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Studies on the problems pertaining to the rubber industry include looking for ways to 

address the problem of early deformation mainly due to the weakness in the 

mechanical and thermal properties of the rubber. Therefore, seeking for alternative 

fillers (carbonic filler) with desired characteristics such as graphite derivatives is

significant for improving the rubber products performance. It is also worth 

mentioning that in the National Graphene Action Plan 2020, Malaysia plans to invest 

in graphene for the rubber industry in addition to the other various industrial 

applications, thus this work is timely.

However, there are some challenges related to the homogeneity of the dispersion of 

graphene derivatives into dry rubber. Therefore, investigating the compatibility of 

the solvents to reduce agglomeration of fillers in the rubber matrix is important. 

Also, gaining substantial improvement in the crosslinking density of the rubber 

structure and thermal stability are strongly desirable to enhance the rubber 

performance.   

In this study, graphene oxide (GO) was the candidate filler (prepared by the 

Hummer's method), exfoliated in aqueous solution. The selected matrix was 

acrylonitrile butadiene rubber (NBR) which is using for producing various parts in 

the automobile industry. Acetone was the suitable organic solvent for NBR 

dissolution and compatible with GO suspension. Unvulcanised GO/NBR 

nanocomposite was prepared as a first objective to verify the level of distribution GO 

sheets into NBR. Another aim was to investigate the crosslinking formation before 

vulcanisation treatment. The results showed that tensile strength was increased to 

81.2% compared to the unfilled NBR. The improvement is attributed to the ability of 
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GO networks to restrict the mobility of the NBR molecular chains before 

vulcanisation treatment. This result could be used effectively in the applications of 

thermal adhesives.   

Vulcanised GO/NBR nanocomposite was prepared by combining effective 

techniques as a new and facile method. The influence of GO on vulcanised GO/NBR 

nanocomposite properties with different filler contents of GO (0.2 to 2.4 phr - part 

per hundred rubbers) was investigated as the second objective. The results showed 

improvement in the mechanical and thermal properties at 1.2 phr of GO compared to 

unfilled vulcanised NBR. 

For comparison, a commercial filler of carbon black (CB) reinforced vulcanised 

NBR was fabricated in order to study the possibility of replacing it with GO/NBR 

nanocomposite. Graphene nanoplatelets (GNP) were also used to prepare vulcanised 

GNP/NBR nanocomposite for another comparison of using a different type of 

graphite derivative. The comparisons as the third objective were performed at 1.2

phr of GO (the percolation threshold) without chemical functionalisation. The 

morphology analysis, identification of functional groups, and cure characteristics of 

the different nanocomposites were studied. 

Based on the filer contents effect, the tensile strength was increased significantly at 

1.2 phr in the vulcanised GO/NBR, up to ~149% compared to the unfilled vulcanised 

NBR. Moreover, based on the filler type, the improvement in GO/NBR 

nanocomposite was better than those of the vulcanised CB/NBR and GNP/NBR 

nanocomposites of about 69% and 29.5% respectively. These results were confirmed 

by the enhancement in the crosslinking density of 38%, 17% and 29% respectively. 

However, the thermal stability and the glass transition temperatures have the same 

levels of improvement. 

Finally, it is concluded that the desired characteristics of GO and the high level of 

GO dispersion in a polar elastomer such as NBR matrix, have essential roles in the 

enhancement of the GO/NBR nanocomposite properties.
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NANOKOMPOSIT GRAFENA OKSIDA / AKRILONITRIL BUTADIENA 
GETAH DAN SIFAT KIMIK FIZIK MEREKA 

Oleh 

NASSER ABD-ULLAH MOHAMMED 

Disember 2017 

Pengerusi : Profesor Madya Suraya Abdul Rashid, PhD 
Fakulti : Institut Teknologi Maju  

Kajian mengenai masalah berkaitan dengan industri getah termasuklah mencari cara 

untuk meningkatkan prestasi produk getah. Pencarian pengisi alternatif dengan ciri 

yang dikehendaki seperti grafit menggalakkan penggunaannya dalam matriks getah 

pada kandungan yang rendah. Oleh itu, dalam Pelan Tindakan Grafene Nasional 

2020, Malaysia merancang untuk melabur di dalam grafit untuk industri getah dan 

digunakan dalam pelbagai aplikasi industri. 

Walan bagaimanapun, terdapat beberapa cabaran yang berkaitan dengan 

homogenisasi pengagihan graphena derivatif ke dalam getah kering. Oleh itu, 

pencocokan yang baik dari pelarut memberikan kurang pengumpulan pengisi ke 

dalam matriks getah adalah penting pada peringkat pertama.   

Dalam kajian ini, grafena oksida (GO) telah disediakan menggunakan kaedah 

Hummer dan dikelupas menggunakan teknik pensonikan ultra dalam larutan akueus. 

Kemudian, ia disebarkan kedalm getah akrilonitril butadiena (NBR). Pemilihan 

pelarut yang sesuai telah dipertimbangkan semasa menggunakan kaedah 

pencampuran larutan. Seterusnya, kajian sifat nanokomposit GO/ NBR sebelum 

rawatan pemvulkanan telah dilakukan sebagai tujuan pertama. Juga, nanokomposit 

GO/NBR tervulkan disediakan dengan menggabungkan teknik yang berkesan. 

Kemudian, sifat mekanikal dan untuk lima kandungan (0.2 hingga 2.4) bgs 

(bahagian getah seratus) diselidiki sebagai objektif kedua. Sebagai perbandingan, 

karbon hitam (CB) yang diperkuat NBR tervulkan dibikin yang akan menggantikan 

GO / NBR pada masa hadapan kerana hasil buangan CB dan ciri-cirinya yang 

rendah. Tambahan pula, grafena nanoplatelet (GNP) digunakan untuk menyediakan 

nanokomposit GNP / NBR tervulkan bagi membandingkannya sebagai derivatif 
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grafit yang lain. Perbandingan telah dilakukan pada 1.2 bgs GO (kandungan ambang 

perkolasi) dengan tiada fungsi kimia. Penilaian ini termasuk analisis morfologi, 

memperkenalkan kumpulan berfungsi, dan ciri-ciri reologi.   

Keputusan GO / NBR tidak tervulkan menunjukkan bahawa tegasan tegangan 

meningkat kepada 81.2% dan modulus pada kawasan anjal meningkat kepada 238% 

berbanding NBR yang tak diisi. Peningkatan ini disebabkan oleh keupayaan 

rangkaian GO untuk menyekat pergerakan rantaian molekul NBR tanpa rawatan 

pemvulkanan. Hasilnya penting untuk mengesahkan keseragaman penyebaran GO 

dalam NBR yang boleh digunakan dengan berkesan dalam aplikasi perekat. 

Berdasarkan kesan kandungan pengisi, kekuatan tegangan meningkat dengan ketara 

pada 1.2 bgs paut GO kepada  GO / NBR  yang lebih kepadatan ~149% daripada 

NBR tervulkan yang tidak terisi. Selain itu, berdasarkan jenis pengisi peningkatan 

nanokomposit GO/NBR kenaikan itu lebih baik daripada nanokomposit CB / NBR 

dan GNP / NBR  yang lebih mempunyai  69% dan 29.5%masing-masing. Keputusan 

ini disahkan oleh nilai pengurangan nisbah bengkak dan peningkatan dalam 

kepadatan paut silang kepada masing-masing 38%, 17% dan 29%. Kestabilan haba 

dan suhu peralihan kaca juga mempunyai tahap peningkatan yang sama. 

Akhirnya, kekonduksian elektrik GO sangat rendah berbanding pengisi yang lain. 

Akhirhya, dapat disimpulkan itu dari hasil-hasil ini bahawa ciri-ciri GO yang baik 

dan yang diperlukan tinggi serta keseragaman penyebaran GO dalam matriks NBR 

mempunyai peranan penting dalam meningkatkan sifat nanokomposit GO / NBR 

Penambahbaikan. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Background of Study 

The technological classification of polymers divides them into three main types; 

thermoplastic, thermoset, and elastomer (rubber). The first type can be formed by 

heating (melting) and the second type can be prepared by adding chemicals such as 

hardeners to the polymer (Carraher Jr, 2010). However, rubbers have a complex 

preparation process compared to other polymers in which their curing is performed 

chemically and physically. They have divided into thermoplastic and thermoset 

elastomers also. Numerous polymers have been developed including ones with high 

mechanical, thermal and other physical properties when they are prepared in blends 

or composite forms(Sperling, 2005; Visakh et al., 2013).  

Polymeric composites are prepared by the dispersion of the reinforcement materials, 

such as fibres or particulates of various kinds of fillers, into the polymer matrix. In 

the 1940s, polymeric composites were used for military applications and in varied 

fields such as construction and automobiles, so they became alternative materials. 

This is due to their desired combination characteristics involving the polymer matrix 

and the filler (Bergmann & Andrade, 2011; Carraher Jr, 2010; McWilliams, 2006). 

Generally, the type, size, and the aspect ratio of the filler affect the properties of the 

polymer composites. Therefore, any improvement represents the results of the 

interaction between the polymer’s matrices and the filler’s properties at the 

interfacial region. Consequently, different types of composites have been developed 

by modifying the structures and the technical preparation (Das et al., 2010; 

Deepalekshmi et al., 2013; Ponnamma et al., 2013). 

A new class of polymeric composite materials, called polymer nanocomposites 

(PNCs), has been developed; their reinforcement phases have dimensions in the 

nanometer scale. The start of PNCs was in 1990 when Toyota used nano clay 

reinforced Nylon-6 in some parts of their automobiles, to enhance the mechanical, 

thermal and barrier properties (Nguyen & Baird, 2006). Since then, interest has 

increased in both the academic and industrial circles in developing polymer 

nanocomposites with different matrices and diverse types of nanofillers (Mensah et 

al., 2014). Nano-scale fillers with a range of 1-100nm at least in one dimension, such 

as layered silicates, carbon nanotubes (CNTs), carbon nanofillers (CNFs), and 

exfoliated graphite derivatives, etc., are dispersed in most polymers types including

elastomers (Deepalekshmi et al., 2013). Based on their dimensional morphology, 

nanofillers can have iso-dimensional elongated or particle shape. When only one 

dimension is in the nanometer range, then the layered structures have a thickness of a 

few nanometers and length, e.g. clays of layered silicates and layered graphite flakes

(Kodal & Ozkoc, 2013).
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The main advantage of using a nanofiller in conventional composites is the light 

weight (low contents). Also, the large surface area contact increases the interface of 

the polymeric matrix with the nanofiller.  Thus, it enhances the mechanical strength 

and the thermal stability, in addition to the other physical characteristics (Kang et al., 

2014; Preetha et al., 2013). Reinforcement of nanocomposite elastomers by a

nanofiller depends on the interfacial adhesion between the elastomer and the 

nanoparticles. Hence, homogenous distribution of the nanofiller in the polymer 

matrix is one of the challenges that determine the optimal properties of 

nanocomposites. However, the disadvantages caused by using nanoparticles are the 

increase in viscosity, dispersion difficulties (Agglomerations) and some 

environmental impacts (Kodal & Ozkoc, 2013; Zeng et al., 2015).  

Early research on polymer nanocomposites concerned the development of nano clay 

filled thermoplastic and thermoset systems. Then, research expanded into elastomers 

in which the nanofillers used were those such as nano-silica and carbon. Currently, 

the rubber nanocomposite is being developed in the area of nanomaterials as it has 

low weight and is an alternative material with high properties compared to the neat 

elastomer. Therefore, nanocomposite rubber finds application in automobiles, 

aerospace, coatings, electronics, biotechnology, and healthcare (Deepalekshmi et al., 

2013). The last report by Global Industry Analysts (GIA) mentioned that the global 

market for nanocomposites was projected to reach 1.5 billion pounds by the year 

2017. In Malaysia, the National Graphene Action Plan 2020, (Rahim, 2016) reported 

that Malaysia has taken important steps in the use of graphene in nanomaterials to 

develop the industry and support employment opportunities via collaboration with 

local universities and developed countries.   

In rubber nanocomposites, fillers such as clays and carbon black are used to improve 

the rubber properties for extensive applications. The most common application is

tyres and parts of the automobile industry in which numerous researchers were and 

still are attempting to increase the strength, abrasion resistance and thermal 

resistance with low weight and processing. Carbonic and inorganic fillers with the 

vulcanization materials, such as zinc oxide, sulfur, and other standards fillers etc.,

are modifying the material to enhance its mechanical and thermal properties. The 

literature on rubber nanocomposites has shown that the incorporation of nano clay in 

rubbers, both natural rubber (NR) and synthetic rubbers such as styrene butadiene 

rubber (SBR), nitrile rubber (NBR), chloroprene rubber (CR) and ethylene propylene 

diene monomer (EPDM) rubber etc., enhances the mechanical and other properties

(Deepalekshmi et al., 2013; Kodal & Ozkoc, 2013). Still, a few works on rubbers 

based on using nanofillers such as nano silicate, (CNTs) and graphite have been 

carried out in recent years (Bergmann & Andrade, 2011; Thomas & Stephen, 2010).

Also, there are several methods and modified techniques for preparing elastomer 

nanocomposites such as latex blending, solution mixing, direct mixing and in-situ

polymerisation (Kang et al., 2014; Wu et al., 2013). These methodologies have their 

own advantages and limitations; these will be explained later. Most of the reported 

literature on elastomer nanocomposites involves using solution mixing techniques,
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either using latex rubber or dissolution dry rubbers in suitable solvents(Choi et al., 

2005; Kang et al., 2014; Mensah et al., 2015). The process is followed by 

evaporating the solvent, and mastication with the vulcanisation additives. Finally, 

rheological curing and standard moulding conditions should be performed to obtain 

the nanocomposite rubber as in most previous works (Bai et al., 2011; Tarantili, 

2013).

An important aspect of elastomeric nanocomposites development is to achieve a

good grouping of properties; the performance of the polymeric composites depends 

on factors including formulation, the dispersion homogeneity of the filler in the 

matrix, the adhesion between the filler and the polymeric matrix and degree of 

crosslinking. Moreover, thermal stability and glass transition under a range of 

temperatures exchange influences with the mechanical strength in rubber 

nanocomposites. Some studies noted in the literature have reported on the 

mechanical, electrical, thermal and other physicochemical properties of NBR 

reinforced by nanoclay (Balachandran & Bhagawan, 2012; Dick, 2014). Although 

the effects of nano clay content and treatment on the properties of various rubbers 

have been investigated, studies on other types of nanofiller such as graphite 

derivatives are still under research in the academic field and research centers. Also, 

various challenges need to be addressed, such as the dispersion level of the 

nanoparticles in the elastomers, optimise the characteristics and the availability of 

nano graphitic fillers in bulk at low cost (Malas & Das, 2015; Mao et al., 2013).

1.2 Problem Statement  

Rubber is an important material in various industrial applications but it doesn’t have 

the ability to withstand high mechanical and thermal effects without reinforcement. 

Therefore, it has been strengthened by many types of available and necessary fillers 

to improve its properties. The technological reinforcement of rubbers involves 

overcoming obstacles of the rubber composites preparation by using effective and 

compatible fillers. However, various problems such as mechanical deformation and 

thermal decomposition tend to emerged after a period of time.  

The characteristics of rubber also play an important role in selecting it for use in 

various applications with acceptable performance. For example, synthetic rubber 

such as acrylonitrile Butadiene Rubber (NBR) is considered as a backbone in rubber 

used in the automobile industry. However, there are some challenges related to 

improving its resistance to the swelling due to the solvents and oils. Also, although

the vulcanisation treatment is used with some fillers for enhancing NBR structure, 

the mechanical properties are still affected by the types of filler (Deepalekshmi et al., 

2013).

Fillers such as carbon black (CB), silica and other clays are still the main fillers in 

rubber composites and used with relatively high weight percentages. Currently, CB 

faces several challenges since it is derived from crude oil and generates excessive 
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wastes. Also, the functional groups on its surfaces, such as phenol, carboxylic acids, 

and lactones showed incomplete interaction with the rubber matrix. Moreover, the 

tendency of CB particles to aggregate is mostly expected, which reduces its solidity 

in terms of low crosslinking density in the elastomer chains. Therefore, finding new 

oleo chemical independent fillers, such as graphite derivatives, have received 

increasing attention for the replacement of CB (Mao et al., 2013; Sperling, 2005).

This is due to their high characteristics and performance as reported (Li et al., 2012). 

Furthermore, their thicknesses, which are less than 10 nm, make them an extremely 

efficient structural reinforcement in the elastomers.  

Other carbon-based nanofillers such as carbon nanotubes CNTs and expanded 

graphitic (EG) derivatives in nanocomposite rubber exhibit outstanding properties at 

low loading of the filler compared with CB and unfilled rubber compounds (Bai et 

al., 2011; Xie et al., 2005). Some research studied the characteristics of graphite 

derivatives and their influences on the polymers generally and elastomers properties 

in specific.  

Graphene Oxide (GO) is a promising nanomaterial that is commonly prepared by the 

chemical oxidation of graphite. However, there are some problems facing the 

preparation process, such as the agglomeration of the GO sheets in the rubber matrix. 

The agglomerates can be one of the causes of the micro-defects in the rubber 

composites, or they reduce the cross-linking between the NBR chains. This is 

attributed to the incomplete exfoliation of the GO sheets, also due to the 

heterogeneous dispersion of GO in the rubber nanocomposite.  

It is worth mentioning that the direct mixing technique does not provide a 

homogeneous dispersion of nanofiller into the rubber matrix as reported by several 

researches (Fryczkowski et al., 2013; Gudarzi & Sharif, 2012; She et al., 2014; 

Wang; et al., 2013). Therefore, dissolution of dry NBR in a suitable solvent with 

compatible viscosity makes the solution mixing method more effective method. The 

further critical issue should be investigated, is the compatibility between the GO 

suspension and the rubber solution.   

Even though Graphite Nanoplatelets (GNP) is distinct graphitic nanofiller with high 

surface area, its characteristics is dissimilar compared to GO and CB. In this case, 

the comparison among the properties of GO/NBR, GNP/NBR and CB/NBR 

nanocomposites are required. This investigation could provide necessary information 

about the differences in the properties between two different groups of carbonic 

fillers.  

Regarding the thermal properties, early thermal decomposition is a common problem 

facing rubber in high-temperature environments in hoses and seals applications. 

Therefore, dispersion of GO in the GO/NBR nanocomposites could improve the 

thermal stability. Accordingly, enhancement of the cross-linking density can increase 

the glass transition temperature Tg at low specific contents having an essential 
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influence on the storage modulus and the weight residue for the rubber 

nanocomposite, compared with the unfilled NBR (Malas & Das, 2015; Wang et al., 

2012).

This research is an important contribution for studying the possibility of using 

graphite derivatives in the rubber industry. Thus, it has not yet been used 

commercially, because it is still under academic and research work. Based on the 

recent reports, Malaysia has an interest in developing the technology of using 

graphite derivatives in the industry and in the rubber manufacturing in specific (Ali 

et al., 2017). This is one of the main justifications to set this proposal.

1.3 Hypothesis of the Study  

Graphene possesses high physical and chemical characteristics. This encourages the 

study of improving the mechanical and thermal properties of rubber composites 

reinforced by one of the graphite derivatives. Thus, to search the possibility of 

replacing carbon black was hypothesised as in the following; 

A few amount of graphene oxide (between 0.2 to 1.2 phr) can reinforced effectively 

a synthetic rubber such as NBR. The improvement in the mechanical properties is 

attributed to the presence of the functional group of oxygen on the GO surfaces.

Also, the increase of the cross-linking of the rubber chains should increase the 

tensile strength of the GO/NBR nanocomposite.  

The large surface area of GO sheets contributes to increase the interfacial interaction 

between NBR and GO. This characteristic reduces the swelling ratio when the 

GO/NBR nanocomposite is placed in the oil or solvents medium, thus its enhancing 

the crosslinking density of the composite. 

High thermal capacity of GO and its ability to restrict the rubber chains mobility can 

increase the thermal stability of the GO/NBR nanocomposite. Furthermore, the 

increase in the glass transition temperature is attributed to the increment in the 

storage modulus. This result led to increase the resistance of the rubber 

nanocomposite to the thermal decomposition.

1.4 Objectives of the Study 

The present study was undertaken to explore the potential of GO-reinforced NBR in

the preparation of unvulcanised and vulcanised GO/NBR rubber nanocomposites. 

Also, it aimed to compare the characteristics of the vulcanised GO/NBR 

nanocomposite with the other carbonic/NBR nanocomposites.  The salient objectives 

of the current research were: 
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1.4.1 To investigate the effectiveness of the dispersion of GO into NBR (dry) via 

the preparation of an unvulcanised GO/NBR rubber nanocomposite. Also, to 

characterise unvulcanised GO/NBR nanocomposites and their mechanical 

properties for different contents of GO. 

1.4.2 To investigate the influence of GO on the mechanical strength and thermal 

stability of the vulcanized GO/NBR rubber nanocomposite at different low 

contents of GO compared to unfilled NBR. 

1.4.3 To determine the variances in the characteristics and properties between the 

vulcanised GO/NBR nanocomposite and other rubber nanocomposites of 

NBR reinforced by CB and GNP at the optimal contents of GO.

1.5 Scope and Limitation of  the Study 

The scope of this study focuses on investigating the influence of the desired 

characteristics of GO on the physicochemical properties of GO/NBR nanocomposite. 

Therefore, unvulcanised and vulcanised GO/NBR rubber nanocomposites were 

prepared and characterized. This research covers experimental work based on the 

objectives, so the scope is summarized as follows;  

1. Unvulcanised GO/NBR nanocomposites were prepared with five different 

contents of GO. Suitable NBR solution was prepared via selection the 

compatible solvent based on the ability of dissolution NBR and its viscosity. The 

parameters of the sonication process were adjusted in order to exfoliate the GO 

in a compatible aqueous solution. The mixing process and the qualitative of the 

coagulant mixture were monitored. Finally, the verification of the homogeneity 

was observed by characterising the GO/NBR nanocomposites using XRD, FTIR 

and SEM analysis. Also, by testing the tensile strength and the electrical 

conductivity at different contents of GO. The purpose was to verify the evidence

of the functional groups role in the interfacial interaction between the GO sheets 

and the NBR chains. The expected findings could approve the effectiveness of 

using the product for coating and adhesives applications as a novel work.

2. Vulcanised GO/NBR nanocomposites preparation were performed for five 

different contents of GO as the second objective. This is for studying the 

influence of GO on the cure characteristics of the composites compared to 

unfilled NBR at an optimal temperature and time. The enhancement in the 

maximum torque and the curing time at 90% of torque were determine at optimal 

content of GO too. This test was essential to support the crosslinking forming 

interpretation and the curing time .

Furthermore, analysing the vulcanised GO/NBR nanocomposites crosslinking 

density by swelling test, the tensile strength properties by tensile stress-strain 

test, and the storage modulus and loss energy using the DMA tests in the range 
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of temperatures between -50 to +50 oC were performed. The results were 

supported by the morphology observation analysis of the SEM micrograph for 

the fractured surfaces of the tensile test samples .

     In the same context, the thermal decomposition behaviour of the unfilled NBR 

and the GO/NBR nanocomposites, were studied based on TGA and DTG 

analysis. The temperature equivalent to the initial thermal degradation 

temperature (T onset) at percolation threshold of GO contents was significant for 

analysing the thermal/mechanical properties. Also, the heat flow capacity 

provided needed information about Tg using DSC tests at the same five contents 

of GO in the vulcanised GO/NBR nanocomposites. Finally, from the electrical 

properties test of this rubber nanocomposite, high electrical resistance of GO in 

the nanocomposites was approved. 

3.  Influence of dispersion different types of carbonic filler in NBR matrix was

determined in this study. Therefore, two different groups of filler of carbon black 

(CB)-N550 and graphene nanoplatelets (GNP)-C750 were used. The variances in 

the characteristics and properties between the vulcanised GO/NBR 

nanocomposite (which was mentioned above at 2) and other rubber 

nanocomposites of CB/NBR and GNP/NBR at the optimal contents of GO were 

studied. 

In this part of the scope, as a novel work, the study involved analysing and 

comparing the mechanical and thermal properties in order to determine the 

variances in the enhancement due to using different fillers. Morphology, non-

functionalisation, cure characteristics, and swelling ratio reduction of the 

graphitic rubber nanocomposites provide essential indications. This is concerning 

the expected improvement in the tensile strength, elasticity modulus, storage 

modulus, and the hardness property better than the carbon black base rubber 

composite. 

Correspondently, their thermal properties were influenced also by optimal filler 

contents. The thermal decomposition, stability, and Glass transition temperatures 

provide further evidence of the level of the filler dispersion (agglomerations and 

aggregations) in the NBR matrix. Also, analysis can interpret the variances built 

on the structure, size, shape and the surface interaction of the fillers as 

concluded .

The electrical conductivity of the rubber nanocomposites was tested for GNP, 

CB, and GR reinforced NBR. As these fillers were not functionalised, the low 

impedance against the electrical charges in the rubber composites is expected.

The limitations of the study are to improve the mechanical and thermal properties 

of vulcanised NBR and reduce the weight. In the conclusion, the study mainly 

aimed to obtain high performance of rubber parts of automobiles, aerospace, and 

miscellaneous applications in the industry. 
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1.6 Outline of the Thesis  

The thesis consists of five chapters, and the contents of each chapter are as outlined 

below: 

Chapter 1 includes an introduction which presents a brief background of the field of 

elastomeric composites materials focusing on filler types and the nanosize effect. 

Also, the chapter highlights the research problem statements, the hypothesis, the 

research objectives and the scopes of the thesis. 

Chapter 2 reviews the available literature concerning the fundamentals of polymeric 

composites. Also, information is given about NBR, the types of fillers available in 

general and graphene more specifically, and the preparation methods. In the 

characterisation section, the rheological curing and the crosslinking density, in 

addition to the morphology, are demonstrated in this chapter along with the main 

physicochemical properties.  

Chapter 3 covers the materials which were used and the methodology. Also, the 

chapter includes GO exfoliation and dispersion into NBR. The preparation steps of 

unvulcanised (GO/NBR) nanocomposites with different contents of GO are showed. 

The vulcanization treatment of GO/NBR nanocomposite followed by the cure 

characteristics is displayed. For comparison, there is the preparation of another two 

rubber nanocomposites which were CB/NBR and GNP/NBR. The characterisation 

and properties of the rubber nanocomposites are demonstrated using the techniques 

of the rheometer, FTIR, XRD, SEM, the swelling test, tensile tests, DMA, hardness 

tests, TGA-DTG, DSC, and the electrical conductivity using two techniques. 

Chapter 4 represents the results and discussions of all the tests including the data, 

the graphs, and the results. In the first section, the unvulcanised GO/NBR 

nanocomposite preparation includes the dissolution of NBR and the exfoliation of 

GO. The dispersion of the GO into the NBR is demonstrated and discussed. Then, 

there is a verification of the dispersion process by testing the characteristics and 

properties of the unvulcanised GO/NBR nanocomposite at different contents of GO.  

The second section in this chapter is related to a discussion of the effect of the filler 

content on the vulcanised GO/NBR nanocomposites. The following characteristics 

are assessed: the cure characteristics, the morphology using (SEM, XRD, FTIR), the 

crosslinking density, the mechanical properties (tensile strength, storage modulus, 

loss modulus and loss energy (tan δ)), and the hardness property. Also, the thermal 

properties are determined, including the thermal stability (TGA-DTG) and the glass 

transition temperature Tg using DSC tests. In addition, the electrical conductivity 

property was studied.  
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The third section is related to the comparison of the previous section in this chapter 

involving vulcanised GO/NBR nanocomposites, with the other rubber 

nanocomposites which are filled with GNP and CB. 

Chapter 5 includes the conclusions which were achieved and the suggested 

opportunities for future studies. These involve the essential conclusions of 

preparation and characterisation of unvulcanised GO/NBR nanocomposites. Also, 

the vulcanised GO/NBR nanocomposite characteristics and properties are displayed. 

Then, the main variances between the properties of the vulcanised GO/NBR, 

GNP/NBR, and CB/NBR nanocomposites are listed. Finally, future works and 

recommendations are suggested. 
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