situation where the 

fluid is not sticking to the solid boundary, the velocity slip arises.  

1.7 Industrial Applications of the Flow and Heat Transfer Induced by a 

Stretching/Shrinking Sheet 

The theoretical study on boundary layer flow and heat transfer, driven by a 

stretching/shrinking sheet have numerous investigations, for the reason that this field 

has industrial applications. Some of the aforementioned industrial applications of 

stretching sheet flow are extrusion of polymer sheets from a die, drawing of plastic 

films, wire drawing, polyester thin wall heat shrink tubing, and in glass as well as 

paper production.  

It is worth noting that the quality of the final product in industrial applications depend 

largely on the heat transfer rate at the stretching/shrinking surface. Therefore, in order 

to achieve the desired properties of the material being manufactured, proper cooling 

fluid should be chosen and the flow of the cooling fluid due to the stretching/shrinking 

sheet must be controlled. As a result, this calls for extra attention to be drawn for both 

flow and heat transfer characteristics of the cooling fluid medium in the manufacturing 

processes involving stretching/shrinking sheet (Van De Ven, 2003). 

1.8 Aim and Research Objectives 

The aims of this thesis are to model, analyse and to obtain the numerical solutions of 

the following five problems: 

i. The MHD flow and heat transfer in the  boundary  layers  on  a nonlinearly

permeable stretching  sheet  with  a variable  wall  temperature, in the

presence of non-uniform  heat source. Under this, the effects of the magnetic

parameter M, suction parameter S, the temperature parameter h, the space

dependent heat source A* and the temperature dependent heat source B* will

be studied.

ii. The magnetohydrodynamic (MHD) boundary layer flow and heat transfer of

a viscous fluid over an exponentially permeable stretching sheet, where the

system is suppressed by thermal radiation. Under this, velocity, thermal, as

well as mass slips will be considered at the boundary. The governing

parameters involved are velocity slip parameter v*, thermal slip parameter t*,

mass slip parameter m*, magnetic parameter M, suction parameter S,

radiation parameter R and Schmidt number Sc.

iii. MHD flow and heat transfer of a viscous fluid on an exponentially shrinking

sheet, where the shrinking sheet is permeable. Under this objective, features

of the flow and heat transfer will be obtained for various values of the

magnetic parameter M, suction parameter S and the mixed convection

parameter λ.

iv. The steady magneto hydrodynamic mixed convection boundary layer flow

of a Casson fluid over an exponentially permeable shrinking sheet. In this
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problem, we discuss the additional parameter of Casson γ together with the 

effect of the governing parameters as in Problem 3. 

v. The MHD flow of a viscous fluid past a permeable curved

stretching/shrinking surface. In this problem, we analyse the effects of

magnetic parameter M, dimensionless curvature K, suction parameter S,

unsteadiness parameter β and stretching/shrinking parameter ε.

1.9 Scope of the Thesis 

Motivated by similar studies in the aforementioned problems, the present study 

emphasizes on steady two-dimensional boundary layer flow  ,x y  of a viscous

incompressible electrically conducting fluid over an isothermal stretching/shrinking 

surface in the presence of an externally applied magnetic field   0, .B x  The

variation of the velocity of stretched/shrieked surface is exponential or nonlinear. The 

characteristics of the flow and heat transfer are analyzed for viscous and Casson fluid. 

The scope also covered the problem of the unsteady two-dimensional boundary layer 

flow of a viscous and incompressible fluid over a curved stretching/shrinking surface 

in the presence of a uniform magnetic field. Using a similarity transformation, the 

governing equations of continuity, momentum, energy and specie diffusion have been 

converted into ordinary differential equations. Then, shooting method is used to solve 

the ordinary differential equations in numerical method.   

1.10 Thesis Outline 

The background of the field of dynamics of fluid is presented as an introductory of the 

first chapter. Subsequently, the concepts of heat transfer and convection are defined, 

with the related phenomenon. The explanation of various types of convection, 

boundary layer concept, types of fluid and the patterns of fluid flow are also given. 

The external factors that exerted in the system of mathematical formulation are 

introduced in this chapter, together with their definition and applications in 

engineering field. The related factors are the effects of suction, heat 

generation/absorption, thermal radiation and when the system is bounded by partial 

slips. Subsequently, the industrial applications of the fluid flow and heat transfer 

driven by stretching/shrinking sheet are stated. Finally, the objectives and the scope 

of the present thesis are given. 

Chapter 2 reviews the pioneering studies of the flat or curved sheet which is stretched 

or shrieked, and this condition of sheet influences the flow and heat transfer 

characteristics of an incompressible magnetohydrodynamics fluid. Linear, non-linear 

and exponential forms of velocity are taken into account for the stretching or shrinking 

sheet. The systems of the pioneering studies in the flat sheet are subjected to the 

following external factors: mass suction applied at the sheet, partial slips at the edge 

of the fluid layer, the additional heat generated or absorbed in the system, the flow is 

opposed or assisted by the forces of buoyancy, and radiation of thermal. In addition, 

the background studies of the curved surface to search the characteristics of fluid flow 
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and transmission heat restricted to the following aspects: unsteady state, sheet 

curvature and suction. 

In Chapter 3, we define the basic mathematical model and discuss its limitations, 

which are extended in Chapters 4 to 8. This chapter is divided into two sections. First 

section described how similarity variables are used to transform the related governed 

equations, to the set of ordinary differential equations (ODEs). These ODEs are solved 

numerically by applying shooting method. 

Chapter 4 to 8 report the problem solved in the thesis (Problems 1 to 5). All the 

chapters begin with the introduction of the related problem, method of solution 

extended from Chapter 3, results and discussion and ended by conclusion. Results are 

illustrated in the form of tables and graphs, and the comparisons with the previous 

researchers are also tabulated. The results are restricted to the illustrations of velocity, 

temperature, skin friction coefficient and local Nusselt number. In addition, the 

representation of concentration is added in Chapter 5, since concentration equation is 

considered together with continuity, momentum and energy equations in Problem 2. 

The effects of related factors in the system of all the problems are listed in conclusion 

section. 

The conclusions of all the tested problems (Problems 1 to 5) are summarized in the 

last chapter, and the potential further works are also recommended. The future 

recommendations are the guidelines for future researcher to obtain new results, by 

using similar method or by developing advanced computational techniques. 
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