SYNTHESIS AND CHARACTERIZATION OF BARIUM HEXAFERRITES DERIVED FROM STEEL WASTE USING SALT-MELT TECHNIQUE

By

NOR NADHIRAH BINTI CHE MUDA

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

December 2017
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

SYNTHESIS AND CHARACTERIZATION OF BARIUM HEXAFERRITES DERIVED FROM STEEL WASTE USING SALT-MELT TECHNIQUE

By

NOR NADHIRAH BINTI CHE MUDA

December 2017

Chairman: Raba’ah Syahidah Azis, PhD
Faculty: Institute of Advanced Technology

This project focused on the synthesis of barium hexaferrites derived from steel waste (also known as mill scales). The steel flakes were ball milling for several hours to form fine powders. The fine powders are purified using magnetic separation technique (MST) and Curie temperature separation technique (CTST). The purified steel waste powder then oxidized at 500 °C to form hematite, Fe₂O₃. Fe₂O₃ powder was characterized using X-ray Fluorescence (XRF), Fourier Transform Infrared spectroscopy (FTIR), X-ray diffraction (XRD) and energy-dispersive X-ray analysis (EDX). The XRD and XRF results indicate the purified powder obtained are iron oxide Fe₂O₃ (ICDD 98006-9763) and show that the obtained powders have high content of Fe₂O₃ for about 99.051%. The Fe₂O₃ were used to synthesize BaFe₁₂O₁₉ by using salt-melt method. The samples were synthesized using different powder to salt weight ratio of BaCO₃ + Fe₂O₃ and ammonium nitrate salt (NH₄NO₃). The NH₄NO₃ was melted at 170 °C. The mixture of BaCO₃ and Fe₂O₃ were added into the NH₄NO₃ melt solution and kept stirring for several hours using magnetic stirrer under control temperature of 170 °C. The heating temperature was then increased up to 260 °C for 24 hours to produce ash powders. The XRD show the peak of BaFe₁₂O₁₉ for all the samples and the presence of small amount of impurity Fe₂O₃ for sample’s ratio 1:5 and 1:6. Based on FTIR spectra, the bands appears at 542.71 cm⁻¹ and 432.48 cm⁻¹ corresponding to metal-oxygen bending and vibration of octahedral sites of BaFe₁₂O₁₉. The FESEM images shows that the grains of the samples appear to stick to each other and agglomerate at different masses throughout the image with the grain size 5.26, 5.88, 6.14, 6.22 and 6.18 µm for ratio 1:3, 1:4, 1:5, 1:6 and 1:7 respectively. From the VSM analysis, the magnetic properties of sample with a ratio 1:3 shows the highest value of coercivity Hc of 1317 Oe, saturation magnetization Ms of 91 emu/g and remnant Mr of 44 emu/g. The dielectric measurement shows that the BaFe₁₂O₁₉ samples have high dielectric loss and low ac conductivity. The complex permeability measured from VNA shows that the real part of permeability in the range of 1.0 to 1.2. The imaginary parts of permeability is in the range of 0 to 0.1. The minimum reflection loss is approximately around -3.9 dB to -4.33 dB for all samples.
The first matching frequency in average of 8.8 GHz are due domain wall resonance for all samples while natural resonance appears at second matching frequency in average of 11.0 GHz. This project is significance have potential for used in the low cost, recycle approached permanent magnet fabrication that potentially used in motor, loudspeakers and electromagnetic (EM) absorber applications.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Sarjana Sains

SINTESIS DAN PENCIRIAN BARIUM HEKSAFERIT YANG DIPEROLEH DARIPADA BAHAN BUAHAN BESI MENGGUNAKAN TEKNIK CAIRAN GARAM

Oleh

NOR NADHIRAH BINTI CHE MUDA

Disember 2018

Pengerusi: Raba’ah Syahidah Azis, PhD
Fakulti: Institut Teknologi Maju

Projek ini memberi tumpuan kepada sintesis barium heksaferit yang diperoleh dari bahan buangan besi (atau dikenali sebagai sisik besi). Sisik besi telah dikisar menggunakan beboa pengisar selama beberapa jam untuk menghasilkan serbuk halus. Serbuk halus tersebut kemudiannya ditulenkan menggunakan teknik pemisahan magnetik (MST) dan teknik pemisahan suhu Curie (CTST). Serbuk sisa besi yang telah ditulenkan kemudiannya dioksidakan pada 500 °C bagi menghasilkan hematit, Fe₂O₃. Serbuk Fe₂O₃ dicirikan dengan menggunakan pendarfluor sinar-X (XRF), Spektroskopi jelmaan Fourier Inframerah (FTIR), belauan sinar-X (XRD) dan analisis serakan sinar-X (EDX). Hasil XRD dan XRF menunjukkan serbuk yang telah ditulenkan adalah oksida besi Fe₂O₃ (ICDD 98006-9763) dan mempunyai kandungan Fe₂O₃ yang tinggi iaitu 99.051%. Fe₂O₃ tersebut digunakan untuk mensintesis BaFe₁₂O₁₉ menggunakan kaedah cairan garam. Sampel di sintesis menggunakan nisbah berat sebuk (BaCO₃ + Fe₂O₃) dan garam amonium nitrat (NH₄NO₃) yang berbeza. NH₄NO₃ dicairkan pada suhu 170 °C. Campuran BaCO₃ dan Fe₂O₃ dimasukkan ke dalam larutan NH₄NO₃ dan di kacau selama beberapa jam dengan menggunakan pengacau magnet pada suhu 170 °C. Suhu pemanasan kemudiannya ditingkatkan kepada 260 °C selama 24 jam untuk menghasilkan serbuk abu. XRD menunjukkan puncak BaFe₁₂O₁₉ untuk semua sampel dan kehadiran sedikit bendasing Fe₂O₃ untuk nisbah sampel 1:5 dan 1:6. Berdasarkan spektrum FTIR, jalur ini muncul pada 542.71 cm⁻¹ dan 432.48 cm⁻¹ menunjukkan ikatan oxygen-metal dan getaran di tapak oktahedron BaFe₁₂O₁₉. Imej FESEM menunjukkan bahawa biji-bijian sampel kelihatan saling melekat dan bergumpal dengan saiz butiran 5.26, 5.88, 6.14, 6.22 dan 6.18 μm bagi nisbah 1:3, 1:4, 1:5, 1:6 dan 1:7. Daripada analisis VSM, sifat magnet dari nisbah sampel 1:3 menunjukkan nilai daya paks, Hc yang tertinggi iaitu 1317 Oe, ketepuan permagnetan, Ms 91 emu/g dan baki magnetisme 44 emu/g. Pengukuran dielektrik menunjukkan bahawa sampel BaFe₁₂O₁₉ mempunyai kehilangan dielektrik yang tinggi dan kekonduksi ac yang rendah. Kebolehtelapan kompleks yang diukur menggunakan VNA menunjukkan nilai purata
1.0 hingga 1.2 untuk kebolehtelapan sebenar. Kebolehtelapan khayalan menunjukkan nilai julat 0 hingga 0.1. Kehilangan pantulan minima adalah sekitar -3.9 dB hingga -4.33 dB untuk semua sampel. Frekuensi padanan pertama iaitu 8.8 GHz adalah disebabkan resonans dinding domain bagi semua sampel manakala resonans semula jadi muncul pada kekerapan padanan kedua iaitu pada purata 11.0 GHz. Projek ini mempunyai potensi digunakan dalam bahan kitar semula berkos rendah untuk fabrikasi magnet kekal, penyerap motor, pembesar suara dan elektromagnetik (EM).
ACKNOWLEDGEMENT

My sincere gratitude and praise goes to Allah, the Almighty, on whom ultimately we depend for guidance and substance. Alhamdulillah with His blessing, I am able to do this work.

My sincere appreciation goes to my supervisor Dr Raba’ah Syahidah Azis for her continuous advice, guidance and support. Thanks for having time and support during this research as well as the preparation of this thesis. I also would like to extend my appreciation to my supervisory committee, Associate Prof Jumiah Hassan and Prof Halim Shaari for their help throughout this project.

I am grateful for the love, prayers, care and support from the most important persons in my life, my family especially my mom, Sakiah binti Yusoff who always be there when I needed. I would like to thank for their understanding and patience to make it possible for me to finish my master degree. Without their support, this thesis would never have finished.

To my colleagues, I appreciate the discussions, fruitful ideas and time spent throughout this research. To my fellow friends, Ain, Syaza, Timie, Dayah, Sakinah, Assikin and Azelah, thanks for everything. Lastly I would like to express my gratitude to ITMA and Faculty of Science staff for their great help and contribution.
I certify that a Thesis Examination Committee has met on (date of viva voce) to conduct the final examination of Nor Nadhirah binti Che Muda on her thesis entitled Synthesis And Characterization Of Barium Hexaferrites Derived From Steel Waste Using Salt Melt Technique in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the (insert the name of relevant degree).

Members of the Thesis Examination Committee were as follows:

Halimah bt Mohd Kamari, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Kamirul Amin b. Mantori, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Anika Zafiah bte Mohd Rus, PhD
Associate Professor
Advanced Manufacturing and Materials Center (Ammc)
Faculty of Mechanical Engineering and Manufacturing
Universiti Tun Hussein Onn
Malaysia
(External Examiner)

(NOR AINI AB. SHUKOR, PhD)
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Rabaah Syahidah binti Azis, PhD
Senior Lecturer
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Jumiah binti Hassan, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Member)

Abdul Halim bin Shaari, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Member)

ROBIAH BINTI YUNUS, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:
• this thesis is my original work;
• quotations, illustrations and citations have been duly referenced;
• this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
• intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
• written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
• there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: ________________________ Date: __________________

Name and Matric No.: ___
Nor Nadhirah binti Che Muda GS42038
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: ________________________________
Name of Chairman of Supervisory Committee: Raba‘ah Syahidah Azis

Signature: ________________________________
Name of Member of Supervisory Committee: Jumiah Hassan

Signature: ________________________________
Name of Member of Supervisory Committee: Abdul Halim Shaari
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvi</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION

1.1 Background study

1.2 Ferrites

1.3 Hexagonal ferrites

1.4 Steel production and waste overview

1.5 Problem statement

1.6 Objective

CHAPTER 2 LITERATURE REVIEW

2.1 Introduction

2.2 Mill scales

2.3 Processing technique of iron oxide from mill scales

2.4 General barium hexaferrites

2.5 BaFe$_{12}$O$_{19}$ from mill scales

2.6 Method processing BaFe$_{12}$O$_{19}$

2.6.1 Sol gel technique

2.6.2 Co precipitation

2.6.3 Mechanical alloying

2.6.4 Hydrothermal synthesis

2.6.5 Salt melt

2.7 Microstructure aspects of ferrites

2.8 Dielectric properties of BaFe$_{12}$O$_{19}$

2.8.1 Effect of frequency on dielectric properties

2.8.2 Effect of temperature on dielectric properties

2.8.3 High frequency of dielectric

2.9 Complex permeability of BaFe$_{12}$O$_{19}$ at high frequency

2.10 Microwave reflection loss

CHAPTER 3 THEORY

3.1 Introduction

3.2 Origin of magnetism

3.3 Classifications of magnetism

3.3.1 Diamagnetism
3.3.2 Ferromagnetism 20
3.3.3 Ferrimagnetism 21
3.3.4 Antiferromagnetism 21
3.3.5 Paramagnetism 21

3.4 Magnetic properties of ferrites 22
3.4.1 Saturation magnetization 23
3.4.2 Curie temperature 23
3.4.3 Magnetic anisotropy 23
3.4.4 Permeability 24
3.4.5 Hysteresis loop 25
3.4.6 Coercivity 26
3.4.7 Remenance 26
3.4.8 Magnetic domain 26

3.5 Dielectric properties 27
3.5.1 Mechanism of electric polarization 28
3.5.2 Conductivity 29

3.6 Reflection loss 30

4 METHODOLOGY 31
4.1 Introduction 31
4.2 Preparation of raw materials, Fe$_2$O$_3$ from mill scales 31
4.2.1 Selection of steel waste product (mill scales) 33
4.2.2 Weighing and crushing 33
4.2.3 Magnetic separation technique (MST) 33
4.2.4 Curie temperature separation technique 33
4.2.5 Oxidation process 34
4.3 Preparation of BaFe$_{12}$O$_{19}$ 34
4.3.1 Materials 34
4.3.2 Synthesis of BaFe$_{12}$O$_{19}$ using salt-melt method 35
4.3.3 Granulation and molding 35
4.3.4 Heat treatment (Sintering) 35
4.4 Sample measurement and characterization 37
4.4.1 Elemental analysis 37
4.4.2 Phase analysis 37
4.4.3 Density measurement 38
4.4.4 Microstructure analysis 38
4.4.5 Measurement of magnetization 38
4.4.6 Measurement of Curie temperature 38
4.4.7 Structural analysis 39
4.4.8 Dielectric properties 39
4.4.9 Vector Network Analyzer characterization 40

5 RESULTS AND DISCUSSIONS 43
5.1 Introduction 43
5.2 Hematite characterization 43
5.2.1 Phase analysis 43
5.2.2 Elemental analysis 46
5.2.3 Structural analysis 47
5.3 Barium hexaferrites characterization

5.3.1 Phase analysis

- 48

5.3.2 Structural analysis

- 52

5.3.3 Microstructure analysis

- 53

5.3.4 Energy dispersive X-ray analysis

- 55

5.3.5 Magnetic properties

- 57
 - 5.3.5.1 VSM analysis
 - 57
 - 5.3.5.2 Curie temperature
 - 61
 - 5.3.5.3 Permeability
 - 62

5.3.6 Dielectric properties

- 64
 - 5.3.6.1 High frequency dielectric (X band frequency range)
 - 64
 - 5.3.6.2 Dielectric (at different temperature)
 - 67
 - 5.3.6.3 Ac conductivity
 - 74

5.3.7 Reflection loss

- 76

6 CONCLUSION AND SUGGESTION

6.1 Conclusions

- 79

6.2 Suggestion

- 79

REFERENCES

- 80

APPENDICES

- 90

BIODATA OF STUDENT

- 96

LIST OF PUBLICATIONS

- 97
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Different method of BaFe({12})O({19})</td>
</tr>
<tr>
<td>3.1</td>
<td>A summary of the different class of magnetic behavior</td>
</tr>
<tr>
<td>4.1</td>
<td>General properties of hematite, magnetite and wuestite</td>
</tr>
<tr>
<td>5.1</td>
<td>Details of the compound name, chemical formula, reference code and crystallographic parameter for (a) mill scales, (b) after CTST and (c) after oxidized at 500 °C</td>
</tr>
<tr>
<td>5.2</td>
<td>Composition of raw mill scales</td>
</tr>
<tr>
<td>5.3</td>
<td>Composition of oxide powder at 500 °C obtained from CTST</td>
</tr>
<tr>
<td>5.4</td>
<td>IR transmittance bands</td>
</tr>
<tr>
<td>5.5</td>
<td>Element oxidized mill scales powder after CTST at 500 °C, its atomic percentage and ratio</td>
</tr>
<tr>
<td>5.6</td>
<td>Values of lattice constant (a) and (c), (c/a) ratio, composition, chemical formula, and space group</td>
</tr>
<tr>
<td>5.7</td>
<td>Values of lattice constant (a) and (c), (c/a) ratio, cell volume (V), X-ray density (\rho_x), bulk density (\rho_b) and porosity % (P) for BaFe({12})O({19})</td>
</tr>
<tr>
<td>5.8</td>
<td>Average grain size of sample at different powder to salt weight ratio</td>
</tr>
<tr>
<td>5.9</td>
<td>Details of magnetic properties of the sample at different powder to salt weight ratio</td>
</tr>
<tr>
<td>5.10</td>
<td>Curie temperature of samples at different powder to salt weight ratio</td>
</tr>
<tr>
<td>5.11</td>
<td>Electromagnetic, magnetic and dielectric properties of samples at different ratio</td>
</tr>
<tr>
<td>5.12</td>
<td>Summary properties of samples at different powder to salt weight ratio</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Comparison between soft and hard ferrites</td>
<td>2</td>
</tr>
<tr>
<td>2.1</td>
<td>Schematic diagram of typical procedure of salt melt synthesis</td>
<td>11</td>
</tr>
<tr>
<td>3.1</td>
<td>The hysteresis loops</td>
<td>25</td>
</tr>
<tr>
<td>3.2</td>
<td>The magnetic domain growth and rotation of demagnetized ferromagnetic material is magnetized</td>
<td>27</td>
</tr>
<tr>
<td>3.3</td>
<td>Ionic polarization</td>
<td>28</td>
</tr>
<tr>
<td>3.4</td>
<td>Dipolar polarization</td>
<td>29</td>
</tr>
<tr>
<td>4.1</td>
<td>Flow chart of Fe₂O₃ preparation from mill scales</td>
<td>32</td>
</tr>
<tr>
<td>4.8</td>
<td>The heating rate of BaFe₁₂O₁₉</td>
<td>36</td>
</tr>
<tr>
<td>4.9</td>
<td>Flow chart of BaFe₁₂O₁₉ using ammonium nitrate salt-melt</td>
<td>36</td>
</tr>
<tr>
<td>4.17</td>
<td>Vector network analyzer (VNA) block diagram</td>
<td>41</td>
</tr>
<tr>
<td>4.18</td>
<td>Scattering parameter description of a two-pot device</td>
<td>41</td>
</tr>
<tr>
<td>4.19</td>
<td>Flow chart of BaFe₁₂O₁₉ formation and characterization</td>
<td>42</td>
</tr>
<tr>
<td>5.1</td>
<td>XRD pattern of (a) raw mill scales, (b) mill scales after Curie temperature separation technique (CTST) process and (c) after oxidized at 500 °C</td>
<td>44</td>
</tr>
<tr>
<td>5.2</td>
<td>FTIR spectra of raw mill scales and oxidized mill scales (hematite)</td>
<td>47</td>
</tr>
<tr>
<td>5.3</td>
<td>EDX spectrum and fraction of weight percent of oxidized mill scales powder after CTST at 500 °C</td>
<td>48</td>
</tr>
<tr>
<td>5.4</td>
<td>XRD pattern of BaFe₁₂O₁₉ at different powder to salt weight ratio (a) 1:3 (b) 1:4 (c) 1:5 (d) 1:6 and (e) 1:7</td>
<td>49</td>
</tr>
<tr>
<td>5.5</td>
<td>FTIR of BaFe₁₂O₁₉ (a) before sinter and (b) after sinter at 1300 °C</td>
<td>52</td>
</tr>
<tr>
<td>5.6</td>
<td>FESEM image of BaFe₁₂O₁₉ at different ratio powder to salt (a) 1:3 (b) 1:4 (c) 1:5 (d) 1:6 and (e) 1:7</td>
<td>54</td>
</tr>
</tbody>
</table>
5.7 The EDX spectrum and pie chart of atomic percentage of the sample powder to salt weight ratio (a) 1:3, (b) 1:4, (c) 1:5, (d) 1:6 and (e) 1:7

5.8 Magnetization curve at different powder to salt weight ratio

5.9 Magnetic coercivity versus powder to salt weight ratio

5.10 Magnetic coercivity versus grain size of the samples

5.11 Powder to salt weight ratio versus remnant

5.12 Powder to weight ratio versus magnetic saturation

5.13 Curie temperature of samples at different powder to salt weight ratio

5.14 (a), (b), (c), (d) and (e) Real and imaginary parts of permeability of sample ratio 1:3, 1:4, 1:5, 1:6 and 1:7 measured at X-band range respectively

5.15 (a), (b), (c), (d) and (e) Real and imaginary parts of permittivity of sample ratio 1:3, 1:4, 1:5, 1:6 and 1:7 measured at X-band range respectively

5.16 (a), (b), (c), (d) and (e) The real parts of relative permittivity for sample powder to weight ratio 1:3, 1:4, 1:5, 1:6 and 1:7 respectively

5.17 (a), (b), (c), (d) and (e) The imaginary part of relative permittivity for sample powder to weight ratio 1:3, 1:4, 1:5, 1:6 and 1:7 respectively

5.18 (a), (b), (c), (d) and (e) The loss tangent for sample powder to weight ratio 1:3, 1:4, 1:5, 1:6 and 1:7 respectively

5.19 (a), (b), (c), (d) and (e) Ac conductivity for sample powder to weight ratio 1:3, 1:4, 1:5, 1:6 and 1:7 respectively

5.20 Reflection loss of sample at X-band range
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ</td>
<td>Complex permeability</td>
</tr>
<tr>
<td>μ'</td>
<td>Real permeability</td>
</tr>
<tr>
<td>μ''</td>
<td>Imaginary permeability</td>
</tr>
<tr>
<td>ANSM</td>
<td>Ammonium nitrate salt melt</td>
</tr>
<tr>
<td>BaFe${12}$O${19}$</td>
<td>Barium hexaferrites</td>
</tr>
<tr>
<td>CTST</td>
<td>Curie temperature separation technique</td>
</tr>
<tr>
<td>EDAX</td>
<td>Energy dispersive X-ray analysis</td>
</tr>
<tr>
<td>Fe$_3$O$_4$</td>
<td>Magnetite</td>
</tr>
<tr>
<td>FESEM</td>
<td>Field emission scanning electron microscope</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier transform infra-red</td>
</tr>
<tr>
<td>G</td>
<td>Gauss</td>
</tr>
<tr>
<td>H_c</td>
<td>Coercivity</td>
</tr>
<tr>
<td>IR</td>
<td>Infra-red</td>
</tr>
<tr>
<td>L_s</td>
<td>Inductance</td>
</tr>
<tr>
<td>M_s</td>
<td>Saturation magnetization</td>
</tr>
<tr>
<td>MST</td>
<td>Magnetic separation technique</td>
</tr>
<tr>
<td>VNA</td>
<td>Vector network analyzer</td>
</tr>
<tr>
<td>VSM</td>
<td>Vibrating sample magnetometer</td>
</tr>
<tr>
<td>XRF</td>
<td>X-ray fluorescence</td>
</tr>
<tr>
<td>α-Fe$_2$O$_3$</td>
<td>Hematite</td>
</tr>
<tr>
<td>ε_r</td>
<td>Relative permittivity</td>
</tr>
<tr>
<td>ε_r'</td>
<td>Real part of permittivity</td>
</tr>
<tr>
<td>ε_r''</td>
<td>Imaginary part of permittivity</td>
</tr>
<tr>
<td>ρ_{exp}</td>
<td>Experiment density</td>
</tr>
<tr>
<td>ρ_{red}</td>
<td>XRD density</td>
</tr>
<tr>
<td>σ_{AC}</td>
<td>AC conductivity</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background study

High volume of industrial waste generated daily. This demands an effective and good management of waste disposal. With a limited number of landfill to handle increasing volume of wastes, there is a need to recycle wastes for other uses. Steel wastes such as mill scales were found having significant values and interest to produce ceramic ferrites (Septiani et al., 2016), cement clinker, negative electrode for alkaline storage batteries, and iron powder for powder metallurgy. Besides, mill scales are used as a raw material in granular refractory and as a material for the road construction (Maghool et al., 2017). The use of steel slags would reduce the production of natural high-quality materials and the impact of environmental from waste disposal can be avoided. Steel slags have mostly been used in surface layers of road pavements because of their high resistance to polishing. Thus, the necessary roughness characteristics of the road surface to be maintained for longer and prevent the skid resistance for road safety (Andreas et al., 2014). In Malaysia about 4.1 million tonnage of crude steel are produced (Global Steel Trade Monitor 2017). Steel play an important role as raw materials used in engineering industries, manufacturing sectors and transportation equipment. Thus, most of the steel waste generated from the industry such as metal engineering, electric and electronic engineering. Some of generated steel waste are recycled and some of them are end up at landfill.

Ceramic ferrites are basic materials of electronic industry. Ceramic ferrites is the material composed of iron oxides and metal oxides which have combined magnetic and electrical properties. Due to increasing interest, ceramic ferrites have been studied for several decades. There are different classes of magnetic materials such as soft ferrites (spinel cubic structure and garnet structures) and hard ferrites (hexagonal structure). Among these classes of magnetic materials, hexagonal ferrites have attracted much attention because of their potential applications in permanent magnet (Gieras 2002), magnetic recording media (Shimizu et al., 2016) and microwave devices (Pullar 2012b). The magnetic properties of ferrite materials are strongly depends on the distribution of metallic ions among crystallographic lattice sites which in turn is sensitive to the synthetic method used. Thus, there are variety of methods have been employed to synthesis them. The most popular method are chemical and mechanical alloying. Both method have their own advantages. Mechanical alloying is the process of mixed the oxides powder are milled together to obtain a homogeneous alloy. The advantage of mechanical alloying is the ability to produce high mass of product. Over the years, chemical method have overcome many of limitation methods of mechanical alloying and conventional ceramic method to produce ferrites such that it produces can control particle size, morphology and microscopic homogeneity since the properties of ferrites depends on the microstructure. Chemical routes is the method that the reaction initiates from a chemical solution. The powder processing of chemical method usually in a
liquid/solid medium which may produce intermediate, finely divided mixed hydroxides or mixed organic salts to assist in the subsequent diffusion process. In this study, ammonium salt melt method was employed to synthesis $\text{BaFe}_{12}\text{O}_{19}$.

1.2 Ferrites

Ferrites commonly compose of magnetic oxide, which contain iron oxide as a primary component (Pullar 2012a). Ferrites generally contain pure iron and contains 0.06 percent carbon at room temperature. The first magnetic materials available were lodestone which was discovered in early 800 B.C. Lodestone is the natural state of magnetic materials and in the form of magnetite (Fe_3O_4). The materials were named Magnes because it was found in the district of Thessaly, Magnesia (Cullity and Graham 2011). The study of ferrites for its structural, electrical and magnetic properties has started in the year 1930 for practical use. Since then, there are tons research on ferrites.

Ferrites are ferromagnetic materials which has broad range of applications such as microwave absorber (Sugimoto et al., 1998), motor (Gieras 2002), electronic devices (Qinghui et al., 2012). Ferrites are hard, brittle and ceramic like materials with magnetic properties which make them very useful in electrical devices. Generally, there are two type of ferrite, which are soft ferrites and hard ferrites. Both soft and hard ferrite have different magnetic properties. Soft magnetic ferrite can easily magnetized and demagnetized. Soft ferrites material has low coercivity, high magnetic saturation, and narrow hysteresis loop. Compare to soft ferrite, hard ferrite are hardly demagnetized and magnetized. Hard ferrites have wide hysteresis loop and high coercivity (Figure 1.1). Hard ferrites are widely used in magnetic recording media (Shimizu et al., 2016), microwave devices (Mu et al., 2008) and permanent magnet such as motor, loudspeakers and refrigerators magnet (Campbell 1994).

![Figure 1.1: Comparison between soft and hard ferrites](Carter and Norton 2013)
1.3 Hexagonal ferrites

Among the different classes of magnetic materials, hexagonal hard ferrites have attracted much attention because of their potential application in permanent magnets, microwave devices, motor and magnetic recording media (Pullar 2012a). All hexagonal ferrites are ferrimagnetic materials and their properties intrinsically depend on crystalline structures. Generally, the chemical formula for hexagonal ferrites can be written as MO₂Fe₄O₁₃, where M is divalent ions such as Ba²⁺ and Sr²⁺. There are different types of hexagonal ferrites such as M-type, Z-type, W-type and X-type. However, in this study, M-type ferrites only considered. Mostly W, X and Z type are not interesting economically because of the difficulty of processing. Hexaferrites have a magnetoplumbite structure. The large hexagonal unit-cell contains 64 atoms which are 38 oxygen ions, 24 Fe ions and 2 divalent ions. Basically, the structure of m-type ferrite is the mixture of cubic closed packed and hexagonal packed layer formed by divalent ion and oxygen ions. The 24 Fe ions are distributed into octahedral, tetrahedral and trigonal bipyramidal sites.

1.4 Steel production and waste overview

Since 1960, the production of steel has increased almost five-fold (World Steel Commitee 2016). In 2017, the steel production are expected to grow with marginal increase of 0.4%, to reach 1,494 million tonnes (Korb and Nyeberg 2016). In ASEAN, Malaysia is the fourth largest steel consuming country with a domestic steel consumption of 10 million tonnes. In Malaysia, the steel industry is divided by two categories namely Long Products and Flat Products (Lee 2015). Long products mostly used in the construction sector while the flat products are for industrial applications includes tubes, pipes, hot and cold rolled plates and sheets, coils and vessels. The production process of steel waste product from industry produce about two times more raw materials than the final product. There are huge amount of steel waste materials in form of scales, slags and dust (Martín et al., 2012). Globally, about 13.5 million tons of mill scales will be generated every year (Gaballah et al., 2013). About 500 kg/ton of solid wastes of different nature are generated in most iron and steel making processes. About 2% of mill scale produced in these solid wastes (Bagatini et al., 2011). Over the decades, the dust, slag and sludge produced by integrated steel plants was called waste. Due to intensive re-utilization of these wastes this term has been replaced with by-product (Çamci et al., 2002). The details about mill scales will be discussed in Chapter 2.
1.5 Problem statement

Hard ceramic ferrites (BaFe$_{12}$O$_{19}$) have gained great attention due to their potential applications as motor and electronic device applications. Mill scales are known for their iron richness have gaining interest in past years as a raw materials in preparing ferrites (Shahrani et al., 2016; Daud et al., 2016; Azis et al., 2015). The magnetic properties of ceramic derived from steel waste (mill scales) are usually low compared to commercial based BaFe$_{12}$O$_{19}$ (Low et al., 2015; Afghahi et al., 2017). Hameed et al., (2015) utilized quenching-melting technique to prepare hard magnetic glass ceramic from rolling mill scales wastes with magnetization of 16.665 emu/g and coercivity of 1001 G. Other literature reported the magnetic properties of the magnetization and coercivity of 43 emu/g and 860 G respectively using mechanical alloying (Azis et al., 2014). Thus, in this study we intend to study the magnetic properties of BaFe$_{12}$O$_{19}$ by using chemical routes; ammonium nitrate salt melt method (Topal et al., 2006; Topal 2009). The study about microstructure, structural, magnetic, and dielectric properties are important to produce good performance of BaFe$_{12}$O$_{19}$ steel waste based. A research on low cost of BaFe$_{12}$O$_{19}$ are very significance since it can synthesis from steel waste material for electronic application. Yet, according to the previous reported on barium ferrite synthesis, none of these synthesis were reported on preparing BaFe$_{12}$O$_{19}$ from steel waste produced. This new approach of BaFe$_{12}$O$_{19}$ using chemical routes, ammonium nitrate salt melt method with an adjustment powder to salt weight ratio.

1.6 Objective

The interest of this research is to study the Barium Hexaferrites properties derived from steel waste using ammonium salt melt technique. Thus, this research embarks the following objectives:

I. To extract magnetic particle Fe$_2$O$_3$ from recycled steel waste.
II. To produce BaFe$_{12}$O$_{19}$ using magnetic particle from recycle steel waste by using ammonium salt melt technique.
III. To study the structural, microstructure, magnetic, and dielectric properties of BaFe$_{12}$O$_{19}$.
REFERENCES

