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Zinc silicate (Zn2SiO4) has been distinguished as a competent host matrix for dopant 
transition and rare earth ion for efficient luminescence properties in red, green and blue 
spectral zones. The high demand of optical based materials for future development in 
light emitting diode (LED) and display panels has led to growing interest in producing 
Zn2SiO4 based glass ceramic via sol-gel method.  In this researched work, the physical 
and optical properties of cobalt (II) doped zinc silicate were studied in detail. The sample 
was prepared by the sol-gel method at different compositions and heated at different heat 
treatments in the furnace. The preparation began with 2:1 mole ratio of Zn: SiO and with 
a different mole ratio of cobalt (II) doped (0, 1, 2, 3, 4 and 5 mol%) and the sample 
powder underwent heat treatment (600, 700, 800, 900 and 1000 °C) processes. The 
structural, morphological, and optical properties of cobalt (II) doped zinc silicate were 
studied in detail by using X-Ray diffraction (XRD), field emission scanning electron 
microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR), ultra-violet 
visible spectroscopy (UV-Vis), and photoluminescence spectroscopy (PL). XRD
indicates that the formation of zinc oxide changes to zinc silicate (β-Zn2SiO4 and α-
Zn2SiO4) as the sintering temperature increases from 600 to 1000 °C. Furthermore, as 
the dopant increases, the intensity of the sample also increases. This indicates that the 
crystallinity increases as the temperature and dopant increases. FESEM observation 
shows the average grain size increased with the increase of sintering temperature and
when the dopant content increases the sample particle is more agglomerate and compact.
The morphological properties show that the grain size of the samples increases as the 
heat treatment and dopant increases which leads to the increase in its growth rate. The 
FTIR result revealed the presence of Si-O-Si, ZnO4 and SiO4 vibrations in the sample. 
The UV-Vis study shows that, as the sintering temperature increase, the band gap energy 
tends to increase due to the improvement of the crystallinity and quantum size effect, 
while the decreasing band gap due to the separation energy of electron-hole pair.
Meanwhile, as the dopant increases the band gap tends to decrease due to the 
involvement of non-bridging oxygen in the sample particle. The emission of 
photoluminescence spectra of cobalt doped zinc silicate powder after the sample was 
excited at a wavelength of 350 nm shows emission at 3 different peaks which were two 
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blue emissions (420 and 480 nm) and green emission (525 nm). All peaks can be 
associated with d � d transition Co2+ from 4A2 � 4T1 (4P). In summary, it can be 
concluded that the sample of cobalt doped zinc silicate was successfully synthesized via 
sol-gel method and from the characterization, this shows that the sample can be suitable 
for optical devices.
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memenuhi keperluan untuk Ijazah Master Sains
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Oleh

NORHAFIZAH BINTI MOHD RASDI

November 2017

Pengerusi : Yap Wing Fen, PhD
Fakulti  : Institut Teknologi Maju (ITMA)

Zink silika (Zn2SiO4) sebagai satu hos matriks yang kompeten bagi pendopan ion 
peralihan dan nadir bumi untuk sifat-sifat pancaran yang cekap dalam zon spektrum 
merah, hijau dan biru. Permintaan yang tinggi dalam bahan-bahan berasaskan optik 
untuk pembangunan masa depan dalam diod pemancar cahaya (LED) dan panel paparan 
telah membawa kepada penghasilan Zn2SiO4 berasaskan kaca seramik melalui kaedah 
sol-gel. Dalam kerja penyelidikan ini, sifat-sifat fizikal dan optik kobalt (II) didopkan 
zink silika telah dikaji secara terperinci. Sampel telah disediakan oleh kaedah sol-gel 
pada komposisi yang berbeza dan dipanaskan pada rawatan haba yang berbeza dalam 
relau. Persediaan dimulakan dengan nisbah mol 2:1 Zn:SiO dan dengan nisbah mol yang 
berbeza pendopan kobalt (II) (0, 1, 2, 3, 4 dan 5 mol%) dan serbuk sampel menjalani 
proses rawatan haba (600, 700, 800, 900 dan 1000 °C). Sifat-sifat struktur, morfologi, 
dan optik kobalt (II) zink silika yang didopkan telah dikaji secara terperinci dengan 
menggunakan pembelauan X-Ray (XRD), mikroskop imbasan pancaran medan elektron 
(FESEM), jelmaan Fourier infrared spektroskopi (FTIR), ultra-violet spektroskopi yang 
boleh lihat (UV-Vis), dan kefotopendarcahayaan spektroskopi (PL). XRD menunjukkan 
bahawa pembentukan perubahan zink kepada oksida zink silika (β-Zn2SiO4 and α-
Zn2SiO4) apabila suhu pembakaran meningkat dari 600-1000 °C. Tambahan pula, 
apabila dopan meningkat, keamatan sampel juga meningkat. Ini menunjukkan bahawa 
pengkristalan meningkatkan dengan suhu dan pendopan. Pemerhatian FESEM 
menunjukkan purata saiz butiran meningkat dengan peningkatan suhu pembakaran dan 
apabila kandungan pendopan meningkat sampel zarah adalah lebih menggumpal dan 
padat. Pemerhatian morfologi menunjukkan bahawa saiz butiran sampel meningkat 
apabila rawatan haba dan pendopan meningkat yang membawa kepada kenaikan kadar 
pertumbuhannya. Hasil FTIR mendedahkan kehadiran Si-O-Si, ZnO4 dan SiO4 getaran 
dalam sampel. Kajian UV-Vis menunjukkan bahawa, kenaikan suhu pembakaran, 
menyebabkan jurang jalur tenaga meningkat disebabkan oleh peningkatan pengkristalan 
sampel dan kesan saiz kuantum, manakala jurang jalur berkurangan adalah kerana tenaga 
pemisahan oleh pasangan elektron-lubang. Sementara itu, peningkatan pendopan 
mengurangkan jurang jalur disebabkan oleh penglibatan oksigen tidak-rapat dalam 
sampel zarah. Selepas merangsang sampel pada panjang gelombang 350 nm, pancaran 
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kefotopendarcahayaan spektrum oleh serbuk kobalt terdop zink silika menunjukkan 
pancaran di 3 puncak yang berbeza iaitu pancaran biru (420 dan 480 nm) dan pancaran 
hijau (525 nm). Semua puncak boleh dikaitkan dengan peralihan d � d Co2+ dari 4A2 �
4T1 (4P). Secara kesimpulannya, penyediaan kobalt didopkan zink silika melalui kaedah 
sol-gel berjaya dan dari pencirian menunjukkan bahawa sampel ini sesuai untuk peranti 
optik.
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CHAPTER 1
 

INTRODUCTION
 

1.1 General Introduction
 

The development of physics and characterization techniques today has significant
contributions to the production of advanced materials. Nowadays a great deal of interest 
is focused on synthesizing method and optical properties of variety oxide-based 
phosphors for future developments due to the extensive demand in optical base materials 
for its various application in devices such as plasma displays, fluorescent display tubes, 
cathode ray tubes, and light emitting diodes (LED) (Blasse and Grabmaier, 1994; Zhang, 
2006).  For example, the host matrix zinc silicate has been identified as a very suitable 
host matrix for many transition metal and rare earth dopant ions for the efficient 
luminescence. It was first found by Armand Lévy in 1829 and named willemite after the 
ruler of the Netherlands (1813-1840), King Willem I (Schneider et al., 2008).

Zinc silicate (Zn2SiO4), also widely known as willemite, is an important ore of zinc that
belongs to the phenakite group which its orthosilicate ion has trigonal-rhombohedral
symmetry (Rao et al., 2014; Tarafder et al., 2014). Willemite is an ideal phosphors host 
material due to its chemical stability and transparency in the ultraviolet-visible range 
(Zeng et al., 2009). Zn2SiO4 is the most practical phosphors which exist in the form of 
various phases (polymorphs) crystallizing in different space groups (Syono et al., 1971).
It is highly fluorescent (green) under shortwave ultraviolet light. Among all polymorphs, 
the α-Zn2SiO4 phase is common practical crystallizing with rhombohedral lattice 
structure (R3 space group) which can emit green light (Cho et al., 2003; Sivakumar et
al., 2012). Transition metal (TM)- or rare earth (RE)-doped Zn2SiO4 practical phosphors 
can emit different blue, green or red light depending on its ion incorporated and phase 
(α-, β-Zn2SiO4) that forms in the sample (Chang et al., 1980; Ramakrishna et al., 2014; 
Yang et al., 2004). The α-Zn2SiO4 is a much stable phase compared to β-Zn2SiO4 where 
the β-phase has an orthorhombic crystal structure. For this reason, a variety of host 
materials for TM dopants have been analyzed and described in the literature regarding 
diverse practical applications (El Ghoul et al., 2013; Seo et al., 2009; Tsai et al., 1991).

1.2 Transition Metal 
 

At present, Zn2SiO4 doped TM is devoured in high volumes for the most advanced TV 
and flat display panel (FDP) technologies because of its steady radiance efficiency, high 
shading virtue, as well as high chemical and thermal stability (Diao et al., 2011; Liu et 
al., 2010; Yocom et al., 1996). Various studies done on Mn2+ doped Zn2SiO4 is due to its 
ability to emit green emission, which has been used in cathode ray tube and 
electroluminescent devices and advanced technology displays (Kretov et al., 2012; Lin 
et al., 1999; Ouyang et al., 1996; Yang et al., 2003). Mn2+ has similar oxidation and 
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valence states with Zn2+ and could be well distributed as the substituent of Zn2+, therefore 
encouraging green emission to the host matrix (Selomulya et al., 2003). Due to this case, 
TM-doped Zn2SiO4 has attracted extensive research interest in recent years (El Hadri et
al., 2015; Lukić et al., 2008; Ozel et al., 2010).  Transition metals are well-known as 
optically active dopants in crystalline host because they fluoresce broadly in the near-
infrared and also yield stronger optical activity in a crystalline, compared to amorphous 
glass (Pinckney and Beall, 2001).

1.3 Glass Ceramic

Glass-ceramics have an amorphous phase and one or more crystalline phases and are 
produced through controlled nucleation and crystallization of glass. Glass-ceramics have 
the fabrication advantage of glass, as well as special properties of ceramics (Alekseeva 
et al., 2010). It is in contrast to spontaneous crystallization, which is usually not wanted 
in glass manufacturing. Glass ceramics were first found by Stanley Donald Stookey who 
was accidentally overheating of a glass at 900 °C. The material had crystallized 
completely after overheating such that it could not flow like amorphous glass usually
does. It was harder than carbon steel yet lighter than aluminum – in short shatterproof 
(Stookey, 2000).  In glass-ceramics, excellent transparency can be obtained when the 
crystal sizes are much smaller than the wavelength of light or in which the crystalline 
phases and glass have closely matched indices of refraction and the crystals have low 
birefringence (Beall and Pinckney, 1999). In many cases, glass ceramic can also allow 
the growth in the glass of crystals which are difficult or impossible to obtain in single 
crystal form. Glass ceramic are favored due to their high-temperature stability, high 
strength, toughness, high chemical durability, low dielectric constant and loss, as well as 
high resistivity. Therefore, due to its properties, glass ceramic has become well-known
for use in glass-ceramic cookware and bakeware, as high-performance reflectors for 
digital projectors, as building materials in construction and architectural components, 
and optical materials (Ferrari, 2015; Rawlings et al., 2006).

1.4 Problem Statement

Willemite ceramics have been considered to be technologically significant because of its 
electrical conductivity, good mechanical strength, thermal conductivity, and low 
coefficient of thermal expansion (Babu et al., 2014). A great deal of interest has been 
focused on the preparation and optical properties of willemite phosphor for their potential 
application in various display panels. Meanwhile, TM ions doped Zn2SiO4 for future 
visible light emitting diode (LED) are critically reviewed from the degree point of their 
chemical durability, physical properties, phase transformation, optical properties, 
luminescent, thermal and mechanical properties, and elasticity compared with the other
commercial products (Babu et al., 2014; Jüstel, 2003; Kang et al., 2000; Kretov et al.,
2012). Thus, an intensive study is needed on Zn2SiO4 doped TM, such as Mn2+ (Liu et
al., 2010; Wang et al., 2006), Co2+ (Brunold et al., 1996), Pb2+ (Wang et al., 2005), Bi3+

(Yang et al., 2003) and, Fe2+ (Lin et al., 1994). A literature survey showed that there are 
only a few reports on the study of cobalt (II) doped Zn2SiO4.
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Zn2SiO4, following its discovery, have made researchers more interested towards its 
preparations, occurrence, crystallography, luminescence, and its application as an 
industrial fabric. Currently, researchers are focusing on building up new strategies for 
preparing Zn2SiO4 phosphor without utilizing high temperature solid-state reaction paths 
so that they can develop the sample under low energy processes for future advancement 
(Lu et al., 2011; Machida et al., 2011). There are a few methods being employed in 
parliamentary procedures to produce the sample such as hydrothermal method (Kodaira 
et al., 1975; Pozas et al., 2005; Suino et al., 2013), spray pyrolysis (Gabás et al., 2009),
and supercritical method (Takesue et al., 2010) however those methods involve high 
energy, complicated steps, high-cost preparations and long preparation periods. In 
addition, new applications utilizing fine or uniform materials may be discovered and 
developed in the future. Sol-gel method (Krsmanović et al., 2009; Razavizadeh and
Ghorbani, 2016) is one of the methods widely in use nowadays because high purity 
particles can be produced, the particle shape and final form of the sample can be 
controlled, the ability to improve the particle size dispersion, or evolve low temperature
routes. It is of interest to develop novel Zn2SiO4: Co2+ using sol-gel method. The 
structural and optical properties of cobalt (II) doped Zn2SiO4 are thus investigated.

1.5 Research Objectives

The main part of this research was to study the preparation and characterizations of cobalt 
(II) doped Zn2SiO4. The objectives of this research are summarized as follow:
1. To synthesize the cobalt (II) doped Zn2SiO4 using the sol-gel method.
2. To study the effect of sintering temperature towards structural and optical properties 

of undoped and cobalt (II) doped Zn2SiO4.
3. To study the effect of cobalt (II) doping toward structural and optical properties of 

Zn2SiO4.

1.6 Scope of The Study

The scope of the study are stated as follows:
1. Cobalt (II) doped Zn2SiO4 was prepared using the sol-gel method. The following 

stoichiometric equation, Zn(2-x)CoxSiO4 where x = 0, 1, 2, 3, 4 and 5 mol%  of cobalt 
(II) concentration were applied in preparation of the sample. All starting materials 
were used as reference materials.

2. Sintering temperature to prepare Zn2SiO4:Co2+ nanoceramics were varied from 600 
to 1000 °C.

3. The structural properties, which includes phase structure, surface morphology, 
chemical composition, and bonding formation were characterized using XRD, 
FESEM, EDX and FTIR analysis.

4. The optical studies, which includes absorption, optical band gap and luminescence 
intensity of the samples were measured using UV-Vis-NIR and Photoluminescence 
spectroscopy.
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1.7 Outline of Thesis

This thesis begins with Chapter 1, with an introduction to zinc Zn2SiO4 with the addition 
of doping ions such as transition metals and rare earth element. Previous and recent 
studies by other researches were reviewed in Chapter 2. In Chapter 3, methodology in 
preparation and characterization of the research were explained in detail. The results 
were highlighted and discussed including different heat treatments and compositions
towards the physical, structural, and optical properties of cobalt (II) doped Zn2SiO4

briefly in Chapter 4. The conclusion of the study and recommendation for future works 
were given in Chapter 5.
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