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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of 

the requirement for the degree of Doctor of Philosophy 

 

 

ISOLATION AND FUNCTIONAL CHARACTERIZATION OF THE HIGH-

AFFINITY PHOSPHATE TRANSPORTER, PHT1, GENE PROMOTER OF 

OIL PALM (Elaeis guineensis Jacq.)  
 

 

By 

 

 

FARZANEH AHMADI 

 

 

March 2017 

 

 

Chairman: Professor Datin Siti Nor Akmar Abdullah, PhD 

Institute: Tropical Agriculture and Food security 
 

Phosphorus is one of the least available elements for plant growth especially in tropical 

soils. The high-affinity Pi transporters are assumed to be the main system responsible for 

Pi uptake by plant roots. The objectives of the study were to isolate the promoter of the 

high-affinity phosphate transporter gene from oil palm (EgPHT1) and to perform 

functional characterization using transgenic Arabidopsis and transient expression assay 

in oil palm tissues. The third objective was to study the effects of some exogenous signals 

and abiotic factors on the EgPHT1 promoter activity. Analysis of the isolated full-length 

EgPHT1 promoter region (1467 bp) using PLACE and PlantCARE databases revealed 

the presence of a number of putative cis-regulatory elements associated with response to 

Pi and various environmental and biotic-stress signals. Under Pi deprivation, excessive 

quartenary roots formation was observed and the GUS activity was induced to 5.5-fold 

higher compared to under Pi-sufficient condition in the transiently transformed oil palm 

roots but no activity was observed in the leaves. In transgenic Arabidopsis, 29-fold 

greater induction of GUS expression was observed in the Pi-starved roots with no activity 

in other tissues. Increasing the Pi concentration from 0 to 1250 µM resulted in reduction 

of the GUS activity from 9109 to 315.3 pmol/min/mg protein in the transgenic plants. 

As the duration of Pi starvation increased from 1 to 6 days, the GUS activity increased 

from 660 to 9091 pmol/min/mg protein. Increasing exogenous sucrose concentration 

from 0.1% to 3% elevated the GUS expression from 296 to 9151.3 pmol/min/mg protein 

under Pi deprivation. Glucose and fructose as metabolizable sugars could induce the 

promoter activity, but at low level. Pi deficient inducibilty of the promoter was 

maintained even under high salinity up to 100 mM. Application of IAA led to strong 

GUS expression, but BAP suppressed the expression under Pi deprivation. Finally, 

progressive 5ʹ-deletion analyses of the EgPHT1 promoter demonstrated that the region 

from - 690to -1 bp as the minimal promoter is sufficient to drive root- and Pi deprivation-

specific expression in transgenic Arabidopsis. Deletion of the promoter region 

containing the P1BS element significantly reduced the promoter activity in the roots. The 

results also suggest the probable influenced of other positive/enhancer motifs such as W-

box, G-box and E-box for maximal promoter activity. While the root-specific motifs 

ROOTMOTIFTAPOX1 and RAV1AAT BOX are critical for its root-specific activity. 
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This is the first report on the high-affinity Pi transporter gene promoter of oil palm whose 

activity is induced exclusively in the root under low Pi. It contains the conserved 

elements for driving expression in both monocots and dicots and would be a potentially 

valuable candidate as a genetic engineering tool.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk ijazah Doktor Falsafah 

 

 

PENGASINGAN DAN PENCIRIAN KEFUNGSIAN PROMOTER GEN 

PENGANGKUT FOSFAT AFFINITI TINGGI, PHT1 KELAPA SAWIT (Elaeis 

guineensis Jacq.)  

 

 

Oleh 

 

 

FARZANEH AHMADI 

 

 

Mac 2017 

 

 

Pengerusi: Professor Datin Siti Nor Akmar Abdullah, PhD 

Institut: Pertanian Tropika dan Sekuriti Makanan 

 

Fosforus adalah salah satu daripada makronutrien yang paling sukar diserapi untuk 

pertumbuhan pokok di dalam tanah tropika. Pengangkut Pi berafiniti tinggi dianggap 

sebagai sistem utama bertanggungjawab ke atas penyerapan Pi oleh akar tumbuhan. 

Objektif kajian ini adalah untuk memencilkan promoter gen pengangkut fosfat berafiniti 

tinggi dari kelapa sawit (EgPHT1) dan untuk membuat pencirian kefungsian 

menggunakan Arabidopsis transgenik dan esei pengekspresan transien dalam tisu kelapa 

sawit. Objektif ketiga adalah untuk mengkaji kesan isyarat eksogenus dan faktor abiotik 

ke atas aktiviti promoter EgPHT1. Analisis urutan lengkap promoter EgPHT1 (1467 bp) 

yang dipencilkan menggunakan pangkalan data PLACE dan PlantCARE mendedahkan 

kewujudan sejumlah elemen yang dianggap cis-pengawalatur yang berkaitan dengan 

respons terhadap Pi dan pelbagai isyarat alam sekitar dan tekanan biotik dan 

pengekspresan khusus akar. Di bawah deprivasi Pi, pembentukan akar halus yang 

berlebihan dan aktiviti teraruh GUS yang 5.5-kali ganda lebih tinggi berbanding keadaan 

Pi yang mencukupi didapati di dalam akar tetapi tiada aktiviti dikesan dalam daun. 

Dalam Arabidopsis transgenik didapati 29-kali ganda lebih tinggi induksi ekspresi GUS 

di dalam akar yang kebuluran Pi dengan tiada pengesanan aktiviti dalam tisu yang lain. 

Apabila kepekatan Pi ditingkatkan dari 0 ke 1250 µM, aktiviti GUS menurun dari 9109 

ke 315.3 pmol/min/mg protein dalam tumbuhan transgenik tersebut. Apabila tempoh 

kebuluran Pi dipanjangkan dari 1 ke 6 hari, aktiviti GUS meningkat dari 660 to 9091 

pmol/min/mg protein. Peningkatan sukrosa eksogenus dari 0.1% ke 3% meningkatkan 

ekspresi GUS dari 296 ke 9151.3 pmol/min/mg protein dalam keadaan kebuluran Pi. 

Glukosa dan fruktosa sebagai gula yang boleh dimetabolisme boleh mengaruh aktiviti 

promoter, tetapi pada kadar rendah. Pengaruhan semasa kebuluran Pi bagi promoter ini 

kekal dalam kehadiran garam yang tinggi sehingga 100 mM. Aplikasi IAA membawa 

kepada ekspresi tinggi GUS, namun BAP menindas ekspresi semasa kebuluran Pi. 

Akhirnya, analisis penghapusan progresif huluan 5ʹ promoter EgPHT1 menunjukkan 

kawasan dari -690 kepada -1 bp sebagai promoter minima yang mencukupi untuk 

mengarah ekspresi khusus akar dan kebuluran Pi di dalam Arabidopsis transgenik. 

Penghapusan kawasan promoter mengandungi unsur P1BS mengurangkan secara luar 

biasa aktiviti promoter EgPHT1 di dalam akar. Hasil kajian juga mencadangkan aktiviti 
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maksima promoter ini berkemungkinan dipengaruhi oleh motif positif/penggalak seperti 

W-box, G-box dan E-box. Manakala motif khusus akar ROOTMOTIFTAPOX1 and 

RAV1AAT BOX adalah penting untuk aktiviti khusus akar. Promoter EgPHT1 adalah 

promoter pertama yang dilaporkan untuk gen pengangkut Pi afiniti tinggi daripada 

kelapa sawit yang mana aktivitinya diaruhkan secara eksklusif dalam akar di bawah Pi 

rendah. Ia mengandungi unsur terpelihara untuk mengarah ekspresi dalam kedua 

monokot dan dikot dan berpotensi sebagai calon untuk kegunaan dalam kejuruteraan 

genetik.  
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CHAPTER 1 

 

 

1 INTRODUCTION 

 

Oil palm (Elaeis guineensis Jacq.) is a tropical plant belonging to the Aracaceae family 

with its origin in West Africa. It is now grown in more than 20 countries in South Asia, 

Africa and South America (Dransfield et al., 2005). It is the second most important oil 

crop next to soybean and is poised to become the dominant oil crop early in the new 

decade (Sheil et al., 2009). Producing 17.32 million tonnes of crude palm oil on about 

5.74 million hectares of land in 2016, Malaysia is now the second greatest producer 

after Indonesia and the largest exporter of palm oil in the world (MPOB, 2014). Palm 

oil is mainly used for edible and industrial purposes such as for deep fat frying, 

margarine, biofuels, cosmetics, soap, detergents and surfactants (Murphy, 2007). 

 

 

With the rapid expansion of the world’s population, per-capita oil and fat consumption 

is likely to increase tremendously and the oil palm being the most productive and 

profitable oil crop will continue to expand in its cultivation in tropical and subtropical 

regions to meet this demand. Oil palm is recognized as having a high requirement for 

nutrients due to its high dry matter production (Goh et al., 2009). However, the low 

fertility of highly weathered tropical soils needs to be paid greater attention for 

sustainable oil palm cultivation. 

 

 

Phosphorus (P) is an essential macronutrient for plant growth and development. 

Although it is an abundant nutrient in the rhizosphere,it is largely immobile and 

inaccessible for assimilation by plants. This is due to its tendency to associate strongly 

with positively charged cations such as Fe and Al, which are plentiful in acidic 

tropical and subtropical soils and consequently, limits plant growth and crop yield 

(Sanchez et al., 1997; Sanchez and Uehara, 1980). A common agricultural solution to 

this problem is to enrich the soil with Pi-containing fertilizers. Generally, phosphate is 

applied in the form of phosphate rocks at the rate of 1.0-1.25 kg per palm per year (Mutert 

et al., 1999). However, the use of Pi fertilizers is unsustainable and may cause pollution. 

Hence, there is a need to develop crops that either acquire Pi or use Pi more efficiently, 

so that agriculture will be more sustainable with less required Pi fertilizers.  

 

 

To cope with growth under low Pi availability, plants have developed a number of 

morphological, physiological, biochemical and molecular adaptive strategies aimed at 

conservation of use or enhancement of acquisition of Pi (Jain et al., 2007; Raghothama, 

1999; Vance et al., 2003). One of the best-conserved adaptations of plants to low Pi 

supply is the induced expression of high-affinity Pi transporter genes. These are known 

as PHT1 transporters to distinguish them from the low-affinity Pi transporters which are 

in the PHT2 family. Structurally, the PHT1 transporters are integral membrane-spanning 

segments linked by a hydrophilic region (Schachtman et al., 1998; Smith et al., 2000). 

Several high-affinity Pi transporters have been identified in some important crops such 

as rice, barley, wheat, maize, tomato and potato (Gordon-Weeks et al., 2003; Nagy et 

al., 2006; Paszkowski et al., 2002; Rae et al., 2003). Among the PHT1genes examined 
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so far, many are either exclusively or predominantly expressed in root tissues under Pi 

deficiency, consistent with the role in the uptake of Pi from the soil solution ( 

Raghothama and Karthikeyan, 2005; Schünmann et al., 2004a; Xiao et al., 2006). 

However, expression of some of the PHT1 genes in other organs such as stem, leaves, 

flowers and pollen grains indicate that PHT1 proteins are involved not only in Pi 

acquisition from soil but also in distribution between different organs and remobilization 

within the plant (Liu et al., 1998; Mudge et al., 2002; Rae et al., 2003). 

 

 

Transcriptional activation of Pi transporters in response to Pi starvation seems to be a 

major regulatory mechanism for Pi uptake (Jain et al., 2012; Raghothama, 2000). An 

effective approach to study transcriptional regulation is to monitor the activity of reporter 

genes driven by the specific gene promoters (Karthikeyan et al., 2002). Previous studies 

have demonstrated that the isolated phosphate transporter genes contain cis-acting 

elements within their promoter sequences for the binding of specific transcription factors 

to enable them to be regulated in a tissue-specific and Pi-dependent fashion (Miao et al., 

2009; Schünmann et al., 2004a; Tittarelli et al., 2007). 

 

 

Although some high-affinity phosphate transporter (PHT1) promoters have been isolated 

from different dicot and monocot plant species, especially model plants, and their 

regulatory functions well characterized (Miao et al., 2009; Mudge et al., 2002; Tittarelli 

et al., 2007), they have not been studied in oil palm yet. Additionally, there is no report 

on the functional characterization of the promoter of the high-affinity phosphate 

transporter (EgPHT1) gene isolated from oil palm. Studies on the molecular mechanism 

for phosphate uptake is important for oil palm as it is usually grown in acidic tropical 

soils with low bioavailability of Pi which is a major problem limiting  

crop productivity. 

 

 

Hence, the main aims of this study were:  

1) To isolate the promoter of the high-affinity phosphate transporter gene 

(EgPHT1) from oil palm and identify the putative cis-regulatory elements 

involved in inducible activity of the promoter under phosphate deficiency. 

2) To evaluate the root-specific activity of the EgPHT1 promoter activity using a 

transient biolistic-based reporter assay in transformed oil palm tissues and 

transgenic Arabidopsis. 

3) To analyse the functionality of the EgPHT1 promoter in response to Pi signals 

including different concentrations of Pi, duration of Pi deficiency and Pi 

replenishment.  

4) To analyse the induction of the EgPHT1 promoter in response to some 

exogenous signals including sucrose, other nutrients (iron, potassium and 

nitrogen), phytohormones (auxin and cytokinin), light conditions and salinity.  

5) To determine the promoter sequences necessary for EgPHT1 expression in 

transgenic Arabidopsis thaliana using 5' deletion analysis.  © C
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HT U
PM
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