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Airships used to be the primary passengers' air transportation means before the jet aircraft 

took over their role. This happened due to the operational safety concerns after several 

fatal accidents involving the airships. In recent times however, modern airship designs 

have been improved and their operational efficiency is said to be better than jet aircraft 

in many areas. This leads to the idea that airships can be used to revolutionize the current 

mass public transportation means that are facing several issues of low operational 

effectiveness and worsened traffic congestion. Though recent airship designs have many 

advantages, they are not developed for use as a mass public transportation vehicle. To 

accommodate more passengers onboard, these airship designs might be required to be 

sized or scaled up and this subsequently affects their aerodynamic performance due to 

their modified external shape. Therefore, in developing successful airship designs for 

public transport purposes, it is important for designers to fully understand the effect of 

the design on the performance of the airship. The external shape design changes can be 

aptly captured by design fineness ratio parameter of the airship, which is defined as the 

ratio of the airship's length to its maximum width. Nonetheless, there is a general lack of 

aerodynamic models that are established for airship design purposes and this is the main 

identified gap to be addressed in this study. Specifically, the aim of this research work is 

to establish the effects of design fineness ratio of an airship towards its aerodynamic 

performance.  

 

 

The Atlant-100 airship is chosen as the reference design model for this study. An 

approximate computer-aided design (CAD) model of the Atlant-100 airship is 

constructed using CATIA software and it is applied in computational fluid dynamics 

(CFD) simulation analysis using StarCCM+ software. In total, 36 simulation runs are 

executed with different combinations of values for fineness ratio, altitude and velocity. 

The obtained CFD simulation results are then statistically analyzed using Minitab 

software to evaluate the significance of the design fineness ratio effects and formulate 

the mathematical model between the design fineness ratio and the aerodynamic lift and 
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drag forces of the airship design. From the obtained simulation results, it has been found 

that smaller fineness ratio for Atlant-100 model will correspond to higher aerodynamic 

lift and drag forces. As in the case simulated in this study, the smallest fineness ratio of 

0.93 has been shown to correspond to the highest value of generated lift coefficient while 

having similar comparable value of generated drag coefficient with the other fineness 

ratios. This highlights that a smaller fineness ratio of the airship design is more suitable 

for the mass public use. In addition, from the statistical analysis done, the effects of the 

fineness ratio to the generated aerodynamic lift and drag forces can be said to be 

significant. The constructed mathematical models to capture these effects have also been 

validated with a few goodness-of-fit tests. For the regression model of fineness ratio 

impact on the lift coefficient, it has R2 value of 0.941. When its predictive accuracy is 

tested with some simulated random cases, the maximum error obtained is only 6%. On 

the other hand, for the regression model of the fineness ratio impact on drag coefficient, 

the R2 value is 0.962 and the maximum predictive error from the simulation random 

cases test is only 9%.  

 

 

All in all, it can be concluded that the constructed regression models have a good 

predictive capability to predict the impact of the design fineness ratio on the aerodynamic 

performance of the airship. With the results from this study, designers can make use of 

the regression models to predict the right fineness ratio of the airship design for a given 

mission profile based on expected aerodynamic performance, or vice versa.         
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Kapal udara pernah menjadi cara utama untuk pengangkutan udara  sebelum pesawat jet 

mengambil alih peranannya. Ini berlaku kerana kebimbangan terhadap keselamatan 

operasinya selepas berlakunya beberapa kemalangan maut melibatkan kapal udara. Pada 

ketika ini walaubagaimanapun, rekabentuk moden kapal udara telah ditambah baik dan 

tahap kecekapan operasinya dikatakan lebih baik di dalam pelbagai aspek jika 

dibandingkan dengan pesawat jet. Ini membawa kepada idea yang kapal udara dapat 

digunakan untuk merevolusikan pengangkutan awam sekarang yang sedang menghadapi 

pelbagai isu berkaitan keberkesanan operasi yang rendah serta kesesakan trafik yang kian 

meningkat. Walaupun rekabentuk kapal udara terkini ini mempunyai pelbagai kelebihan, 

namun ia tidak dibangunkan sebagai sebuah kenderaan pengangkutan awam. Untuk 

menampung lebih ramai penumpang, rekabentuk kapal udara ini berkemungkinan perlu 

disaiz atau diskala besar dan ini akan memberi kesan kepada prestasi aerodinamik 

disebabkan oleh perubahan bentuk luarannya. Oleh itu, bagi membangunkan rekabentuk 

kapal udara sebagai pengangkutan awam, adalah penting bagi pereka bentuk untuk 

memahami secara keseluruhannya tentang kesan rekabentuk tersebut terhadap prestasi 

kapal udara. Perubahan bentuk luaran rekabentuk boleh diambilkira melalui parameter 

nisbah kehalusan, iaitu nisbah panjang bagi kapal udara itu kepada lebar maksimumnya. 

Namun, terdapat kekurangan model aerodinamik yang dibangun untuk tujuan reka 

bentuk kapal udara dan ini ialah jurang utama yang dikenalpasti dalam kajian ini. Secara 

spesifiknya, sasaran kerja bagi penyelidikan ini adalah untuk menentukan kesan nisbah 

kehalusan rekabentuk sebuah kapal udara terhadap prestasi aerodinamiknya. 

 

 

Kapal udara Atlant-100 dipilih sebagai model rekabentuk rujukan bagi kajian ini. Satu 

model rekabentuk hampiran berbantu komputer (CAD) bagi kapal udara Atlant-100 telah 

dihasilkan menggunakan perisian CATIA dan ia digunakan dalam analisis simulasi 

komputasi dinamik bendalir (CFD) menggunakan perisian StarCCM+. Secara 

keseluruhannya, 36 kes simulasi telah dijalankan dengan pelbagai kombinasi berbeza 

bagi nilai nisbah kehalusan, altitud dan halaju. Keputusan simulasi CFD yang diperolehi 
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kemudiannya dianalisa secara statistikal menggunakan perisian Minitab bagi menilai 

tahap kepentingan kesan nisbah kehalusan rekabentuk serta membangun model 

matematik antara nisbah kehalusan rekabentuk dengan daya angkat dan geseran 

aerodinamik bagi rekabentuk kapal udara. Dari keputusan simulasi yang diperolehi, 

didapati nisbah kehalusan yang rendah bagi model Atlant-100 adalah berpadanan dengan 

nilai daya angkat dan geseran aerodinamik yang lebih tinggi. Dari kes simulasi yang 

dijalankan dalam kajian ini, nisbah kehalusan yang terendah iaitu 0.93 telah 

menunjukkan nilai yang tertinggi bagi daya angkat dan nilai daya geseran yang hampir 

setara dengan nisbah kehalusan yang lain. Ini menunjukkan bahawa nisbah kehalusan 

rekabentuk kapal udara yang rendah lebih sesuai bagi kegunaan pengangkutan awam. 

Selain itu, daripada analisis statistik yang dilakukan, kesan nisbah kehalusan atas daya 

angkat dan geseran aerodinamik adalah penting. Model matematik yang dihasilkan bagi 

merangkumi kesan ini telah disahkan melalui beberapa ujian ujian kebagusuaian. Bagi 

model regresi kesan nisbah kehalusan terhadap pekali daya angkat, nilai R2 model ini 

adalah 0.941. Apabila tahap kejituan ramalannya diuji dengan beberapa simulasi kes 

rawak, ralat maksima yang telah diperolehi adalah hanya 6%. Sementara itu, bagi model 

regresi kesan nisbah kehalusan terhadap pekali daya geseran, nilai R2 adalah 0.962 dan 

ralat maksima kejituan ramalannya melalui simulasi kes rawak adalah hanya 9%.  

 

 

Secara keseluruhannya, kedua model regresi ini boleh disimpulkan sebagai mempunyai 

tahap kejituan ramalan yang baik untuk kesan nisbah kehalusan rekabentuk ke atas 

prestasi aerodinamik kapal udara. Dengan keputusan yang telah diperolehi daripada 

kajian ini, para pereka bentuk dapat menggunakan model regresi ini untuk meramalkan 

nisbah kehalusan rekabentuk kapal udara yang sesuai bagi profil misi yang diberi 

berdasarkan kepada anggaran prestasi aerodinamik yang diingini, atau sebaliknya.                
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CHAPTER 1 

 
 

INTRODUCTION 
 

 

1.1 Research Overview 

 

 

Transportation has become a necessity in life nowadays. In urban areas, public 

transportation is essential for the growth of social and economics of the society. 

However, as one of the rapidly urbanized countries in ASEAN region, Malaysia is facing 

problems with traffic congestion that has also been affecting the quality and efficiency 

of local transportation. This situation is contributed to the high number of vehicles on 

the road. For example, in the Klang Valley area alone where 4.8 million people live, 

about 48% of them are car owners (Ariffin and Zahari, 2013). Because of the high traffic 

volume, road congestion problems become more severe and leads to higher wasted 

travelling time and cost, fuel consumption, air and noise pollution, and also accident and 

fatality rates (Kasipillai and Chan, 2008).  

 

 

Public transport services have been offered to alleviate this situation, apart from 

providing the transportation access to the society at large, especially for people without 

own private vehicles. Nonetheless, as evident from current situation, the effectiveness of 

public transport services to solve traffic congestion problems in the urban areas has been 

rather low. This is mainly because of several factors that have hindered the full use of 

public transportation options, particularly in encouraging modal shift from private car to 

public transport users.  Several revolutionary ideas have been proposed to improve and 

cope with worsening traffic congestion problems by increasing the quality of public 

transportation services. It is believed that a new alternative public transport means that 

can aptly utilize the third dimension of the transportation network, which is the airspace 

above, can help to further improve the situation. This is closely similar to the concept of 

a personal air vehicle that is proposed for private vehicle (Romli and Rashid, 2015). In 

this case, the concept can be conceived as some sorts of a public "flying bus" and airships 

have been studied to become the transport vehicle. One of the prominent development 

projects for this revolutionary public transport concept is Multibody Advanced Airship 

for Transportation (MAAT) that is supported by the European Union. In this particular 

project, a novel approach in developing a feeder-cruiser system of airship operation is 

researched for the transportation of people and goods (Ilieva et al, 2014).   

 

 

When the urban "flying bus" idea is proposed, the airships seem to be the most suitable 

means for such transportation concept. Airship is no stranger to the public transportation 

field, having served as the commercial air transportation means since early 1930s. 

However, a series of fatal incidents during operation has hindered its design and 

development progress. Of note is the famous Hindenburg incident, where the 

transportation airship caught fire and was destroyed while trying to dock, killing a total 

of 36 people and effectively ending the era of airship in commercial air transportation 

field. Since then, the airships' usage has been limited to mainly tourism and advertising 

purposes (Stockbridge et al, 2012). However, with new technology advancements that 
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have led to the much safer airship operation, its recent comeback has been fuelled by 

market interests and demands (Prentice et al, 2005). There are several recent airship 

researches and development projects discussed in the literatures (Stockbridge et al, 2012; 

Battipede et al, 2013). With these developments and interests on use of airships as 

transportation means, it is not impossible that they could be operated to alleviate traffic 

congestion within urban cities as alternative mass public transportation option (Aminian 

and Romli, 2017). Figure 1.1 illustrates an example vision of having the airships 

operating as public transportation means in urban cities. 

 

Figure 1.1: Anticipated Mission Profile of Public Transport Airships (Aminian and Romli, 2017) 

 

Airships have some advantages that make them suitable for public transportation use. 

Among others, these include the reduction of fuel dependency and lower air pollution. 

The airships also have a great advantage of being able to operate without requiring 

runway facility for take-off and landing, bypassing problems of airport congestion or 

road traffic. Figure 1.2 shows the comparison of fuel consumption and speed between 

airships and several other transportation means. In addition, Table 1.1 tabulates the 

comparison of a few operational characteristics of airships against those of the other 

transportation modes, which further supports the potential benefits of proposed use of 

airship for public transportation. 

© C
OPYRIG

HT U
PM



 

3 

 
Figure 1.2: Airship Fuel Consumption and Speed Versus Conventional Transport Systems 

(Stockbridge, 2012) 
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Table 1.1: Operational Comparison of Airships Against Other Transport Modes (Schafer and Waltz, 

2014) 

Operational 

Characteristics 

Airship 

versus 

Maritime 

Airship 

versus 

Highway 

Airship 

versus 

Railway 

Airship 

versus 

Aerial 

Speed 
Much 

faster 
Faster 

Much 

faster 

Much 

slower 

Load Capacity 
Less 

capacity 

Much 

more 

capacity 

Less 

capacity 

Increased 

capacity 

Load 

Adaptability 

Much 

more 

flexible 

Less 

flexible 

Much 

more 

flexible 

More 

flexible 

Transportation 

Cost 

Much 

more 

expensive 

More 

expensive 

Much 

more 

expensive 

Much more 

economical 

 

 

1.2 Research Background 

 

 

Designing an airship highly depends on aerodynamic theory than the design of aircraft. 

This is because its size is much bigger, it is more expensive and its structure can be hardly 

modified after its complete construction (Munk, 1936). Hence, trial and error design 

method is rather unsuitable for the development of an airship. This puts a big emphasis 

on the understanding of its aerodynamic performance and the ways to effectively predict 

this performance during the design process. Unfortunately, there is a general lack of 

studies that have been done on the aerodynamics of an airship, especially the current 

modern hybrid airship designs (Andan et al, 2012). Some of recent computational and 

experimental studies done on aerodynamics of an airship include Andan et al (2012), 

Wang et al (2010) and Sun et al (2018). However, these studies are made for specific 

airship design points and do not include any parametric study that can help to show the 

trend of the aerodynamic characteristics of the airship beyond its current design. It is 

highly useful to have an insight on changes in the airship's aerodynamic performance as 

its external shape design is modified during the early design stages. This is especially 

true if the current airships that have been developed for different purposes such as 

surveillance, tourism and advertising are to be modified for use as public transportation 

means.  

The modification in external shape can be captured by using design fineness ratio 

parameter, which is defined as the ratio of the length of the body against its maximum 

width. In aerospace, the fineness ratio is used to describe the overall shape of a 

streamlined body and it is one of the common design parameters included in 

aerodynamics and also weights and sizing analyses (Unal et al, 1998). The impact of 

fineness ratio parameter on the aerodynamic characteristics of a body has been 

demonstrated in several studies which include Sahai et al (2014), Kruger et al (2016) and 

also Nicolosi et al (2016). All these studies have shown that different fineness ratio will 

correspond to different aerodynamic characteristics of the body. Essentially, this can be 
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taken to indicate that fineness ratio is an effective parameter to be used to capture the 

modification of the external design shape of the body and the subsequent effects that it 

has on the aerodynamic performance of the body.  

 

 

An example study on the effect of design fineness ratio of an airship on its drag 

performance is shown in Figure 1.3. In airship design, the pressure-difference resistance 

is typically lower as the airship has a much slender and long design. As can be observed 

in Figure 1.3, the increase in fineness ratio will lead to the increase in surface area and 

skin friction around the airship's body area.  

 

 

 
Figure 1.3: Effect of Fineness Ratio On Variation Hulls  

(FAA, 1941) 

 

 

All in all, in order to do a parametric study on the possible effects of changing the airship 

design to its aerodynamic performance, it can be taken that the fineness ratio is a good 

design variable to capture the essences of the impacts. 

 

 

1.3 Problem Statement 

 

 

It has already been argued and discussed in the previous sections on the suitability of 

having airships as an alternative public transport means. In developing a successful 

airship design for public transport purposes, it is important for the designers to fully 

understand the effect of the design on aerodynamic performance of the airship. The 

aerodynamic model of the airship could be markedly different from traditional aircraft 

designs, which many of the latter models have been well-established using historical 

data. To date, there are only few available publications that address aerodynamic 

modelling of airships in the public domain (Mueller et al, 2004). Airship relies on 

buoyancy to generate its static lift and the shape of airship is the main contributor to high 

drag value (Shields, 2010). In addition, the aerodynamic study also plays an important 

role in optimizing weight and design of the airship. Since many of the existing airship 

designs are not meant for mass public transportation, they probably have to be sized or 

scaled up to suit with their new purpose. This is believed to have a large impact on their 
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aerodynamic performance but with lack of established model that capture this 

relationship, it is hard to roughly determine the scale of the impact.  

 

 

In early design process, the designer can make better design decision if more information 

about the design parameters and the effects on the overall performance is available. In 

this case, a good predictive model on how the changes in the airship design can affect its 

overall aerodynamic performance will be very beneficial to the designers. As established 

in the previous section, design fineness ratio has been used and is a good design 

parameter to be applied to capture the link between the modification of the external body 

shape and its effects on the aerodynamic characteristics. It is therefore the main aim of 

this research study to explore and establish the mathematical models that appropriately 

capture the resultant impact trend of airship design on its aerodynamic performance 

through the use of its fineness ratio parameter as the main design variable.     

 

 

1.4 Research Objectives and Hypothesis 

 

 

Up until this point, the motivation or driving need for this research work has been 

sufficiently established. This research is narrowed down to the establishment of the 

mathematical models that capture the effects of the design fineness ratio on the lift and 

drag forces acting on the airship to be designed as an alternative public transport means. 

In conjunction with this, the purpose statement for this thesis work is to develop the 

mathematical models of design fineness ratio effects on aerodynamic characteristics of 

an airship. 

In corroboration with the above work intent, the following research objectives are set up 

as listed below. These research objectives are essential to support the achievement of the 

aim of this study. 

 

 

Research Objective 1: To study the effects of fineness ratio on the aerodynamic 

characteristics of an airship design 

 

 

Research Objective 2: To establish the mathematical models of the fineness ratio effects 

on the airship aerodynamic characteristics 

 

 

Research Objective 3: To validate the mathematical models of the fineness ratio effects 

on the airship's aerodynamic performance 

 

 

In order to address these research objectives, the following research questions have been 

formulated. These questions will subsequently become the foundation of literature 

review study presented in this following chapter. 

 

 

Research Question 1: What is the most suitable type of airship design for use in mass 

public transportation? 
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Research Question 2: How to simulate aerodynamic performance effects of an airship 

model due to varying fineness ratio? 

 

 

Research Question 3: How to develop the mathematical model in relating the airship’s 

aerodynamic performance parameters to its design fineness ratio? 

 

 

The goal of the first research question is to identify and also select the most suitable 

reference airship design for public transportation purposes. This airship design will 

become the test model for the simulation study to observe possible effect of the fineness 

ratio on its aerodynamic performance. The methods and tools to be applied in the 

simulation study are identified through the second research question. Last but not least, 

the third research question is formulated to identify mathematical modelling method that 

can be applied with the obtained simulation results for development of the relationship 

model. 

 

 

It is strongly believed that aerodynamic characteristics of the airship will be affected by 

the changes in its design fineness ratio and thus this is taken as the research hypothesis 

for this study. In order to prove this hypothesis, aerodynamic performance parameters of 

the airship, namely lift and drag coefficients, should be shown to be affected by the 

changing value of the design fineness ratio.  

 
 
1.5 Research Scope 

 

 

A complete modelling of the underlying relationships between the design parameters of 

the airship and its aerodynamic performance is a rather big research area. This is because 

many parameters can be included into the model. In this study, some limitations are 

applied to the problem scope to better refine its focus and align it with the expected 

workload of a Master’s degree.  

 
 
Firstly, this study only considers the design fineness ratio as the representative parameter 

for the airship design or shape. The ratio, which is defined as the length of the airship 

body over its maximum width, is commonly used to describe overall shape of 

streamlined body in the aerospace engineering field. On the other hand, for the 

aerodynamic performance parameters, the ones that will be focused in this study are the 

generated lift and drag coefficients. In addition, altitude and velocity parameters are also 

added into the analysis to represent the operational mission factors. 

 

 

Secondly, the exploration and modelling of the relationship will be done with simulation 

analysis. This means that there is no prototype development or experimental testing 

involved. The simulation set-up will undergo the typical verification stage to ensure that 

its results are comparably accurate. 
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Thirdly, the computational analysis will use basic turbulent models, specific air condition 

and mesh combination due to lack of computer power capabilities to analyse more 

advanced computational analysis interactions. This will result only the required area for 

analysis used in detail refinement to reduce number of cells and computing times. 

Additionally, only specific Reynolds numbers have been selected for incompressible 

turbulent airflow at low air speeds based on certain air conditions between the velocities 

of 100 km/h to 250 km/h and altitudes of 1500 m to 2500 m. Most of the CFD software 

are able to provide high level aerodynamic insight but it still cannot capture the accurate 

full detail of the complex turbulent airflow usually due to computing capabilities. 

 

 

Last but not least, the modelling will involve one reference airship design that will be 

selected among existing ones that are available today. The selection will be made based 

on several characteristics that are taken to be vital for suitability of public transport 

purposes. Therefore, since the study is narrowed down to one specific airship design, its 

results might not be directly applicable to other designs even though the trend may be 

similar. 

 

 

1.6 Thesis Organization 

 
 
Overall structure for this thesis documentation is as follows. This first chapter is meant 

to build the case for relevance of this research study by explaining its motivation. In 

addition, the study scope has been outlined by defining its limitations. Chapter 2 reports 

upon the literature review study that has been done to identify the available information 

and state-of-the-art technologies to assist in the study. The literature review is conducted 

according to research questions, which are tailored to research objectives. In the 

following Chapter 3, the planned research methodology to test this research hypothesis 

is discussed. Chapter 4 presents the details of research work done in this study. Lastly, 

this thesis concludes with Chapter 5 that contains the assessment on the achievement of 

the research objectives and the overall discussion on this research work and suggested 

future work.  
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