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Cancer chemotherapy drugs are not specific on their metabolic pathways to the 
cancer cell. Therefore, there is a need to overcome this disadvantages by 
applying targeted drug delivery using composite nanoparticles. Similarly, 
tamoxifen citrate (TAM) also suffer from this disadvantages. TAM is a drug used 
for breast cancer treatment. So, current investigations are proposing the usage 
of magnetite nanoparticles (MNP) as an anti-cancer drug carrier because of its 
biocompatibility, ultrafine size, and its superparamagnetic nature. In this study, 
poly (d,l-lactice-co-glycolide acid) (PLGA) were used to encapsulated both MNP 
and TAM to form a multifunctional nanoparticle which have both the 
superparamagnetic properties of MNP and therapeutic ability of TAM. MNP 
were synthesized via the co-precipitation method. Then, it was coated with oleic 
acid (OA) to reduce the aggregation and it was abbreviated as OAMNP. 
Formation of functionalized OAMNPs with TAM using PLGA (TAM-PLGA-
OAMNP) was obtained by oil in water emulsion evaporation technique. The 
XRD pattern showed that crystalline phase of the MNP is inverse spinel cubic 
of Fe3O4. After modification, FTIR spectra revealed that the TAM were 
successfully encapsulated into the PLGA matrixes. By using TEM, the particles 
size is determine by 131 ± 28 nm for TAM-PLGA-OAMNP. The VSM analysis 
for TAM-PLGA-OAMNP showed no hysteresis loop indicating 
superparamagnetic characteristic. This projects also presents a discussion on 
the optimum condition for colloid stability for TAM-PLGA-OAMNPs based on the 
aggregation and sedimentation. Finally, TAM released behavior is studied. 
TAM-PLGA-OAMNPs followed a biphasic phase released.  
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NANOPARTIKEL  

Oleh 

EMMELLIE LAURA ALBERT 

Mei 2017 

Pengerusi : Che Azurahanim Che Abdullah, PhD 
Fakulti : Institut Teknologi Maju 

Ubat kemoterapi kanser adalah tidak spesifik dalam laluan metabolik ke sel 
kanser. Oleh itu, untuk mengatasi masalah ini, kaedah penyampaian ubat 
secara spesifik dengan menggunakan komposit nanopartikel digunakan. 
Tamoxifen citrate (TAM) juga menghadapi masalah yang sama. TAM adalah 
ubat untuk merawat kanser payudara. Oleh itu, TAM  diperkenalkan dengan 
kaedah penyampaian ubat secara spesifik untuk mengatasi masalah tersebut 
dan juga meningkatkan ketepatan penyampaian TAM. Partikel magnetit (MNP) 
dicadangkan sebagai pembawa TAM kerana kelebihannya iaitu biokompatibiliti, 
saiz yang kecil dan juga ciri-ciri superparamagnetiknya. Dalam kajian ini, poly 
(d,l-lactice-co-glycolide asid) (PLGA) terkandung kedua-dua bahan iaitu MNP 
dan TAM untuk menghasilkan partikel bersaiz kecil yang mempunyai kebolehan 
supeparamagnetik, MNP dan kebolehan terapeutik, TAM. MNP dihasilkan 
melalui kaedah mendakan. Kemudian, ia disaluti dengan oleik asid (OA) untuk 
mengurangkan aggregasi dan ia dinamakan sebagai OAMNP. PLGA menyaluti 
kedua-dua OAMNP dan TAM dengan menggunakan kaedah emulsi minyak 
dalam air. XRD data menunjukan bahawa MNP mempunyai kubus spinel 
terbalik Fe3O4. Setelah modifikasi, spektra FTIR mendedahkan bahawa TAM 
berjaya di kandung oleh PLGA matriks. Dengan menggunakan TEM. Saiz 
partikel TAM-PLGA-OAMNP adalah 131 ± 28 nm. Analisis data VSM 
menunjukan tiada histeresis justeru TAM-PLGA-OAMNPs mempunyai 
kebolehan superparamagnetik. Walaubagimanapun, Ketepuaan magnetik bagi 
MNP berkurang daripada 57.923 emu/g ke 8.3096×10-3 emu/g disebabkan 
kandungan yang tidak magnetik iaitu PLGA dan TAM yang mengurangkan 
ketepuaan magnetik dan juga kandungan OAMNP yang sedikit. Projek ini juga 
membincangkan kondisi optimimum untuk stabiliti koloid TAM-PLGA-OAMNPs 
melalui aggregasi dan sedimentasi yang berlaku. Sifat pelepasan TAM daripada 
TAM-PLGA-OAMNPs menpunyai sifat dua fasa.  
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CHAPTER 1

INTRODUCTION

1.1 Background 

Cancer chemotherapy drug is a powerful drug used to treat cancer. Many of 
these powerful drugs are lethal to the normal cell given that their dosage is 
high enough to cause undesirable effects such as cell death to the surrounding 
healthy cells. Cancer chemotherapy drugs are not specific on their metabolic 
pathways to the cancer cell. They suffer from poor tissue specificity and non-
specific toxicity. Therefore, researchers around the world have begun to 
improve the delivery of chemotherapeutic agents to the cancer cells by 
applying targeted drug delivery using composite nanoparticles (Rahman & 
Hasan, 2015)  

The composite nanoparticles used for the targeting chemotherapy drug are 
delivered via intravenous pathway to increase their effectiveness in treating 
the unhealthy tissue and thus reduce the general toxicity (Xu et al., 2015). 
Additionally, they also help patients to be more comfortable during treatment 
by avoiding repetitive injection to improve favorable drug pharmacokinetics 
(Horcajada et al., 2010)  

In many cases, administering drugs in conventional dosage form, for example, 
using pills and tablets, must achieve successive doses to maintain the drug 
activity for a long period of time. Figure 1.1 shows the profile for the 
concentration of the drug dosage in the body as a function of time.  

Figure 1.1: Comparison of drug concentration profiles versus time using 
conventional administration form and controlled drug delivery form 
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In Figure 1.1, the drug concentration in the human body follows a pattern 
where the initial drug concentration has a sharp increase and is eventually 
diminished as time passes. The sharp increase in the drug concentration is 
reached the toxic level where it is considered dangerous for humans. After 
some time, the concentration of the drug starts to decrease until it reaches 
below therapeutic range therefore a new dose of drug needs to be taken by 
the body. This situation can be overcome by controlled targeted drug delivery. 

The main purpose of controlled release systems is to obtain a more effective 
therapy by avoiding large fluctuation in drug concentration and to reduce the 
needs of multiple (Pérez de Diego, 2005). In the late 1970, scientist have 
proposed the usage of nano- and micro-sized particles such as magnetic 
nanoparticles (MNP) as a drug carrier for targeted drug delivery (Mosbach & 
Schröder, 1979; Widder, Senyei, & Scarpelli, 1978). They had conjugated 
MNPs with cytotoxic drugs where they introduced the particles to the subject 
by intra-arterial or intravenous injection. External magnetic fields with high 
gradient are applied to the subject to lead and concentrate the drugs at a 
chosen site. Since then, MNPs have been continuously studied for the last 40 
years (Chomoucka et al., 2010). In addition, drug can be released at a desired 
site via the enzymatic activity or through changes of the pH, temperature, and 
osmolality causing the increased uptake of the drug to the desire sites such as 
tumor cell (Alexiou et al., 2000).  

It was discovered that it is a great challenge to move this technology from the 
animal studies to a successful clinical trials owing to the limited theoretical 
parameter, yet with a good theoretical technique and advancement in 
experiment design, it could prompt an achievement in targeted drug delivery 
by utilizing MNPs (Grief & Richardson, 2005). 

In order to design a good MNPs suitable for targeted drug delivery, many 
factors must be taken into consideration such as the physical parameters 
including the field geometry and strength of the magnetic field applied, the size 
of the particles, and also the binding capacity of drug or genes  (Neuberger et 
al., 2005). In addition, the human physiological parameters, for instance, like 
the body weight, the vascular supply, the rate of the blood flow, and the depth 
of the target sites also affect the design of the MNPs. Yang et al., (2006) 
studies had discovered that the force of the blood pressure and the applied 
magnetics forces can affect the localization of the MNPs. Therefore, a strong 
permanent magnet such as neodymium iron boron (Nd-Fe-B) is used as the 
source of the magnetic field gradient, which is placed on a specific area outside 
the human body.  

The drug carrier is usually introduced into the body through the circulatory 
system and remains at a chosen site only if the applied magnetic field can 
overcome the rate of the blood flow in the capillaries (0.05 cm/s) and arteries 
(10 cm/s). As it remains at the chosen site, the carried drug is then released 
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via an enzymatic process or through the changes to the physical environment 
(i.e. temperature, pH or osmolarity). Then, it will be absorbed by the endothelial 
cell of the specific tissue or the tumor cells thus killing the tumor cells 
(Mahmoudi et al., 2011). So, these projects are aiming to attach MNPs to anti-
cancer drug, so that it can be used for biomedical application such as targeted 
drug carrier. 

1.2 Problem Statement 

Cancer is one of the deadliest disease in the world. It is the second leading 
cause of death coming shortly after the heart disease.  It is expected in this 
coming few years that cancer will be the number one cause of death in the 
world. Among women, breast cancer is the number one cause of death 
regardless of their ethnicity background. In 2015, about1.6 million new cases 
were diagnosed to have breast cancer and about 560 thousand will die from 
breast cancer. In every 19 women pick at random, one of them will develop 
breast cancer.  These represents a terrifying picture of how common breast 
cancer is in Malaysia. Every year, around 5000 Malaysian women aged 
between 30-60 years are identified to have breast cancer. Besides the unclear 
causes of cancer, its treatment is remarkably daunting and challenging. 

Conventional cancer treatments including radiotherapy and chemotherapy 
have their own devastating side effect to the immune system and dividing cells, 
which can cause nausea, vomiting, diarrhea, and anemia. Additionally, 
chemotherapy is very lethal to the normal tissues because of its inability to 
differentiate between the normal cells and cancer cells. Thus, damaging both 
the cancerous cells and the healthy cells. On the other hand, radiation therapy 
for cancer treatment is using a high energy beams to induce the death of 
cancer cells. The beam generated by the machine is focused on a specific 
point of the body. Subsequently, terminating the genetic material that controls 
the ways the cells grow and divide (Baskar et al., 2012). There are many 
disadvantages of using conventional method to treat cancer, therefore, it is 
crucial to improve the current treatment of cancer. Novel therapeutic options 
should be developed in order to deal with these side effects.  

It has been discovered that nanotechnology, especially nanoparticulate used 
for targeted drug delivery systems is a promising technique to overcome the 
disadvantage of the current treatment (Zhang & Chatterjee, 2007). Moreover, 
they stated that cancer treatment can be improved by using nanocarrier. For 
instance, lipophilic drugs can be stabilized in circulation and their circulatory 
duration is increased by controlling the drug release. Thus, the drug toxicity 
owing to the high concentration of the drug in periodic doses can be overcome. 
The idea here is to synthesize nanoparticles and functionalize it so that it can 
be applied in targeted drug delivery. Below is the objectives of targeted drug 
delivery system (Danhier, Feron, & Préat, 2010) 
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1. Increasing the drug concentration via passive and active targeting  
2. Decreasing the drug concentration in normal cell to a safe level for 

human 
3. Improving the pharmacokinetics and pharmacodynamics profiles  
4. The drug solubility permits intravenous administration.  
5. Reducing the drug release during delivery  
6. Increasing the drug release at targeted tissue  
7. Improving the stability thus reducing drug degradation  
8. Internalization and intracellular delivery can be improved. 
9. Biocompatible and biodegradable  

 
 

There are several types of nanoscale drug delivery, which are presented in 
Figure 1.2. Nanoparticles have solid and spherical compounds. They can be 
categorized into nanocapsules and nanospheres. Nanocapsules are vesicular 
systems that entrapped the drug inside its membrane while nanospheres are 
matrix particulates with drugs spread all over the system (Mishra, Patel, & 
Tiwari, 2010). Polymeric micelles are amphiphilic block copolymers making a 
nanosized core/shell composition in an aqueous solution according to Cho et 
al.,(2008). The hydrophobic core is a place for hydrophobic drugs while the 
hydrophilic shell stabilizes the hydrophobic core hence creating water soluble 
nanoparticle. Park et al., (2008) stated that liposomes are spherical self-closed 
structures consist of lipid bilayers with an aqueous phase inside. Liposomes 
can bind with both hydrophilic and hydrophobic drugs inside it. On the other 
hand, Balogh (2007) described dendrimers as a highly branched regularly in 
three-dimensional macromolecules. For intravenous administration, 
nanoparticles are considered a better agents than larger microparticles as they 
can easily aggregate. Furthermore, they can go over the smallest capillaries 
with 5-6 μm diameter. 
 

 
 

Dendrimers Liposomes 

Nanoparticles Polymeric micelles 
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Polymer-drug conjugates 

Figure 1.2:Types of nanoscale for drug delivery (Source: Danhier et al., 
2010) 

.

1.3 Thesis Objectives 

The main objective of the present project is to encapsulate oleic acid (OA) 
coated MNPs and anti-cancer drug, tamoxifen citrate (TAM), together using 
poly (d,l-lactide-co-glycolide acid) (PLGA) so that it can used for biomedical 
application. 
 
 
1.4 Specific Objectives 
 
 
This project is conducted specifically based on the following objectives: 

1. To synthesize and evaluate the characteristic of MNPs by co-
precipitation technique and encapsulate the MNPs using OA (OAMNP). 

2. To synthesize superparamagnetic polymeric nanoparticle made up of 
OAMNPs and TAM through PLGA encapsulation also known as TAM-
PLGA-OAMNPs and its blank nanoparticles abbreviated as PLGA-
OAMNP and evaluate their properties. 

3. To study the drug release behavior of TAM from TAM-PLGA-OAMNPs. 
4. To assess the colloidal stability of the superparamagnetic polymeric 

nanoparticle in terms of different sonication time, temperature, and 
concentration of the nanoparticle inside phosphate buffer saline (PBS), 
complete media (CM) for cell culture, and cell culture media without 
serum (CMWS). 
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