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Cytochrome P450s (CYPs) are a superfamily of heme monooxygenases which 
catalyze a wide range of biochemical reactions. The reactions involve the 
introduction of an oxygen atom into an inactivated carbon of a compound which 
is essential to produce an intermediate of a hydroxylated product. Vitamin D 25-
hydroxylase catalyses the first step in vitamin D biosynthetic pathway, essential 
in the activation of vitamin D. Several types of CYPs had been found as 
potential 25-hydroxylases. However, most of them originate from eukaryotes 
and are membrane associated proteins. A putative gene sequence encoding a 
CYP, termed CYP107CB2 was found in the genome of a new isolate Bacillus 
lehensis G1, and this gene shared sequence identity with the bacterial vitamin D 
hydroxylase (Vdh) from Pseudonocardia autotrophica. In order to deepen the 
understanding on the properties and biological function of CYP in B. lehensis G1, 
the objective of this study was to mine for a novel CYP from B. lehensis G1 with 
hydroxylase activity on vitamin D metabolites. Computational methods to search 
for the novel CYP from CYP structural databases were employed to identify the 
conserved pattern, functional domain and sequence properties of the 
uncharacterized CYP from B. lehensis G1. The CYP107CB2 gene was isolated 
and amplified using PCR and the CYP107CB2 protein was over-expressed in E. 
coli Rosetta-gami (DE3) followed by enzyme purification via single step affinity 
chromatography. The biological properties and possible functions of 
CYP107CB2 were characterized through absorption spectral analysis and were 
assayed for vitamin D hydroxylation activity. Optimization and CYP 
characterization were conducted to increase the turnover of hydroxylated 
products with an NADPH-regenerating system. Crystallization trials on 
CYP107CB2 protein were conducted via preliminary screening with Crystal 
Screen I and II through vapour-diffusion sitting drop method. Sequence analysis 
studies indicated that CYP107CB2 contained the fingerprint heme binding 
sequence motif FxxGxxxCxG at amino acid position 336-345 as well as other 
highly conserved motifs characteristic of CYP proteins. Docking studies showed 
several potential substrates, including vitamin D3, 25-hydroxyvitamin D3 and 1α-
hydroxyvitamin D3, were located proximally to the enzyme’s heme center. The 
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over-expressed CYP107CB2 protein was dominantly in cytosolic and the 
purified fraction showed a protein band at approximately 62 kDa on SDS-PAGE, 
representative for CYP107CB2. Spectral analysis demonstrated that the protein 
was properly folded and it was in its active form. HPLC and MS analysis on the 
product from a reconstituted enzymatic reaction confirmed that CYP107CB2 
converted vitamin D3 and 1α-hydroxyvitamin D3 into 25-hydroxyitamin D3 and 
1α,25-dihydroxyvitamin D3, respectively. CYP107CB2 formed crystal in 
formulation No. 38 from Crystal Screen II comprising 20% (v/v) PEG 10 000 and 
0.1 mM HEPES buffer pH 7.5. In conclusion, a novel CYP107CB2 was identified 
from B. lehensis G1 and these findings proved that CYP107CB2 is a biologically 
relevant vitamin D3 25-hydroxylase.  
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P450 DARIPADA Bacillus lehensis G1 

Oleh 

ANG SWI SEE 

Jun 2016 

Pengerusi : Prof. Dato’ Abu Bakar Salleh, PhD 
Institut : Institut Biosains 

Cytochrome P450 (CYP) merupakan sejenis hem monooksigenase daripada 
satu keluarga besar yang memangkinkan pelbagai jenis tindak balas biokimia. 
Tindak balas tersebut melibatkan penyatuan satu atom oksigen ke dalam 
komponen yang mengandungi karbon yang tidak aktif di mana tindak balas ini 
adalah penting untuk menghasilkan bahan perantaran bagi produk yang 
dihidroksilkan. Vitamin D 25-hidroksilase memangkinkan langkah yang pertama 
dalam laluan bio-sintetik vitamin D yang penting dalam pengaktifan vitamin D. 
Beberapa jenis CYP telah dijumpai sebagai 25-hidroksilase yang berpotensi. 
Namun demikian, kebanyakan daripada mereka berasal daripada eukariot dan 
merupakan protein sekutu membran. Satu urutan gen yang mengekodkan CYP 
digelar sebagai CYP102CB2 telah dijumpai dalam genom isolasi baru iaitu 
Bacillus lehensis G1, dan gen ini berkongsi struktur kesamaan dengan vitamin D 
hidroksilase (Vdh) dari Pseudonocardia autotrophica. Dalam usaha untuk 
memperdalam pemahaman yang berkaitan dengan sifat dan fungsi biologi CYP 
dalam B. lehensis G1, objektif kajian ini adalah untuk mengenalpasti CYP yang 
novel dari B. lehensis G1, di mana CYP tersebut dapat menghidroksilkan 
metabolit vitamin D. Kajian ini menggunakan kaedah pengkomputeran untuk 
mencari CYP yang novel dari pangkalan data struktur CYP untuk mengenalpasti 
corak terabadi, domain fungsi dan sifat urutan CYP yang masih belum 
diklasifikasikan dari B. lehensis G1.  Gene rekombinan CYP107CB2 kemudian 
diperoleh daripada strain dengan menggunakan PCR (reaksi rantai polimerase) 
dan protein  dilebih-ekspresikan dalam E. coli Rosetta-gami (DE3) diikuti 
dengan penulenan enzim melalui afiniti kromatografi langkah tunggal. Sifat-sifat 
biologi dan fungsi CYP107CB2 dicirikan melalui analisis penyerapan spektrum 
dan dengan itu, enzim dicerakinkan untuk aktiviti vitamin D penghidroksilan. 
Pengoptimuman dan pencirian CYP telah dijalankan untuk meninggikan 
perolehan bagi penghasilan produk hidroksil dalam sistem regenerasi-NADPH. 
Percubaan untuk penghabluran protein CYP107CB2 telah dijalankan melalui 
penyaringan awal dengan Crystal Screen I and II melalui kaedah “vapour 
diffusion sitting drop”. Analisis urutan menunjukkan bahawa CYP107CB2 
mengandungi urutan motif ikatan hem FxxGxxxCxG pada kedudukan 336-345 
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serta ciri-ciri motif terabadi yang boleh didapati dalam CYP protein. Dengan 
menggunakan kajian dok, beberapa substrat yang berpotensi termasuk vitamin 
D3, 25-hidroksivitamin D3 dan 1α-hidroksivitamin D3, terletak berhampiran di 
pusat hem enzim. Kebanyakan protein CYP107CB2 yang dilebih-ekpresikan 
berada dalam bentuk sitosol dan pecahan penulenan menunjukkan jalur protein 
adalah bersaiz lebih kurang 62 kDa dalam SDS-PAGE di mana jalur tersebut 
mewakili CYP107CB2. Analisis spektrum menunjukkan bahawa protein tersebut 
dilipat dengan betul dan dalam betuk aktif. Analisis HPLC dan LCMS ke atas 
produk hidroksil yang dihasilkan selepas tindak balas enzim mengesahkan 
bahawa CYP107CB2 menukarkan vitamin D3 dan 1α-hidroksivitamin D3 kepada 
25-hidroksivitamin D3 dan 1α,25-dua-hidroksivitamin D3, masing-masing. 
CYP107CB2 membentuk hablur dalam formulasi No. 38 daripda Crystal Screen 
II dimana formulasi tersebut mengandungi 20% (v/v) PEG 10 000 dan 0.1 mM 
bufer HEPES pH 7.5. Kesimpulannya, CYP107CB2 yang novel telah 
dikenalpasti daripada B. lehensis G1 dan penemuan ini membuktikan bahawa 
CYP107CB2 merupakan sejenis vitamin D3 25-hidroksilase. 
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CHAPTER 1 
 
 

INTRODUCTION 
 
 

1.1 Hypothesis and problem statement 
 
Cytochromes P450s are a superfamily of heme monooxygenases which are 
present in a wide variety of organisms in nature (Bernhardt, 2006; Zurek et al., 
2006). These proteins are involved in monooxygenation, activates dioxygen to 
incorporate a single oxygen atom into a wide range of substrates (Jin et al., 
2004; Zurek et al., 2006). They catalyze a broad range of biochemical reactions 
and play an essential role in the assimilation of carbon source. The reactions 
include hydroxylations, epoxidations, sulfoxidations, and so on as stated by 
Bernhardt, (2006). The typical reaction catalyzed by CYP is the hydroxylation of 
organic substrates on carbon atoms (Munro et al., 2007). Prototypical reactions 
catalyzed by CYPs include fatty acid hydroxylation, secondary metabolite 
biosynthesis and drug metabolism (Schallmey et al., 2011; Sono et al., 1996). 
They oxidize non-activated carbon at either carbon ring or lateral alkyl chain 
which is difficult to be achieved via chemical reactions, making CYP versatile 
and attractive in various fields (Schlichting et al., 2000; Lombard et al., 2011). 
 
 
In biotechnology point of view, CYPs are known as interesting potential ‘green’ 
catalysts (Bernhard and Urlacher, 2014; Farinas et al., 2004) and gained much 
attention for the production of useful fine chemicals (Yun et al., 2007). The 
practical goal in CYPs research is to search for the enzymes which are able to 
produce chemicals that are difficult to be prepared by traditional organic 
synthetic (Bhattarai et al., 2012). This is due to its exclusive spectroscopic 
properties, catalytic diversity, and broad substrate range variety of useful 
chemical transformations that are essential in both biological function and 
chemical synthesis (Sigman et al., 1999). The enzymes produce the fine 
chemical in regio and stereo-selective way making CYP a versatile and powerful 
oxidant. Therefore, CYP had gained much attention in producing many useful 
fine chemicals of hydroxylated products which are essential in both biological 
function and chemical synthesis (Sigman et al., 1999; Urlacher and Girhard, 
2012; Yun et al., 2007). 
 
 
CYPs cover a wide range of applications in the production of drugs, drug 
metabolites and work as catalysts in various chemical (Gillam 2008; Jung et al., 
2011). Despite their exclusive catalytic capabilities, only a limited number have 
been exploited in preparative of chemical reactions or industrial chemical 
processes (Julsing et al., 2008). As reported by Jung et al. (2011), many natural 
CYPs are insoluble, expressed at low levels, and exhibit activity insufficient for 
practical biocatalysis.  
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The biotransformation of vitamin D3 to 1α,25-dihydroxyvitamin D3 is one of the 
most successful applications of CYP in biotechnology. The product has been 
used to treat numerous diseases such as osteoporosis, chronic renal failure and 
hypothyroidism (Sakaki, 2012; Yasutake et al., 2009). Vitamin D3 is a 
biologically inactive compound that requires one or more CYPs to catalyze the 
formation of the most active form of vitamin D hormone, 1α,25-dihydroxyvitamin 
D3 or calcitriol. The major function of calcitriol is to maintain safe levels of 
calcium and phosphorus in the blood, by regulating the absorption of these ions 
in the intestine, bone and kidney. In addition, calcitriol is also recognized as an 
important anti- proliferative factor for dividing cells and tissues, as vitamin D 
deficiency is now linked to over 20 forms of cancer (Guyton et al., 2003). The 
chemical synthesis of 1α,25-dihydroxyvitamin D3 requires complex procedures, 
including almost 20 reactions steps with low production yields. Therefore, 
development of an efficient and simplified production process for calcitriol 
remains an important area of investigation (Sakaki et al., 2011; Zhu and 
Okamura, 1995).  
 
 
In the process of vitamin D3 conversion to 1α,25-dihydroxyvitamin D3, the 
hydroxylation of the side chain at C-25 or C-24 is a prerequisite. The enzyme-
catalyzed vitamin D3 25-hydroxylation is an essential step for the activation of 
vitamin D3 and important for understanding the entire activation process of 
vitamin D3 (Aiba et al., 2006). Knowledge on vitamin D 25-hydroxylation by 
bacterial CYP is limited, although their involvement in several essential 
bioconversions has been reported. Further exploration of bacterial CYP 
enzymes which could metabolize vitamin D3 is necessary.  
 
 
There are several types of CYP vitamin D 25-hydroxylases and most of them 
are of eukaryotic origin. They are mostly present in mitochondria and microsome 
of liver (Yamasaki et al., 2004). These include CYP27A1, CYP2R1, CYP3A4, 
CYP2C11, CYP2D25, CYP2J3 and CYP2J2. They have been found to be fairly 
important and critical compounds for the regulation of vitamin D metabolism as 
well as other hydroxylation processes in eukaryotic system. Additionally, some 
of these 25-hydroxylases were well identified and characterized (Aiba et al., 
2006; Zhu and DeLuca, 2012). 
 
 
Although eukaryotic CYPs are well studied, one of the common limitations of 
these proteins is that they are membrane-bound (Mclean et al., 2011; Werck-
Reichhart and Feyereisen, 2000). The microsomal and mitochondrial 25-
hydroxylases are associated in the endoplasmic reticulum and inner membrane 
of mitochondria, respectively (Zhu and Deluca, 2012). Contrastingly, bacterial 
CYP in particular is often soluble and targeting in cytoplasm as lacking of the N-
terminal membrane anchor (Bernhardt, 2006; Mclean et al., 2011; Werck-
Reichhart and Feyereisen, 2000). Its CYPs are found to be useful for oxidation 
of various compounds including drugs, steroids and fatty acids (Hilker et al., 
2008; Lewis and Wiseman, 2005). From a practical point of view, bacterial CYPs 
can be easily isolated and manipulated and the proteins remain in soluble active 
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form as compared to insoluble eukaryote CYPs (Budde et al., 2004; Urlacher 
and Eiben, 2006).  
 
 
Since, there is an increasing industrial demand to exploit CYP as a valuable 
biocatalyst; considerable attempts have been devoted to search for novel 
enzymes with unique metabolic properties. This strategy was attempted in this 
study, where a novel CYP was mined from the genome of alkaliphilic bacteria, 
Bacillus lehensis G1. This bacterium dwells in soil with the capability to thrive at 
high pH up to 11. A survey on the complete B. lehensis G1 genome revealed 
that the strain which is usually used for the production of cyclodextrin 
glucanotransferase (Noor et al., 2014) contained a single candidate gene that 
potentially coded for a functional CYP enzyme. 
 
 
A single cDNA specifying soluble CYP enzyme termed as CYP107CB2 
exhibited sequence identity of 44% with vitamin D3 hydroxylase (Vdh) from 
Pseudonocardia autotrophica which had been grouped into the CYP107 family 
of enzymes. CYP Vdh is a vitamin D3 hydroxylase (protein data bank ID: 3A4G; 
resolution: 1.75 Å) responsible in hydroxylating vitamin D3 to 1α,25-
dihydroxyvitamin D3 via 25-hydroxylation and 1α-hydroxylation (Fujii et al., 2009; 
Yasutake et al., 2010). The lack of structural information for the putative 
CYP107CB2 from B. lehensis G1 prevented a more detailed characterization of 
its biological role. In this respect, this study seeks to address the hypothesis that 
an identified CYP biocatalyst from B. lehensis G1 is an active protein and could 
be used to hydroxylate vitamin D3 metabolites.  
 
 
The study was divided into four major experiments. The first was on 
bioinformatics analysis of CYP sequence from B. lehensis G1 followed by 
second experiment to clone, express, purify and confirm the presence of 
CYP107CB2 protein via molecular weight evaluation. The third experiment 
determined the characteristics and biological function of CYP107CB2 through 
UV-Vis spectroscopy analysis and hydroxylation assay. Optimization and 
characterization of CYP107CB2 to increase the production of hydroxylated 
products were also conducted. Last experiment was on crystallization trial of 
CYP107CB2 protein and X-ray diffraction on protein crystal. 
 
 
1.2 Objectives 
 
The main objective of this study was to mine, identify and characterize the 
putative CYP107CB2 from B. lehensis G1. The specific objectives were: 
 

1. To conduct bioinformatics analysis on CYP sequence from the genome 
of B.  lehensis G1 

2. To clone, express, purify and determine the molecular weight of CYP 
protein 

3. To characterize the spectral properties and biological function of CYP 
and to optimize the production of hydroxylated product 
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4. To crystallize the CYP protein and diffract the CYP crystal using in-
house X-ray diffractometer. 

 
 

1.3 Significance of study 
 
Present study demonstrates vitamin D3 25-hydroxylase derived from an 
environmental bacilli strain in identifying the metabolic function of a new 
CYP107CB2. The study provides useful insights into the nature of substrate 
selection for CYP107CB2, which can guide future docking studies, as well as 
functional experiments. The discovery of a CYP107CB2 that acts as a 25-
hydroxylase, has suggested the contribution of CYP family to the metabolism of 
vitamin D3. This study is important as CYP107CB2 can serve as a microbial 
model for eukaryotic’s 25-hydroxylase and provide an alternative to study the 
metabolism of vitamin D3 without the technical difficulties of handling insoluble 
membrane proteins.  
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