UNIVERSITI PUTRA MALAYSIA

CHARACTERIZATION AND DIELECTRIC PROPERTIES OF PURE AND Er-SUBSTITUTED Bi₄Ti₃O₁₂ AND Bi₅CrTi₃O₁₅ AURIVILLIUS CERAMICS

WONG YICK JENG

ITMA 2018 1
CHARACTERIZATION AND DIELECTRIC PROPERTIES OF PURE AND Er-SUBSTITUTED Bi$_4$Ti$_3$O$_{12}$ AND Bi$_5$CrTi$_3$O$_{15}$ AURIVILLIUS CERAMICS

By

WONG YICK JENG

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

January 2018
All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

CHARACTERIZATION AND DIELECTRIC PROPERTIES OF PURE AND Er-SUBSTITUTED Bi$_4$Ti$_3$O$_{12}$ AND Bi$_5$CrTi$_3$O$_{15}$ AURIVILLIUS CERAMICS

By

WONG YICK JENG

January 2018

Chair: Jumiah binti Hassan, PhD
Faculty: Institute of Advanced Technology

Aurivillius compounds, (Bi$_2$O$_2$)$_{2+}$[(Bi$_{n-1}$Ti$_n$O$_{3n+1}$)$_{2-}$, are structurally constructed by alternately stacking n perovskite units of (Bi$_{n-1}$Ti$_n$O$_{3n+1}$)$_{2-}$ with two fluorite-like layers of (Bi$_2$O$_2$)$_{2+}$. Three-layered Bi$_4$Ti$_3$O$_{12}$ system in this kind of compounds is extensively studied. In most cases, the modification is done by doping various types of rare-earth ions at Bi-site to reduce high electrical conductivity for more effective ferroelectric dielectrics. Unlike the three-layered Aurivillius systems, attention to the four-layered Aurivillius systems isostructural with Bi$_5$FeTi$_3$O$_{15}$ is scarce, especially Bi$_5$CrTi$_3$O$_{15}$. Such a case involving the magnetic Cr$^{3+}$ ions was only reported from the analysis of powder neutron diffraction data.

Preparation of the Aurivillius compounds is commonly done by conventional solid state reaction method. However, this economical method requires high-temperature solid state reaction to reach single phase. Here, high energy milling at room temperature for the mechanosynthesis of Aurivillius compounds with Bi$_4$Ti$_3$O$_{12}$, Bi$_{3.25}$Er$_{0.75}$Ti$_3$O$_{12}$, Bi$_5$CrTi$_3$O$_{15}$, and Bi$_4.25$Er$_{0.75}$CrTi$_3$O$_{15}$ compositions is employed. These mechanosynthesized samples subjected to a range of sintering temperatures (700 – 1000°C) are systematically compared with the conventionally processed samples in terms of X-ray Diffraction (XRD) analysis, Field Emission Scanning Electron Microscopy (FE-SEM) observation, dielectric, and density measurements.

All the comparative results obtained point to the effectiveness of the high energy milling over the conventional processing technique as a more efficient solid-phase formation method in synthesizing the studied samples. This is first demonstrated by room-temperature XRD studies. The sintering temperature at which these mechanosynthesized compounds show complete formation of the pure phase are comparatively lower than those of conventionally processed samples as a result of the mechanochemical reaction by high energy milling.
Consequently, FE-SEM observations of the mechanosynthesized samples reveal distinct grain morphologies contrary to the plate-like grain morphologies in the conventionally processed samples, in which the latter display grain growth with increasing sintering temperature controlled by anisotropic grain boundary. For the mechanosynthesized Bi$_4$Ti$_3$O$_{12}$, triple junction controlled grain growth is evident, while the grain growth of mechanosynthesized Bi$_{4.25}$Er$_{0.75}$CrTi$_3$O$_{15}$ is discovered for the first time being governed via multiple ordered coalescence of nanocrystals. Also, the mechanochemical effect triggers the improved sintered densities in the mechanosynthesized samples. For this reason, the mechanosynthesized samples exhibit much higher room-temperature dielectric constant values in the frequency range of 100 Hz – 10 MHz.

All samples prepared by both methods exhibit common feature in the variation of dielectric constant with respect to frequency, which follows directly from the relationship between densification and sintering temperature. Moreover, very similar intrinsic frequency dispersion of dielectric responses could be observed, with the physical basis for the interpretation is based on the empirical fitting model of relaxation functions: Cole-Cole, Cole-Davidson, and Havriliak-Negami.

Besides comparison of methods, the influence of Er$^{3+}$ dopant on the parent structure of Bi$_4$Ti$_3$O$_{12}$ and Bi$_5$CrTi$_3$O$_{15}$ is also investigated. The marked contributions of this dopant are from the grain growth inhibition due to the grain boundary segregation of Er$^{3+}$ and weak low-frequency dispersion of the dielectric constant in the doped samples. These experimental evidences reflect the suppression of oxygen vacancies, which is also manifested in one of the fitting parameters, the reduced direct current conductivity.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PENCIRIAN DAN SIFAT DIELEKTRIK SERAMIK AURIVILLIUS Bi$_4$Ti$_3$O$_{12}$ DAN Bi$_5$CrTi$_3$O$_{15}$ DALAM BENTUK TULEN DAN Er-TERTUKAR GANTI

Oleh

WONG YICK JENG

Januari 2018

Pengerusi: Jumiah binti Hassan, PhD
Fakulti: Institut Teknologi Maju

Penstrukturan sebatian Aurivillius, (Bi$_2$O$_2$)$_{2+}$ (Bi$_{n-1}$Ti$_n$O$_{3n+1}$)$_{2-}$, adalah secara susunan selang n unit perovskit (Bi$_{n-1}$Ti$_n$O$_{3n+1}$)$_{2-}$ dengan dua lapisan bak fluorit (Bi$_2$O$_2$)$_{2+}$. Sistem Bi$_4$Ti$_3$O$_{12}$ berlapis tiga dalam sebatian jenis ini telah dikaji dengan meluas. Dalam kebanyakan kes, ia diubah suai menerusi pendopan dengan pelbagai ion nadir bumti tapak-Bi untuk mengurangkan kekonduksian elektrik demi feroelektrik dielektrik yang lebih berkesan. Tidak serupa dengan sistem Aurivillius berlapis tiga, perhatian kepada sistem Aurivillius berlapis empat yang isostruktur dengan Bi$_5$FeTi$_3$O$_{15}$ adalah kurang, terutamanya Bi$_5$CrTi$_3$O$_{15}$. Kes seperti ini yang melibatkan ion magnet Cr$^{3+}$ hanya dilaporkan dari analisis data pembelauan neutron serbuk.

Penyediaan sebatian Aurivillius biasanya dilakukan dengan menggunakan kaedah tindak balas keadaan pepejal konvensional. Namun begitu, kaedah berekonomi ini memerlukan tindak balas keadaan pepejal yang bersuhu tinggi untuk mencapai fasa tunggal. Di sini, kisaran bertenaga tinggi pada suhu bilik digunakan untuk sintesis mekanik sebatian Aurivillius dengan komposisi Bi$_4$Ti$_3$O$_{12}$, Bi$_3$Er$_0.75$Ti$_3$O$_{12}$, Bi$_5$CrTi$_3$O$_{15}$, dan Bi$_4$Er$_0.75$CrTi$_3$O$_{15}$. Perbandingan sistematik bagi sampel-sampel tersintesis secara mekanik ini yang disinter pada julat suhu di antara 700 – 1000°C dengan sampel-sampel terproses scara konvensional adalah dari segi analisis belauan sinar-X (XRD), cerapan mikroskopi elektron pengimbasan pancaran medan (FE-SEM), pengukuran dielektrik, dan ketumpatan.

Kesemua keputusan perbandingan yang diperoleh menghala tuju kepada keberkesanan kisaran bertenaga tinggi sebagai kaedah pembentukan fasa pepejal yang lebih cekap daripada teknik pemprosesan konvensional dalam mensintesiskan sampel kajian. Demonstrasi pertama ini adalah dari kajian XRD pada suhu bilik. Suhu pensinteran di mana sampel-sampel tersintesis secara mekanik ini
menunjukkan pembentukan lengkap fasa tulen adalah lebih rendah berbanding dengan sampel-sampel terproses scara konvensional akibat tindak balas kimia mekanik menerusi kisaran bertenaga tinggi.

Oleh sebab itu, permerhatian FE-SEM bagi sampel-sampel tersintesis secara mekanik mendedahkan morfologi butiran berbeza yang berlawanan dengan morfologi bak plat pada sampel-sampel terproses scara konvensional, di mana morfologi yang kedua memaparkan pertumbuhan butiran dengan peningkatan suhu pensinteran yang dikawal secara sempadan butiran anisotropi. Bagi sampel Bi$_4$Ti$_3$O$_{12}$ yang tersintesis secara mekanik, pertumbuhan butiran kawalan simpangan tiga adalah jelas, sedangkan pertumbuhan bijian Bi$_{14.23}$Er$_{0.75}$CrTi$_3$O$_{15}$ dikawal melalui koalesens tertib berganda hablur nano merupakan penemuan yang pertama kali. Juga, kesan kimia mekanik mencetuskan penumpatan tersinter yang lebih baik dalam sampel. Atas sebab ini, sampel-sampel tersintesis secara mekanik menunjukkan nilai pemalar dielektrik yang lebih tinggi pada suhu bilik dalam julat frekuensi 100 Hz – 10 MHz.

Kesemua sampel yang disediakan oleh kedua-dua kaedah menunjukkan sifat sepunya dalam perubahan pemalar dielektrik merujuk kepada frekuensi, yang mana ianya mengikut secara langsung dari perhubungan antara penumpatan dan suhu pensinteran. Tambahana pula, serakan frekuensi intrinsik sambutan dielektrik yang sangat serupa dapat diperhatikan, dengan asas fizikal untuk pentafsiran adalah berdasarkan model penyuaian empirik fungsi kesantaian: Cole-Cole, Cole-Davidson, dan Havriliak-Negami.

Selain daripada kaedah bandingan, pengaruh dopan Er$^{3+}$ terhadap struktur induk Bi$_4$Ti$_3$O$_{12}$ dan Bi$_5$CrTi$_3$O$_{15}$ turut disiasat. Sumbangan ketara dopan tersebut adalah dari perencatan pertumbuhan butiran disebabkan oleh pengasingan sempadan butiran Er$^{3+}$ dan serakan frekuensi rendah pemalar dielektrik yang lemah dalam sampel-sampel terdop. Bukti-bukti eksperimen ini mencerminkan penindasan kekozongan oksigen, dinyatakan dalam salah satu parameter penyuaian juga, iaitu kekonduksian arus terus terkurang.
ACKNOWLEDGEMENTS

I would first and foremost like to thank my supervisor, Associate Professor Dr. Jumiah Hassan, for her kind guidance, patience, and advice throughout my PhD candidature in bringing this research to fruition. Not to forget Associate Professor Dr. Chen Soo Kien and Dr. Ismayadi Ismail for their precious time being part of my supervisory committee. I owe my deepest gratitude to the late Associate Professor Dr. Mansor Hashim, who has been so supportive in contributing insightful discussion and inspiring me consistently since year 2009. His way of explaining things clearly and vividly will be in the memory.

It was a great time to be in the scientific community at laboratory 231 and I would like to individually thank each one of my immediate colleagues for creating such a great working environment: Alex See, Wong Swee Yin, Tan Foo Khoon, Leow Chun Yan, Dayang, Mutia, Rafidah, Lee Chian Heng, and Tasiu. Among them, I am personally indebted to Alex, whose invaluable suggestions during the planning and development of this research are highly credited; and Swee Yin, for her guidance on the experimental and characterization procedures. It is a pleasure to pay high regards to Madam Norhaslinda for the collection of XRD data, and Madam Sarinawani for the FE-SEM images. Their technical assistances are greatly appreciated.

Last but not least, I would like to dedicate this work to my family. It would not have been possible for this work to see the light of the day without their moral support, encouragement, and loving understanding.

This PhD research is supported under continuing sponsorship from the Ministry of Higher Education, Malaysia, through a Fundamental Research Grant Scheme no. 01-02-14-1599FR.
I certify that a Thesis Examination Committee has met on 10 January 2018 to conduct the final examination of Wong Yick Jeng on his thesis entitled "Characterization and Dielectric Properties of Pure and Er-Substituted Bi$_5$Ti$_3$O$_{12}$ and Bi$_5$Cr$_3$O$_{13}$ Aurivillius Ceramics" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Zainal Abidin bin Talib, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Abdul Halim bin Shaari, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Hishamuddin bin Zainuddin, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Raouf Abdle Hamid El-Mallawany, PhD
Professor
Menofia University
Egypt
(External Examiner)

\[Signature\]

NOR AINI AB. SHUKOR, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 28 March 2018
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Jumiah binti Hassan, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Chen Soo Kien, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Member)

Ismayadi bin Ismail, PhD
Research Officer
Institute of Advanced Technology
Universiti Putra Malaysia
(Member)

Mansor bin Hashim, PhD
Associate Professor
Institute of Advanced Technology
Universiti Putra Malaysia
(Member)

ROBIAH BINTI YUNUS, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:
- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: ________________________ Date: __________________

Name and Matric No.: Wong Yick Jeng GS38080__________
Declaration by Members of Supervisory Committee

This is to confirm that:
- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: __________________________
Name of Chairman of Supervisory Committee: Jumiah binti Hassan

Signature: __________________________
Name of Member of Supervisory Committee: Chen Soo Kien

Signature: __________________________
Name of Member of Supervisory Committee: Ismayadi bin Ismail

Signature: __________________________
Name of Member of Supervisory Committee: Mansor bin Hashim
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>TABLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xix</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxxix</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xl</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION
1.1 Research Background 1
1.2 Understanding of Bismuth-based Aurivillius Ceramics 1
1.3 Problem Statement 8
1.4 Scope of Research 9
1.5 Dissertation Organization 10

2 LITERATURE REVIEW AND THEORY
2.1 Synthesis of Bi$_4$Ti$_3$O$_{12}$-end Member and Its Higher Homologous Derivatives 11
2.2 Conventional Milling Process via Solid State Reaction 11
2.2.1 Synthesis of Bi$_4$Ti$_3$O$_{12}$ 11
2.2.2 Synthesis of Bi$_5$FeTi$_3$O$_{15}$ and Bi$_5$CrTi$_3$O$_{15}$ 16
2.3 Mechanochemical Process via High Energy Milling 20
2.3.1 Synthesis of Bi$_4$Ti$_3$O$_{12}$ 20
2.3.2 Synthesis of Bi$_5$FeTi$_3$O$_{15}$ 25
2.4 Effect of Processing Route 26
2.5 Effect of Sintering 28
2.6 Effect of Substitution 34
2.7 Presentation of Dielectric Data in Frequency Domain, Measurement Concept, and Dielectric Phenomena 38
3 MATERIALS AND METHODS
3.1 Raw Materials 49
3.2 Sample Processing Flowcharts 50
3.3 Detailed Experimental Descriptions 51
 3.3.1 Stoichiometric Calculation and Weighing 51
 3.3.2 Milling Stage 51
 3.3.3 Calcination, Grinding, and Sieving 52
 3.3.4 Powder Compaction 53
 3.3.5 Sintering 54
3.4 Characterization Techniques 54
 3.4.1 Thermogravimetric Analysis (TGA) 54
 3.4.2 X-ray Diffraction (XRD) 54
 3.4.3 Field Emission Scanning Electron Microscopy (FE-SEM) 56
 3.4.4 Energy Dispersive X-ray Spectroscopy (EDS) 56
 3.4.5 Transmission Electron Microscopy (TEM) 57
3.5 Density Measurement 58
3.6 Dielectric Measurement 59
 3.6.1 Measurement Preparation and Design 59
 3.6.2 Measurement Setup and Principle of Operation 59
 3.6.3 Key Operation Functions 61
 3.6.4 Performing Test Fixture Compensation 61
 3.6.5 Display of Measurement Results, Permittivity, and Modulus Calculations 63
 3.6.6 Measurement Sequence 65
3.7 Error Analysis of Dielectric and Density Measurements 66

4 RESULTS AND DISCUSSION
4.1 Starting Powder Mixing: Conventional Milling 67
 4.1.1 Phase Constitution – XRD Analysis 67
 4.1.2 Microstructural Feature – TEM Analysis 71
 4.1.3 Thermal Behaviour – TGA Analysis 73
4.2 Starting Powder Mixing: High Energy Milling 75
 4.2.1 Phase Constitution – XRD Analysis 75
 4.2.2 Microstructural Feature – TEM Analysis 78
 4.2.3 Thermal Behaviour – TGA Analysis 81
4.3 Reaction Sintering – After Conventional Milling and Calcination 83
 4.3.1 Phase Constitution – XRD Analysis 83
 4.3.2 Microstructural Feature – FE-SEM Analysis 93
4.4 Reaction Sintering – After High Energy Milling 111
 4.4.1 Phase Constitution – XRD Analysis 111
 4.4.2 Microstructural Feature – FE-SEM Analysis 118
4.5 Frequency Response of Dielectric Properties and Electrical Impedance

4.5.1 Room-temperature Frequency Dependence of Dielectric Response

4.5.2 Room-temperature Frequency Dependence of Electrical Impedance

4.5.3 Method Comparison Based on Room-temperature Dielectric Response

4.5.4 Elevated-temperature Frequency Dependence of Dielectric Response

4.6 Summary of Comparison of Different Methods for XRD, FE-SEM, Density, and Dielectric Studies

5 SUMMARY, CONCLUSION AND RECOMMENDATIONS FOR FUTURE RESEARCH

5.1 Summary of Main Findings

5.2 Perspective for Future Research

BIBLIOGRAPHY

APPENDICES

BIODATA OF STUDENT

LIST OF PUBLICATIONS
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Activation energies of conductivity and relaxation in each microstructural region. All values were determined based on the best of slopes of the Arrhenius plots</td>
</tr>
<tr>
<td>2.2</td>
<td>A list of Raman bands corresponding to the sintered Bi$_4$Ti3O${12}$ powder with their respective descriptions</td>
</tr>
<tr>
<td>2.3</td>
<td>Some relaxor parameters of BaBi$_4$Ti3O${15}$ ceramics prepared via SSR and MCA techniques</td>
</tr>
<tr>
<td>2.4</td>
<td>Mean grain sizes and relative densities of Bi$_4$Ti3O${12}$ ceramics under different sintering methods with different sintering conditions</td>
</tr>
<tr>
<td>2.5</td>
<td>Dc conductivity σ_{dc} of Bi$_{4-x}$Er$_x$Ti3O${12}$ ceramics with varying Er contents</td>
</tr>
<tr>
<td>2.6</td>
<td>Activation energies E_a of Bi4Ti3O${12}$ and Bi${3.25}$La$_{0.75}$Ti3O${12}$ ceramics in each microstructural region</td>
</tr>
<tr>
<td>3.1</td>
<td>Physical properties of the starting oxide powders</td>
</tr>
<tr>
<td>3.2</td>
<td>List of samples prepared in this research</td>
</tr>
<tr>
<td>3.3</td>
<td>Time allocated for a complete sintering process</td>
</tr>
<tr>
<td>3.4</td>
<td>Internal components of X-ray diffractometer with their setting conditions</td>
</tr>
<tr>
<td>3.5</td>
<td>Principal control settings of the analyzer</td>
</tr>
<tr>
<td>3.6</td>
<td>Evaluation of dielectric measurement accuracy and operating temperature for the associated source characteristics</td>
</tr>
<tr>
<td>4.1</td>
<td>Comparison of some prominent peak profiles for β-Bi$_2$O$_3$ in terms of intensity variation, 2θ position, and peak breadth, as measured from the diffraction data of Bi$_2$O$_3$-TiO$_2$ powder mixtures before and after conventional milling, as well as milled together with Er$_2$O$_3$</td>
</tr>
<tr>
<td>4.2</td>
<td>Comparison of the observed reflections for rutile-TiO$_2$ in terms of intensity variation, 2θ position, and peak breadth, as measured from the diffraction data of Bi$_2$O$_3$-TiO$_2$ powder mixtures before and after conventional milling, as well as milled together with Er$_2$O$_3$</td>
</tr>
<tr>
<td>4.3</td>
<td>Comparison of some prominent peak profiles for β-Bi$_2$O$_3$ in terms of intensity variation, 2θ position, and peak breadth, as measured from the diffraction data of Bi$_2$O$_3$-Cr$_2$O$_3$-TiO$_2$ powder mixtures before and after conventional milling, as well as milled together with Er$_2$O$_3$</td>
</tr>
</tbody>
</table>
4.4 Comparison of the observed reflections for rutile-TiO₂, in terms of intensity variation, 2θ position, and peak breadth, as measured from the diffraction data of Bi₂O₃-Cr₂O₃-TiO₂ powder mixtures before and after conventional milling, as well as milled together with Er₂O₃

4.5 List of phase reaction completion with the corresponding T_{TGA} and T_{DTG} observed in the conventionally milled Bi₂O₃-TiO₂, Bi₂O₃-Er₂O₃-TiO₂, Bi₂O₃-Cr₂O₃-TiO₂, and Bi₂O₃-Er₂O₃-Cr₂O₃-TiO₂ during heating, showing small difference between experimental and theoretical weight loss.

4.6 List of phase reaction completion with the corresponding T_{TGA} and T_{DTG} observed in the high energy milled Bi₂O₃-TiO₂, Bi₂O₃-Er₂O₃-TiO₂, Bi₂O₃-Cr₂O₃-TiO₂, and Bi₂O₃-Er₂O₃-Cr₂O₃-TiO₂ during heating, showing small difference between experimental and theoretical weight loss.

4.7 Comparison of (00l) peak intensity for BTO-CM sintered at 900, 950, and 1000°C.

4.8 Comparison of the values of unit cell volume and orthorhombicity between BTO-CM and BTO:Er³⁺-CM, as evaluated from the Rietveld refinement at room temperature using space group Fmmm.

4.9 Results of lattice parameters and unit cell volume for BCTO-CM associated reaction intermediates of Bi₄Ti₃O₁₂ and Bi₆Cr₂O₁₅ after calcination and sintering, as evaluated from the Rietveld refinement at room temperature.

4.10 Comparison of the values of lattice parameters and unit cell volume between BCTO-CM and BCTO:Er³⁺-CM, as evaluated from the Rietveld refinement at room temperature using space group Fmmm₂.

4.11 Elemental ratio results for the sintering of BCTO-CM in the temperature range of 700 – 850°C. The results are based on the semi-quantitative EDS data from the point scan of three locations labelled as “A”, “B”, and “C” in Figure 4.25(a – d), with the O element is left out of account.

4.12 Elemental ratio results for the sintering of BCTO-CM in the temperature range of 900 – 1000°C. The results are based on the semi-quantitative EDS data from the point analysis of the three locations labelled as “A”, “B”, “C” in Figure 4.25(e – g), with the O element is left out of account.
4.13 Comparison of lattice parameters and unit cell volume between BTO-HM and BTO:Er$^{3+}$-HM after Rietveld refinement of XRD

4.14 Comparison of lattice parameters and unit cell volume between BTCO-HM and BTCO:Er$^{3+}$-HM after Rietveld refinement of XRD

4.15 Er/Bi atomic ratio results for the sintering of BTO:Er$^{3+}$-HM in the temperature range of 700 – 1000°C. The results are based on the semi-quantitative EDS data from the point analysis of the two locations labelled as “A” and “B” in Figure 4.39(a – g)

4.16 Bi/Ti atomic ratio results for the sintering of BCTO-HM in the temperature range of 700 – 1000°C. The results are based on the semi-quantitative EDS data from the point analysis of the two locations labelled as “A” and “B” in Figure 4.41(a – g)

4.17 Er/Bi atomic ratio results for the sintering of BCTO:Er$^{3+}$-HM in the temperature range of 700 – 1000°C. The results are based on the semi-quantitative EDS data from the point analysis of the three locations labelled as “A”, “B”, and “C” in Figure 4.42(a – g)

4.18 Comparison of methods for the sintered Bi$_4$Ti$_3$O$_{12}$ in the frame of structural, density, microstructural, and dielectric parameters recorded at room temperature

4.19 Comparison of methods for the sintered Bi$_{3.25}$Er$_{0.75}$Ti$_3$O$_{12}$ in the frame of structural, density, microstructural, and dielectric parameters recorded at room temperature

4.20 Comparison of methods for the sintered Bi$_5$CrTi$_3$O$_{15}$ in the frame of structural, density, microstructural, and dielectric parameters recorded at room temperature

4.21 Comparison of methods for the sintered Bi$_{4.25}$Er$_{0.75}$CrTi$_3$O$_{15}$ in the frame of structural, density, microstructural, and dielectric parameters recorded at room temperature

C1 Values of physical parameters used in the fitting of room-temperature frequency dependence of ε_r' and ε_r'' for the sintered BTO-CM presented in Figure 4.45(a) and (b) by applying Equation (4.1)

C2 Estimated uncertainty values of each fitted parameter provided by the proposed program, being executed based on the empirically determined values given in Table C1
Values of physical parameters used in the fitting of elevated-temperature frequency dependence of ε_r' and ε_r'' for the sintered BTO-CM at 950°C presented in Figure 4.73(a) by applying Equation (4.1)

Values of physical parameters used in the fitting of elevated-temperature frequency dependence of ε_r' and ε_r'' for the sintered BTO-CM at 1000°C presented in Figure 4.73(b) by applying Equation (4.1)

Values of physical parameters used in the fitting of room-temperature frequency dependence of ε_r' and ε_r'' for the sintered BTO:Er$^{3+}$-CM presented in Figure 4.46(a) and (b) by applying Equation (4.1)

Estimated uncertainty values of each fitted parameter provided by the proposed program, being executed based on the empirically determined values given in Table C5

Values of physical parameters used in the fitting of elevated-temperature frequency dependence of ε_r' and ε_r'' for the sintered BTO:Er$^{3+}$-CM at 950°C presented in Figure 4.74(a) by applying Equation (4.1)

Values of physical parameters used in the fitting of elevated-temperature frequency dependence of ε_r' and ε_r'' for the sintered BTO:Er$^{3+}$-CM at 1000°C presented in Figure 4.74(b) by applying Equation (4.1)

Values of physical parameters used in the fitting of room-temperature frequency dependence of ε_r' and ε_r'' for the sintered BCTO-CM presented in Figure 4.47(a) and (b) by applying Equation (4.1)

Estimated uncertainty values of each fitted parameter provided by the proposed program, being executed based on the empirically determined values given in Table C9

Values of physical parameters used in the fitting of room-temperature frequency dependence of ε_r' and ε_r'' for the sintered BCTO:Er$^{3+}$-CM presented in Figure 4.48(a) and (b) by applying Equation (4.1)

Estimated uncertainty values of each fitted parameter provided by the proposed program, being executed based on the empirically determined values given in Table C11

Values of physical parameters used in the fitting of room-temperature frequency dependence of ε_r' and ε_r'' for the sintered BTO-HM presented in Figure 4.49(a) and (b) by applying Equation (4.1)
Estimated uncertainty values of each fitted parameter provided by the proposed program, being executed based on the empirically determined values given in Table C13.

Values of physical parameters used in the fitting of elevated-temperature frequency dependence of ε_r' and ε_r'' for the sintered BTO-HM at 850°C presented in Figure 4.75(a) by applying Equation (4.1).

Values of physical parameters used in the fitting of elevated-temperature frequency dependence of ε_r' and ε_r'' for the sintered BTO-HM at 1000°C presented in Figure 4.75(b) by applying Equation (4.1).

Values of physical parameters used in the fitting of room-temperature frequency dependence of ε_r' and ε_r'' for the sintered BTO:Er$^{3+}$-HM presented in Figure 4.50(a) and (b) by applying Equation (4.1).

Estimated uncertainty values of each fitted parameter provided by the proposed program, being executed based on the empirically determined values given in Table C17.

Values of physical parameters used in the fitting of elevated-temperature frequency dependence of ε_r' and ε_r'' for the sintered BTO:Er$^{3+}$-HM at 850°C presented in Figure 4.76(a) by applying Equation (4.1).

Values of physical parameters used in the fitting of elevated-temperature frequency dependence of ε_r' and ε_r'' for the sintered BTO:Er$^{3+}$-HM at 1000°C presented in Figure 4.76(b) by applying Equation (4.1).

Values of physical parameters used in the fitting of room-temperature frequency dependence of ε_r' and ε_r'' for the sintered BCTO-HM presented in Figure 4.51(a) and (b) by applying Equation (4.1).

Estimated uncertainty values of each fitted parameter provided by the proposed program, being executed based on the empirically determined values given in Table C21.

Values of physical parameters used in the fitting of elevated-temperature frequency dependence of ε_r' and ε_r'' for the sintered BCTO-HM at 700°C presented in Figure 4.77(a) by applying Equation (4.1).

Values of physical parameters used in the fitting of elevated-temperature frequency dependence of ε_r' and ε_r'' for the sintered BCTO-HM at 800°C presented in Figure 4.77(b) by applying Equation (4.1).

Values of physical parameters used in the fitting of room-temperature frequency dependence of ε_r' and ε_r'' for the
sintered BCTO:Er^{3+}-HM presented in Figure 4.52(a) and (b) by applying Equation (4.1)

C26 Estimated uncertainty values of each fitted parameter provided by the proposed program, being executed based on the empirically determined values given in Table C25

C27 Values of physical parameters used in the fitting of elevated-temperature frequency dependence of ε_r' and ε_r'' for the sintered BCTO:Er^{3+}-HM at 700°C presented in Figure 4.78(a) by applying Equation (4.1)

C28 Values of physical parameters used in the fitting of elevated-temperature frequency dependence of ε_r' and ε_r'' for the sintered BCTO:Er^{3+}-HM at 800°C presented in Figure 4.78(b) by applying Equation (4.1)

D1 Values of electrical parameters extracted from the fitting of impedance data for BTO-CM sintered in the temperature range of 700 – 1000°C. The relative uncertainties associated with each parameter are included

D2 Values of electrical parameters extracted from the fitting of impedance data for BTO:Er^{3+}-CM sintered in the temperature range of 700 – 1000°C. The relative uncertainties associated with each parameter are included

D3 Values of electrical parameters extracted from the fitting of impedance data for BCTO-CM sintered in the temperature range of 700 – 1000°C. The relative uncertainties associated with each parameter are included

D4 Values of electrical parameters extracted from the fitting of impedance data for BCTO:Er^{3+}-CM sintered in the temperature range of 700 – 1000°C. The relative uncertainties associated with each parameter are included

D5 Values of electrical parameters extracted from the fitting of impedance data for BTO-HM sintered in the temperature range of 700 – 1000°C. The relative uncertainties associated with each parameter are included

D6 Values of electrical parameters extracted from the fitting of impedance data for BTO:Er^{3+}-HM sintered in the temperature range of 700 – 1000°C. The relative uncertainties associated with each parameter are included

D7 Values of electrical parameters extracted from the fitting of impedance data for BCTO-HM sintered in the temperature range of 700 – 1000°C. The relative uncertainties associated with each parameter are included

D8 Values of electrical parameters extracted from the fitting of impedance data for BCTO:Er^{3+}-HM sintered in the temperature range of 700 – 850°C. The relative uncertainties associated with each parameter are included
LIST OF FIGURES

Figure	Description
1.1 | A Hierarchical Overlook of Some Common Aurivillius Compounds with Different Thicknesses of Perovskite-like Slabs | 2 |
1.2 | Aristotype Tetragonal Crystal Structure of Aurivillius Phase (a) n = 3 Bi₄Ti₃O₁₂, along with Other Orthorhombic-type Aurivillius Phases Characterized by Different Thicknesses of Perovskite-like Slabs as in (b) n = 1 Bi₂MoO₆, (c) n = 4 Bi₃FeTi₃O₁₅, and (d) n = 6 Bi₇Fe₃Ti₃O₂₁ | 3 |
1.3 | Representative Ruddlesden-Popper Phase of Tetragonal-type Sr₂TiO₄ (Left Side), being Transformed on the Basis of the Parent SrTiO₃ Perovskite Structure (Right Side) with Excess of SrO | 4 |
1.4 | Representative Dion-Jacobson Phase of Orthorhombic-type KLaNb₂O₇ | 4 |
1.5 | Typical Plate-like Morphology of Four-layered BaBi₄Ti₄O₁₅ Aurivillius Compound | 5 |
1.6 | Structural Representation of (a) Case i in Bi₃TiNbO₆ and (b) Case ii in Bi₄Ti₃O₁₂ Aurivillius Compounds | 6 |
1.7 | Curie Temperature T_{Curie} Determinations of Bi₄Ti₃O₁₂ at Constant Frequency 1 MHz. Note that the Samples were Produced via Self-propagating High-temperature Synthesis (SHS) and Solid State Reaction | 7 |
1.8 | Phase Transition of Bi₄Ti₃O₁₂ with the Variation of Lattice Parameters as a Function of Temperature. Orthorhombic-associated Lattice Parameters are Indicated by a₀, b₀, and c₀; while Tetragonal-associated Lattice Parameters are Indicated by aₜ and bₜ, Respectively | 7 |
2.1 | (a) TGA-DTA and (b) Dilatometry Curves of the Stoichiometric Mixture of 2Bi₂O₃ and 3TiO₂ Starting Powders | 12 |
2.2 | (a) Raman Spectra of the Stoichiometric Mixture and the Corresponding Heat-treated Samples at Different Temperatures. Evolution of the Raman-derived (b) Wavenumber of Bi₂O₃ and TiO₂, (c) Peak Area of Sillenite and Bi₄Ti₃O₁₂ Phases with Respect to Temperature | 13 |
2.3 | DTA Curve of the Stoichiometric Mixture of TiO₂ + Bi(NO₃)₃·H₂O | 14 |
2.4 Variation of the Bulk Sintered Density \(\rho_b \) of Bi\(_4\)Ti\(_3\)O\(_{12} \) as a Function of Milling Time

2.5 (a) Typical Crystal Structure of Bi\(_5\)FeTi\(_3\)O\(_{15} \) Viewed along [100] Direction, (b) Curie Temperature \(T_{\text{Curie}} \) as a Function of Number of Perovskite-like Layers \(n \) Resulting from the Previous Works on Bi\(_{n+1}\)Fe\(_{n-3}\)Ti\(_3\)O\(_{3n+3} \)

2.6 Arrhenius Plot of the Ac Conductivity \(\sigma_{\text{ac}} \) of Bi\(_5\)FeTi\(_3\)O\(_{15} \) Sample. The Conduction Mechanism in Region I is Ascribed to the Short-range Hopping, Region II is the Space-charge Polarization Due to the Oxygen Vacancies, and Region III is Due to the Long-range Motion of the Doubly-ionized Oxygen Vacancies. Note that \(E_{\sigma(\sigma_{\text{ac}})} \) Represents the Corresponding Activation Energy

2.7 Crystal Structure of Bi\(_5\)CrTi\(_3\)O\(_{15} \) in (a) Orthorhombic, Space Group A21am at Room Temperature Viewed along [010] and (b) Tetragonal, Space Group I4/mmm at 700°C Viewed along [100]. Bi, Ti, and O Cations are Represented by Large Black/Grey, Small Black, and Small Grey Spheres, Respectively. The Horizontal Dashed Lines are Used to Guide the Reader’s Eye to Differentiate the Position of Each Cation

2.8 (a) Unit Cell Parameters and (b) Orthorhombic Strain of Bi\(_5\)CrTi\(_3\)O\(_{15} \) as a Function of Temperature

2.9 XRD Spectra of the Oxide Mixture of Bi\(_4\)Ti\(_3\)O\(_{12} \) Powders Milled for Different Durations

2.10 (a) Nanocrystalline/Amorphous Structure of Bi\(_4\)Ti\(_3\)O\(_{12} \) Powder after 3 h of Milling and (b) Its Electron Diffraction Pattern; (c) Nanocrystalline/Amorphous Structure of Bi\(_4\)Ti\(_3\)O\(_{12} \) Powder after 12 h of Milling and (d) Its Electron Diffraction Pattern. The Visualizations were Based on TEM Imaging Investigations

2.11 Experimental Raman Spectrum of the Orthorhombic Nanocrystalline Bi\(_4\)Ti\(_3\)O\(_{12} \) Powder Sintered at 900°C

2.12 Phase Changes En Route to the Formation of Bi\(_4\)Ti\(_3\)O\(_{12} \)

2.13 (a) Experimental Raman Spectra of the Oxide Precursors of Bi\(_4\)Ti\(_3\)O\(_{12} \) Powder Milled at Various Times, (b) Variation of the Normalized Intensity Associated with the Rutile Mode Observed at Wavelength 612 cm\(^{-1} \) as a Function of Milling Time

2.14 Dissolution of Rutile-TiO\(_2 \) in Bi-matrix over a Certain Period of Milling Times. Note that the Horizontal Dotted Line Indicates the Theoretical Atomic Ratio of Bi\(_4\)Ti\(_3\)O\(_{12} \)
2.15 SEM Images of the Milled Bi$_5$FeTi$_3$O$_{15}$ Showing (a) Broad Distribution of Large Particle Sizes after Milled for 1 h and (b) Narrow Distribution of Small Particle Sizes after Milled for 10 h.

2.16 Dielectric Constant ε_r over a Range of Temperatures of Bi$_5$Ti$_3$O$_{12}$ Synthesized via Mechanochemical Activation (MCA) and Solid State Reaction (SSR). Note that ε_r was Measured at 500 kHz.

2.17 Surface Microstructures of BaBi$_4$Ti$_3$O$_{15}$ Ceramics Prepared by (a) SSR and (b) MCA Techniques. Both Samples Sintered at 950°C Yielded Plate-like Grains of which are Relatively Small in the MCA-based Sample.

2.18 XRD Patterns of Bi$_4$Ti$_3$O$_{12}$ Bulk Ceramics for (a) As-combusted Condition and Sintering Temperatures from 600 to 800°C and (b) Higher Sintering Temperatures from 900 to 1100°C.

2.19 Snapshots of the Representative Morphologies of Bi$_4$Ti$_3$O$_{12}$ Bulk Ceramics for the Microstructural Evolution at (a) 600°C, (b) 650°C, and (c) 1100°C.

2.20 (a) XRD Patterns of Bi$_5$FeTi$_3$O$_{15}$ Samples Sintered at Different Temperatures and (b) Arrhenius Plot of the Grain Size D_g Corresponding to the Sintering Temperatures at 800, 900, and 1000°C.

2.21 Sintering Temperature-dependent of Dielectric Constant ε_r and Dissipation Factor tan δ of Bi$_{3.25}$Eu$_{0.75}$Ti$_3$O$_{12}$ Thin Films. Insets Show the Corresponding Microstructural Evolution.

2.22 Dielectric Constant ε_r of Bi$_{4.25}$Er$_{0.75}$Ti$_3$O$_{12}$ Ceramics for a Range of Frequencies with Varying Er Contents. Inset Shows the Corresponding Dissipation Factor tan δ.

2.23 Grain Growth Rate of Bi$_4$Ti$_3$O$_{12}$ (BiT) and Bi$_{3.25}$La$_{0.75}$Ti$_3$O$_{12}$ (BLT) Ceramics as a Function of Sintering Time.

2.24 SEM Images of the Thermally Etched Surfaces of (a) 4 h-Bi$_4$Ti$_3$O$_{12}$, (b) 4 h-Bi$_{3.25}$La$_{0.75}$Ti$_3$O$_{12}$, (c) 48 h-Bi$_4$Ti$_3$O$_{12}$, and (d) 48 h-Bi$_{3.25}$La$_{0.75}$Ti$_3$O$_{12}$ Ceramics.

2.25 Arrhenius Plots of the Dc Specific Resistivity ρ_{dc} of (a) Bi$_5$FeTi$_3$O$_{15}$ and (b) Bi$_{4.25}$La$_{0.75}$FeTi$_3$O$_{15}$ Aurivillius Ceramics.

2.26 Arrhenius Plots of the Ac conductivity σ_{ac} of Bi$_5$FeTi$_3$O$_{15}$ and Bi$_4$NdFeTi$_3$O$_{15}$ Aurivillius Ceramics.
2.27 A Parallel Plate Configuration with a Linear, Rectangular Dielectric Medium Inserted in Between Conducting Plates

2.28 Schematic Illustration of Relaxation- and Resonance-types in Log-log Representation

2.29 Time Response of the Displacement $x(t)$ of the Damped Oscillator with Non-linearity of Order $\gamma = 1/3$

2.30 Schematic Representation of Conduction and Relaxation Mechanisms in Semi-log Scale

2.31 Semi-log Plots Evidencing Strong Dc Conduction Losses in Overshadowing True Low-frequency Relaxation. The Plots are Defined by a Linear Scale on ε_r, ε'', and $\varepsilon''_{r(kk)}$ while a Logarithmic Scale on ω. Note that the Conduction $\varepsilon''_{r(kk)}$-free Spectrum was Derived from the Kramers-Kronig Dispersion Relation in Equation (2.10)

2.32 Potential Energy W Diagram of a System Assuming Non-interacting Charge Carriers has All Equal Potential Wells. The First Interconnecting Double Well Shows a Two-site Situation where a Charge Executes Many Reciprocating To- and Fro Hopping Transitions over a Potential Barrier before Making a Series of Consecutive “Forward” Hops Producing Dc Conduction

2.33 Illustration of the Percolation Path Approximation. Each Continuous Connected Network Represents the Probability of the Charge Carriers to Proceed Hopping from One Localized State to Another

2.34 (a) Sketch of Two-dimensional Random Capacitor Network and (b) Snapshot of the Charge Distribution where Black Dots Represent the Neutral Sites; Blue and Red Dots Represent the Positively and Negatively Charged Sites, Respectively

2.35 Model Lumped Equivalent Electrical Circuit for Conduction and Relaxation Mechanisms

2.36 Schematic Spectra of $\varepsilon'_r(\omega)$ and $\varepsilon''_r(\omega)$ Corresponding to the Debye, Cole-Cole, and Cole-Davidson Systems

3.1 Schematic Flowchart of the Solid State Based Sample Preparation via Conventional and High Energy Milling Methods

3.2 Side-view of the Conventional Wet Milling under a Centrifugal Force, Creating from the Rotations of Jar and Driver Rollers Relative to Each Other in Opposite Directions
3.3 Schematic Sketch of the Tightly Clamped Single Vial under the Back-and-forth Shaking Motions up to 1080 Cycles per Minute in Combination with Lateral Movements, Inducing Fairly High Impact of Ball-powder-ball Collisions 52

3.4 Calcination Time-temperature Profile of the Conventionally Prepared Samples 53

3.5 Die Installation Schematic for the Purposes of (a) Dry Pressing and (b) Pellet Removal 53

3.6 Bragg-Brentano Geometry of the X-ray Diffractometer Arrangement, Showing the Scan Path of X-ray at a Diffraction Angle 2θ Detected at Point B with Respect to the Incident Beam at an Incident Angle θ from Point A. The Instrumentation Parts are Labelled as 1, 2, 3, etc., Refer to Table 3.4 for the Names of the Instrumentation Parts 55

3.7 Representative EDS Analysis Report from a Selected Point in Bi₄Ti₃O₁₂ Matrix 57

3.8 Scheme of Procedure for TEM Sample Preparation 57

3.9 Schematic Illustrations of the Density Measurement using MD-300S, Elaborated from the Calibration to the Actual Measurement. Note that the Airtight Windshield is Deliberately Ignored for Illustration Clarity 58

3.10 Average Pellet Dimension with Thickness and Diameter Measured Using a Digital Caliper 59

3.11 Schematic Diagram of the Measurement Setup 59

3.12 Connection Image of Two-terminal MUT Extensions to Four-terminal Pair BNC Connectors 60

3.13 In-circuit Measurement of the MUT Based on the Operation of Auto-balancing Bridge 60

3.14 Network Circuit Representations of the Test Fixture in (a) Open and (b) Short Conditions 62

3.15 Schematic Illustrations on How (a) Open, (b) Short, and (c) Load Compensations were Performed 62

3.16 Snapshots of (a) Load Data Measurement up to 110 MHz in terms of Cₚ-Gₚ and (b) the Corresponding Result of Three-element Equivalent Circuit Parameters Calculation According to the Simulation of Frequency Characteristics with Trace A Reflects the Absolute Impedance |Z| while Trace B Reflects the Impedance Phase θ_Z 63

3.17 Example of the Excel Spreadsheet Displaying (a) Trace A and (b) Trace B Saved Data Contents 64

3.18 Dielectric Measurement Procedure Flow Diagram 65
4.1 Comparison of Diffraction Patterns from the Powder Mixtures of (a) Unmilled Bi$_2$O$_3$-TiO$_2$, (b) Bi$_2$O$_3$-Cr$_2$O$_3$-TiO$_2$, and (c) Bi$_2$O$_3$-Er$_2$O$_3$-TiO$_2$ after Conventional Milling Process

4.2 Comparison of Diffraction Patterns from the Powder Mixtures of (a) Unmilled Bi$_2$O$_3$-Cr$_2$O$_3$-TiO$_2$, (b) Bi$_2$O$_3$-Cr$_2$O$_3$-TiO$_2$, and (c) Bi$_2$O$_3$-Er$_2$O$_3$-Cr$_2$O$_3$-TiO$_2$ after Conventional Milling Process

4.3 TEM Images of (a) Bi$_2$O$_3$-TiO$_2$, (b) Bi$_2$O$_3$-Er$_2$O$_3$-TiO$_2$, (c) Bi$_2$O$_3$-Cr$_2$O$_3$-TiO$_2$, and (d) Bi$_2$O$_3$-Er$_2$O$_3$-Cr$_2$O$_3$-TiO$_2$ Powder Mixtures after Conventional Milling Process

4.4 TEM Micrographs of (a) Bi$_2$O$_3$-TiO$_2$, (b) Bi$_2$O$_3$-Er$_2$O$_3$-TiO$_2$, (c) Bi$_2$O$_3$-Cr$_2$O$_3$-TiO$_2$, and (d) Bi$_2$O$_3$-Er$_2$O$_3$-Cr$_2$O$_3$-TiO$_2$ after Milling under High-energy Impacts

4.5 Effect of High Energy Milling on the Diffraction Peaks Observed in (a) Bi$_2$O$_3$-TiO$_2$, (b) Bi$_2$O$_3$-Er$_2$O$_3$-TiO$_2$, (c) Bi$_2$O$_3$-Cr$_2$O$_3$-TiO$_2$, and (d) Bi$_2$O$_3$-Er$_2$O$_3$-Cr$_2$O$_3$-TiO$_2$ Powder Mixtures as Compared with the Patterns of Conventionally Milled Samples. The Plots are Made Explicit on the Identity of the Indices of the Plane to Represent the Main Phases; and the Symbol (•) to Represent the (021)-peak Profile of β-Bi$_2$O$_3$

4.6 (a) TGA Curves of the Conventionally Milled Bi$_2$O$_3$-TiO$_2$ (BiT), Bi$_2$O$_3$-Er$_2$O$_3$-TiO$_2$ (BiErT), Bi$_2$O$_3$-Cr$_2$O$_3$-TiO$_2$ (BiCrT), and Bi$_2$O$_3$-Er$_2$O$_3$-Cr$_2$O$_3$-TiO$_2$ (BiErCrT) Systems, with (b) the Corresponding DTG Curves

4.7 (a) 200 kx TEM Image Showing the Resulting Morphology from Bi$_2$O$_3$-Er$_2$O$_3$-TiO$_2$ Spotted at Different Region. (b) Higher Magnification TEM Image of the White Framed Box Area Marked in (a). (c) Zoom-in View of the Framed Crystalline Nanodomain (Marked by Yellow Spherical Region) Revealing the Prominent Lattice Fringe, with the Bottom-right Corner is the Corresponding Fast Fourier Transform Spectrum

4.8 (a) TGA Curves of the High Energy Milled Bi$_2$O$_3$-TiO$_2$ (BiT), Bi$_2$O$_3$-Er$_2$O$_3$-TiO$_2$ (BiErT), Bi$_2$O$_3$-Cr$_2$O$_3$-TiO$_2$ (BiCrT), and Bi$_2$O$_3$-Er$_2$O$_3$-Cr$_2$O$_3$-TiO$_2$ (BiErCrT) Systems, with (b) the Corresponding DTG Curves
4.9 Phase Formation of BTO-CM with the Application of Heat: (a) A Series of XRD Patterns Showing the Single-phase Identity of Bi$_4$Ti$_3$O$_{12}$ at Each Sintering Temperature. (b) Calcined- and Milled-associated Patterns which the Latter has All Trace Phases Completely Reacted during Calcination by Giving the First Evidence of Formation of Single-phase Bi$_4$Ti$_3$O$_{12}$. The Assigned (hkl) Indices of Reflections are Based on the Crystallographic Planes of Pure Orthorhombic Bi$_4$Ti$_3$O$_{12}$ Phase (ICSD PDF #98-000-8636)

4.10 Close Examination of the Peak-splitting Behaviours in the Vicinity of θ Associated with Crystallographic Index of (a) (020)/(200), (b) (026)/(206), (c) (028)/(208), (d) (0214)/(2014), (e) (137)/(317), and (f) (040)/(400) Planes, Evidencing the Orthorhombic Symmetry in BTO-CM Samples Heat-treated at Various Temperatures

4.11 Phase Formation of BTO:Er$^{3+}$-CM with the Application of Heat: (a) Stack Plot of XRD Data Illustrating the Heat-treatment-induced Incorporation of Er$^{3+}$ Ions into Bi$_4$Ti$_3$O$_{12}$ Lattice and Reaches Completion to Produce the Single-phase Substitutional Solid Solution of Bi$_{3.25}$Er$_{0.75}$Ti$_3$O$_{12}$ (Top Panel). The Bottom Panel Gives the Milled-associated Pattern to Trace the Phase Changes on Calcination. (b) The Corresponding (117) Peak Shifting Behaviours in Comparison with BTO-CM. The Assigned (hkl) Indices of Reflections are Based on the Crystallographic Planes of Pure Orthorhombic Bi$_4$Ti$_3$O$_{12}$ Phase (ICSD PDF #98-000-8636)

4.12 Comparison of the Local Amplified Profiles of Reflection (020) and (200) between BTO-CM and BTO:Er$^{3+}$-CM. The Heat Treatment Temperatures are Marked Aside

4.13 Phase Formation of BCTO-CM with the Application of Heat: (a) Stack Plot of XRD Data Illustrating the Formation of Single-phase Bi$_5$CrTi$_3$O$_{15}$ (Shaded Regions) Resulting from the Continuous Reaction between Bi$_4$Ti$_3$O$_{12}$ and Bi$_6$Cr$_2$O$_{15}$. At 850°C, the Arrows Point to the Peaks where the Initial Formation of Bi$_4$Ti$_3$O$_{12}$ is Evident. (b) The Corresponding Milled and Calcined Profiles, from which the First Appearance of Bi$_6$Cr$_2$O$_{15}$ is Noted and Bi$_4$Ti$_3$O$_{12}$ Becomes Prevalent on Calcination. The Assigned (hkl) Indices of Reflections are Based on the Crystallographic Planes of the Pure Orthorhombic Bi$_5$FeTi$_3$O$_{15}$ Phase (ICSD PDF #98-003-1589)
4.14 Phase Transformation Occurring in BCTO-CM, Showing Several Identifiable Peaks of Bi$_4$Ti$_3$O$_{12}$ [Defined by Red (hkl) Planes of Orthorhombic Type] are Replaced by the Peaks of Bi$_3$CrTi$_3$O$_{15}$ [Defined by Black (hkl) Planes of Orthorhombic Type] through the Increase of Heat Treatment Temperature

4.15 Phase Formation of BCTO:Er$^{3+}$-CM with the Application of Heat: (a) Stack Plot of XRD Data in the Full Measuring Range (Top Panel). The Milled-associated Pattern to Trace the Phase Changes on Calcination (Bottom Panel). (b) Same Patterns in (a) are Illustrated in a Narrow 20° Range from 29.5° – 31.0° Focusing on the Peak Positions of (117)-Bi$_4$Ti$_3$O$_{12}$ and (191)-Bi$_3$CrTi$_3$O$_{15}$. The Assigned (hkl) Indices of Reflections are Based on the Crystallographic Planes of the Pure Orthorhombic Bi$_3$FeTi$_3$O$_{15}$ Phase (ICSD PDF #98-003-1589)

4.16 Graphical Pattern Fits from the Rietveld Analysis of BCTO:Er$^{3+}$-CM, Highlighting the Deconvolution Output Performed at (a) 800°C, (b) 850°C, (c) 900°C, (d) 950°C, and (e) 1000°C

4.17 FE-SEM Images of the Morphological Evolution for BTO-CM after Sintering at Different Temperatures. (a) 700°C, (b) 750°C, (c) 800°C, (d) 850°C, (e) 900°C, (f) 950°C, and (g) 1000°C. EDS Spots are Indicated by “+”. Note that in (f) and (g) “G” with the Subscripts “a” and “o” Distinguish the Abnormal and Oriented of the Grains, Respectively

4.18 EDS Point Spectra Recorded from One of the Regions in BTO-CM Indicated by “+” in Figure 4.17(a – g). Inset Shows the Representative Result of Elemental Composition Associated with the Sintering Performed at 800°C. Trace Elements Reported in Weight Percent (wt. %) and Atomic Percent (at. %)

4.19 Effect of Sintering Temperature on Grain Growth and Densification of BTO-CM. XRD-derived Preferred Orientation is Included. The Relative Density is Defined on the Basis of Theoretical X-ray Density of Bi$_4$Ti$_3$O$_{12}$, \(\rho_{XRD} = 8.04 \text{ g/cm}^3 \)

4.20 FE-SEM Images of the Morphological Evolution for BTO:Er$^{3+}$-CM after Sintering at Different Temperatures. (a) 700°C, (b) 750°C, (c) 800°C, (d) 850°C, (e) 900°C, (f) 950°C, and (g) 1000°C
4.21 Representative Examples of the Microstructural Comparison between BTO-CM (Left Side) and BTO:Er\(^{3+}\)-CM (Right Side), Highlighting the Grain Structures after Doping are of the Refined-types and Way Susceptible against Grain Coarsening with Sintering Temperature. Scale Bars are 2 \(\mu\)m

4.22 Magnified Morphological Images of BTO:Er\(^{3+}\)-CM Depicting the EDS Measurements where the Grain Interiors and Grain Boundaries are Targeted as Indicated by “+”. (a) 700\(^\circ\)C, (b) 750\(^\circ\)C, (c) 800\(^\circ\)C, (d) 850\(^\circ\)C, (e) 900\(^\circ\)C, (f) 950\(^\circ\)C, and (g) 1000\(^\circ\)C. Insets Show the Corresponding Results Portion of the Intensity Profiles where the Signals of Bi, Er, Ti, and O are the Most Evident

4.23 Comparison of Relative Density (Top Panel) and Aspect Ratio (Bottom Panel) between BTO-CM and BTO:Er\(^{3+}\)-CM as a Function of Sintering Temperature. The Relative Density is Defined on the Basis of Theoretical X-ray Density of Bi\(_4\)Ti\(_3\)O\(_{12}\), \(\rho_{\text{XRD}} = 8.04\) g/cm\(^3\)

4.24 EDS-measured Er/Bi Atomic Ratio from the Grain Interior Plotted as a Function of Sintering Temperature. The Horizontal Dashed Line Represents the Theoretical Er/Bi Atomic Ratio for the Formation of Bi\(_{3.25}\)Er\(_{0.75}\)Ti\(_3\)O\(_{12}\) Single-phase Microstructure Solid Solution

4.25 A Series of FE-SEM Overview Images Illustrating the Microstructural Evolution of BCTO-CM over a Wide Range of Sintering Temperatures. (a) 700\(^\circ\)C, (b) 750\(^\circ\)C, (c) 800\(^\circ\)C, (d) 850\(^\circ\)C, (e) 900\(^\circ\)C, (f) 950\(^\circ\)C, and (g) 1000\(^\circ\)C. The Assigned Regions of “A”, “B”, and “C” are for EDS Analysis

4.26 Measured Aspect Ratio and Relative Density of BCTO-CM as a Function of Sintering Temperature. The Relative Density is Defined on the Basis of Theoretical X-ray Density of Bi\(_5\)CrTi\(_3\)O\(_{15}\), \(\rho_{\text{XRD}} = 8.15\) g/cm\(^3\)

4.27 FE-SEM Micrographs from Figure 4.25(d – g) after Image Processing by ImageJ Software for Clearer Grain Boundary Traces. The Sintered Appearances of Dislocations (White Arrows), Lobate Grain Boundaries (Yellow Arrows), New Subgrains Formation (Dotted Yellow Circles), and Process of Grain-rotation-induced Grain Coalescence (Yellow Rectangular Dashed Frames) are Marked. Scale Bars are 4 \(\mu\)m
A Series of FE-SEM Overview Images Illustrating the Microstructural Evolution of BCTO:Er3+-CM over a Wide Range of Sintering Temperatures. (a) 700°C, (b) 750°C, (c) 800°C, (d) 850°C, (e) 900°C, (f) 950°C, and (g) 1000°C. EDS Spots are Indicated by “+”. Arrows Show the Deformed Grains Composed of Rearrangement of Dislocations.

Magnified FE-SEM Micrographs Showing the Prominent Traces of Gliding Dislocation Revealed as (a) Cleavage Steps at 950°C and (b) Parallel Slip Lines at 1000°C, on the Surface of Deformed Regions in BCTO:Er3+-CM.

Portion of EDS Spectrum Showing the Peak Overlay Interference between Cr-L and O-K Lines in the Case of BCTO:Er3+-CM Sintered at 900°C.

Comparison of Maximum Achievable Relative Density (Top Panel) and Aspect Ratio (Bottom Panel) between BCTO-CM and BCTO:Er3+-CM at the Respective Sintering Temperature. The Relative Density is Defined on the Basis of Theoretical X-ray Density of Bi\textsubscript{5}CrTi\textsubscript{3}O\textsubscript{15}, $\rho_{XRD} = 8.15$ g/cm3.

Phase Formation of BTO-HM with the Application of Heat: (a) A Series of Full-range XRD Patterns Showing the Single-phase Signature of Bi\textsubscript{4}Ti\textsubscript{3}O\textsubscript{12} over a Range of Sintering Temperatures, (b) The Milled-associated Pattern to Track the Phase Changes on Sintering. The Assigned (hkl) Indices of Reflections are Based on the Crystallographic Planes of Pure Orthorhombic Bi\textsubscript{4}Ti\textsubscript{3}O\textsubscript{12} Phase (ICSD PDF #98-000-8636).

Close Examination of the Peak-splitting Behaviours in the Vicinity of 20 Associated with Crystallographic Index of (a) (020)/(200), (b) (026)/(206), (c) (028)/(208), (d) (0214)/(2014), (e) (137)/(317), and (f) (040)/(400) Planes. All of Which Evidences the Orthorhombic Symmetry in BTO-HM Samples Heat-Treated at Various Temperatures.

Phase Formation of BTO:Er3+-HM with the Application of Heat: (a) Full-range Diffraction Data (Top Panel) Showing Similar Pattern Characteristics at Each Sintering Temperature, All of which Point to the Formation of Single-phase Substitutional Solid Solution of Bi\textsubscript{3.25}Er\textsubscript{0.75}Ti\textsubscript{3}O\textsubscript{12}. The Bottom Panel Gives the Milled-associated Pattern to Trace the Phase Changes on Sintering. (b) Comparative XRD Patterns in a Narrow 20 Range from 29.8° to 30.8° between BTO-HM and BTO:Er3+-HM. The Assigned (hkl) Indices of Reflections are Based on the Crystallographic Planes of Pure Monoclinic Bi\textsubscript{4}Ti\textsubscript{3}O\textsubscript{12} phase (ICSD PDF #98-002-7739).
4.35 Phase Formation of BCTO-HM with the Application of Heat: (a) Stack Plot of XRD Data Illustrating the Formation of Single-phase $\text{Bi}_5\text{CrTi}_3\text{O}_{15}$ over a Range of Sintering Temperatures. (b) The Corresponding Milled Profile to Trace the Phase Changes on Sintering. The Assigned (hkl) Indices of Reflections are Based on the Crystallographic Planes of Pure Orthorhombic $\text{Bi}_5\text{FeTi}_3\text{O}_{15}$ Phase (ICSD PDF #98-003-1589).

4.36 Phase Formation of BCTO:Er^{3+}-HM with the Application of Heat: (a) Stack Plot of XRD over a Range of Sintering Temperatures (Top Panel), with the Patterns in Shaded Regions are Those of which Characterize the Formation of Single-phase Substitutional Solid Solution of $\text{Bi}_{4.25}\text{Er}_{0.75}\text{CrTi}_3\text{O}_{15}$. The Bottom Panel Gives the Milled-associated Pattern to Trace thePhase Changes on Sintering. (b) The Corresponding (191) Peak Shifting Behaviours in Comparison with BCTO:Er^{3+}-CM. The Assigned (hkl) Indices of Reflections are Based on the Crystallographic Planes of Pure Orthorhombic $\text{Bi}_5\text{FeTi}_3\text{O}_{15}$ Phase (ICSD PDF #98-003-1589).

4.37 FE-SEM Images of the Morphological Evolution for BTO-HM after Sintering at Different Temperatures. (a) 700°C, (b) 750°C, (c) 800°C, (d) 850°C, (e) 900°C, (f) 950°C, and (g) 1000°C. “+” are the EDS Spots. Scale Bars are 2 µm. The Triple Junctions are Indicated by White Arrows. Some Intergranular Fractures Propagating along the Grain Boundaries and Triple Junctions are Indicated by Dashed White Circles.

4.39 FE-SEM Images of the Morphological Evolution for BTO:Er^{3+}-HM after Sintering at Different Temperatures. (a) 700°C, (b) 750°C, (c) 800°C, (d) 850°C, (e) 900°C, (f) 950°C, and (g) 1000°C. “+” are the EDS Spots. Scale Bars are 2 µm.

4.40 EDS Point Spectra Recorded from the Regions of BTO-Er^{3+}-HM Labelled as “A” in Figures 4.39(a) – (g). All the Essential Elements are Readily Detected.

4.41 FE-SEM Images of the Morphological Evolution for BCTO-HM after Sintering at Different Temperatures. (a) 700°C, (b) 750°C, (c) 800°C, (d) 850°C, (e) 900°C, (f) 950°C, and (g) 1000°C. “A” and “B” are the EDS Spots. The New Subgrains Formations are Indicated by Dotted Yellow Circles.
4.42 FE-SEM Images of the Morphological Evolution for BCTO:Er$^{3+}$-HM after Sintering at Different Temperatures. (a) 700°C, (b) 750°C, (c) 800°C, (d) 850°C, (e) 900°C, (f) 950°C, and (g) 1000°C; (h) the Corresponding Mean Grain Size Diameter as a Function of Sintering Temperature. “A”, “B”, and “C” are the EDS Spots. Regions Framed by the White Squares in (e) are where the Grains Approach an Initial Cuboidal Shape. Scale Bars are 2 μm.

4.43 Enlarged FE-SEM View on a Coarse Cubic Shaped Grain in the Sintered Sample of BCTO:Er$^{3+}$-HM at 1000°C, Clearly Revealing the Nano-scale Stacking Patterns as Indicated by the Alphabets.

4.44 Relative Density Variations as a Function of Sintering Temperature by Comparing a Range of Samples between (a) BTO-HM and BTO-CM, (b) BTO:Er$^{3+}$-HM and BTO:Er$^{3+}$-CM, (c) BCTO-HM and BCTO-CM, (d) BCTO:Er$^{3+}$-HM and BCTO:Er$^{3+}$-CM.

4.45 Dielectric Response of BTO-CM over a Range of Sintering Temperatures (a) 700 – 900°C, (b) 950 and 1000°C, Characterized by Dependence of Linearly Plotted ε'_r (Top Panel) and Logarithmically Plotted ε''_r (Bottom Panel) on Logarithm of ω. Open Symbols are the Experimental Data, and Solid Lines are the Best Fits to the Observed Responses in Accordance with Equation (4.1). LFD for 700 and 750°C are Shown in Considerable Enlargement in Inset of the Top Panel (a).

4.46 Dielectric Response of BTO:Er$^{3+}$-CM over a Range of Sintering Temperatures (a) 700 – 850°C, (b) 900 – 1000°C, Characterized by Dependence of Linearly Plotted ε'_r (Top Panel) and Logarithmically Plotted ε''_r (Bottom Panel) on Logarithm of ω. Open Symbols are the Experimental Data, and Solid Lines are the Best Fits to the Observed Responses in Accordance with Equation (4.1). LFD for 700 and 800°C are Shown in Considerable Enlargement in Inset of the Top Panel (a).

4.47 Dielectric Behaviour of BCTO-CM over a Range of Sintering Temperatures (a) 700 – 850°C, (b) 900 – 1000°C, with ε'_r (Top Panel) and ε''_r (Bottom Panel) are Plotted Linearly and Logarithmically against Logarithmic of ω, Respectively. Open Symbols are the Experimental Data, and Solid Lines are the Best Fits to the Observed Responses in Accordance with Equation (4.1). Variations of ε'_r (900 – 1000°C) are Plotted Logarithmically in Inset of the Top Panel (b) on Log Coordinates of Narrow Frequency Range of 10^6 – 10^8 Hz to Stress the Aberration of Equation (4.1) Due to the Effect of Resonance.
4.48 Dielectric Behaviour of BCTO:Er$^{3+}$-CM in the Sintering Temperature Range of 700 – 1000°C, with (a) ε'_r and (b) ε''_r are Plotted Linearly and Logarithmically against Logarithmic of ω, Respectively. Open Symbols are the Experimental Data, and Solid Lines are the Best Fits to the Observed Responses in Accordance with Equation (4.1). LFD for 700 and 750°C are Shown in Considerable Enlargement in Inset of (a) 131

4.49 Log-log Frequency Dependence of (a) ε'_r and (b) ε''_r for BTO-HM Covering the Sintering Temperature Range of 700 – 1000°C. Open Symbols are the Experimental Data, and Solid Lines are the Best Fits to the Observed Responses in Accordance with Equation (4.1). Inset of (a) is in Semi-logarithmic Coordinates Showing Clearly LFD for the Samples Sintered from 700 to 850°C 132

4.50 Log-log Presentation of (a) $\varepsilon'_r(\omega)$ and (b) $\varepsilon''_r(\omega)$ for BTO:Er$^{3+}$-HM Covering the Sintering Temperature Range of 700 – 1000°C. Open Symbols are the Experimental Data, and Solid Lines are the Best Fits to the Observed Responses in Accordance with Equation (4.1) 133

4.51 Frequency Dependence of (a) ε'_r and (b) ε''_r for BCTO-HM Covering the Sintering Temperature Range of 700 – 1000°C Plotted in Log-log Representation. Open Symbols are the Experimental Data, and Solid Lines are the Best Fits to the Observed Responses in Accordance with Equation (4.1). Insets of (a) Give the Corresponding Semi-logarithmic Variations of $\varepsilon'_r(\omega)$ in which LFD are Clearly Discernible 134

4.52 Dielectric Behaviour of BCTO:Er$^{3+}$-HM in the Sintering Temperature Range of (a) 700 – 850°C, (b) 900 – 1000°C, with ε'_r (Top Panel) and ε''_r (Bottom Panel) in Log-log Representation. Open Symbols are the Experimental Data, and Solid Lines are the Best Fits to the Observed Responses in Accordance with Equation (4.1). Inset of the Top Panel (b) Gives Variations of $\varepsilon'_r(\omega)$ in Linear-log Coordinates Showing Clearly LFD (900 – 1000°C) 135

4.53 M' vs. M' Plots of BTO-CM at the Sintering Temperature of (a) 700°C, (b) 800°C, (c) 900°C, and (d) 1000°C. LFD-associated Relaxations are Marked by “1st”, which are Followed at Much Higher Frequencies by Another Relaxation Process Denoted by “2nd”. Inset Plots of (a) and (b) Magnify the “1st” Regions for which the Low-frequency Arcs are Clearly Evident. Arrows Show the Sense of Frequency Increment 136
4.54 M" vs. M' Plots of BCTO-CM at the Sintering Temperature of (a) 700°C, (b) 750°C, (c) 800°C, and (d) 850°C. LFD-associated Relaxations are Marked by “1st”, which are Followed at Much Higher Frequencies by Another Relaxation Process Denoted by “2nd”. The Enlarged Logarithmic Scale in Inset of (b) Clearly Emphasizing the Very Shallow Low-frequency Arc in the “1st” Regions. Arrows Show the Sense of Frequency Increment

4.55 Variation of ε'_r and ε''_r over an Extended Frequency Range of $10^7 - 10^8$ Hz for BTO:Er$^{3+}$-HM at the Sintering Temperature of (a) 700°C and (b) 750°C. Both Samples are Characterized by Anomalous Dispersion of Initial Rise of ε'_r before a Sudden Drop Passing through Zero to Negative Values at ω in Excess of 10^8 Hz. Note the Semi-logarithmic Plotting. The Reproduced Solid Curves Overlapping This Range of Experimental Data are Based on Equations (2.12) and (2.13)

4.56 Nyquist Plot of BTO-CM Taken over a Range of Sintering Temperatures of 700 – 1000°C. Experimental Data Points are Represented by Open Symbols, All are Fitted with the Solid Lines According to the Equivalent Circuit Model in Figure 4.60. Arrows Indicate the Direction of Increasing Frequency

4.57 Nyquist Plot of BCTO-CM Taken over a Range of Sintering Temperatures of 700 – 850°C. Experimental Data Points are Represented by Open Symbols, All are Fitted with the Solid Lines According to the Equivalent Circuit Model in Figure 4.60. Arrows Indicate the Direction of Increasing Frequency

4.58 Nyquist Plot of BTO-HM Taken over a Range of Sintering Temperatures of 700 – 1000°C. Experimental Data Points are Represented by Open Symbols, All are Fitted with the Solid Lines According to the Equivalent Circuit Model in Figure 4.60. Arrows Indicate the Direction of Increasing Frequency

4.59 Nyquist Plot of BCTO-HM Taken over a Range of Sintering Temperatures of 700 – 850°C. Experimental Data Points are Represented by Open Symbols, All are Fitted with the Solid Lines According to the Equivalent Circuit Model in Figure 4.60. Arrows Indicate the Direction of Increasing Frequency
4.60 Series-parallel Type of R–C Equivalent Circuit Used to Describe the Impedance Behaviours of BTO-CM (700 – 1000°C), BCTO-CM (700 – 850°C), BTO-HM (700 – 1000°C), BTO:Er3+-HM (700 – 1000°C), BCTO-HM (700 – 850°C), and BCTO:Er3+-HM (700 – 850°C). Indices: el= Electrode, gb= Grain Boundary, g= Grain, R= Resistance, C= Capacitance, CPE= Constant Phase Element

4.61 Comparison of Log-log ε'(ω) between (a) BTO-CM and BTO:Er3+-CM, (b) BCTO-CM and BCTO:Er3+-CM, (c) BTO-HM and BTO:Er3+-HM, (d) BCTO-HM and BCTO:Er3+-HM at Some Selected Sintering Temperatures

4.62 Nyquist Plot of BTO:Er3+-HM Taken over a Range of Sintering Temperatures of 700 – 1000°C. Experimental Data Points are Represented by Open Symbols, All are Fitted with the Solid Lines According to the Equivalent Circuit Model in Figure 4.60. Arrows Indicate the Direction of Increasing Frequency

4.63 Nyquist Plot of BCTO:Er3+-HM Taken over a Range of Sintering Temperatures of 700 – 850°C. Experimental Data Points are Represented by Open Symbols, All are Fitted with the Solid Lines According to the Equivalent Circuit Model in Figure 4.60. Arrows Indicate the Direction of Increasing Frequency

4.64 Nyquist Plot of BCTO:Er3+-CM Taken over a Range of Sintering Temperatures of 700 – 1000°C. Each Response is Satisfactorily Fitted with Solid Curve from the Series-parallel Combination of R–C Components Shown in Insets of Each Diagram. Arrows Indicate the Ascending Frequency Order

4.65 Nyquist Plot of BTO:Er3+-CM Taken over a Range of Sintering Temperatures of 800 – 1000°C. Experimental Data Points are Represented by Open Symbols, All are Fitted with the Solid Lines According to the Equivalent Circuit Model in Figure 4.66. Arrows Indicate the Direction of Increasing Frequency

4.66 Series-parallel Type of R–C Equivalent Circuit Applicable to the Experimental Impedance Behaviours for BTO:Er3+-CM in the Sintering Temperature Range of 800 – 1000°C
4.67 Nyquist Plot of BCTO-CM Sintered at (a) 900°C, (b) 950°C, and (c) 1000°C. Open Symbols are the Experimental Data Points, All are Fitted with the Solid Lines According to the Equivalent Circuit Model Given in (d). Arrows Indicate the Direction of Increasing Frequency

4.68 Bikt Plot of θ_Z vs. Log f in Lin-log Format at the Sintering Temperature of (a) 900°C, (b) 950°C, and (c) 1000°C Representing the Nyquist Plot of BCTO-CM Given in Figure 4.67(a – c). The Markings Indicated by Dashed Boxes are Phase Shift Due to the High-frequency Inductive Behaviour

4.69 Nyquist Plot of BTO:Er$^{3+}$-CM Sintered at (a) 700°C and (b) 750°C. Open Symbols are the Experimental Data Points, All are Fitted with the Solid Lines According to the Equivalent Circuit Model Given in (c). Arrows Indicate the Direction of Increasing Frequency

4.70 Bikt Plot of θ_Z vs. Log f in Lin-log Format at the Sintering Temperature of (a) 700°C and (b) 750°C Representing the Nyquist Plot of BTO:Er$^{3+}$-CM Given in Figure 4.69(a) and (b). The Markings Indicated by Dashed Boxes are Phase Shift Due to the High-frequency Inductive Behaviour

4.71 Nyquist Plot of BCTO-HM Sintered at (a) 900°C, (b) 950°C, and (c) 1000°C. Open Symbols are the Experimental Data Points, All are Fitted with the Solid Lines with (a) and (b) are Based on the Equivalent Circuit Model Given in (d). The Equivalent Circuit Model that Fits the Response at 1000°C is Shown in Inset of (c). Arrows Indicate the Direction of Increasing Frequency. Indices: sl= Schottky Layer

4.72 Comparison of Log-log $\varepsilon'(\omega)$ between (a) BTO-CM and BTO-HM, (b) BTO:Er$^{3+}$-CM and BTO:Er$^{3+}$-HM, (c) BCTO-CM and BCTO-HM, (d) BCTO:Er$^{3+}$-CM and BCTO:Er$^{3+}$-HM at Some Selected Sintering Temperatures

4.73 Logarithmic Frequency Dependence of ε' and ε'' Measured over a Range of Elevated Temperatures in the Sample of BTO-CM Sintered at (a) 950°C and (b) 1000°C. Open Symbols are the Experimental Data, and Solid Line Approximations to the Observed Responses are in Accordance with Equation (4.1). Arrows Indicate the Direction of Increasing Measured Temperature
4.74 Logarithmic Frequency Dependence of ε'_r and ε''_r
Measured over a Range of Elevated Temperatures in the Sample of BTO:Er$^{3+}$-CM Sintered at (a) 950°C and (b) 1000°C. Open Symbols are the Experimental Data, and Solid Line Approximations to the Observed Responses are in Accordance with Equation (4.1). Arrows Indicate the Direction of Increasing Measured Temperature

4.75 Logarithmic Frequency Dependence of ε'_r and ε''_r
Measured over a Range of Elevated Temperatures in the Sample of BTO-HM Sintered at (a) 850°C and (b) 1000°C. Open Symbols are the Experimental Data, and Solid Line Approximations to the Observed Responses are in Accordance with Equation (4.1). Arrows Indicate the Direction of Increasing Measured Temperature

4.76 Logarithmic Frequency Dependence of ε'_r and ε''_r
Measured over a Range of Elevated Temperatures in the Sample of BTO:Er$^{3+}$-HM Sintered at (a) 850°C and (b) 1000°C. Open Symbols are the Experimental Data, and Solid Line Approximations to the Observed Responses are in Accordance with Equation (4.1). Arrows Indicate the Direction of Increasing Measured Temperature

4.77 Logarithmic Frequency Dependence of ε'_r and ε''_r
Measured over a Range of Elevated Temperatures in the Sample of BCTO-HM Sintered at (a) 700°C and (b) 800°C. Open Symbols are the Experimental Data, and Solid Line Approximations to the Observed Responses are in Accordance with Equation (4.1). Arrows Indicate the Direction of Increasing Measured Temperature

4.78 Logarithmic Frequency Dependence of ε'_r and ε''_r
Measured over a Range of Elevated Temperatures in the Sample of BCTO:Er$^{3+}$-HM Sintered at (a) 700°C and (b) 800°C. Open Symbols are the Experimental Data, and Solid Line Approximations to the Observed Responses are in Accordance with Equation (4.1). Arrows Indicate the Direction of Increasing Measured Temperature

4.79 Comparison of Some σ_{dc}-derived Arrhenius Plot between BTO-CM and BTO:Er$^{3+}$-CM. The Solid Sloping Lines Represent Arrhenius Linear Fits Drawn through the Experimental Points According to Equation (4.5). The Correlation Coefficient R^2-values for the Linear Fits are Indicated
4.80 Comparison of Some σ_{dc}-derived Arrhenius Plot between BTO-HM and BTO:Er$^{3+}$-HM. The Solid Sloping Lines Represent Arrhenius Linear Fits Drawn through the Experimental Points According to Equation (4.5). The Correlation Coefficient R^2-values for the Linear Fits are Indicated

4.81 Comparison of Some σ_{dc}-derived Arrhenius Plot between BCTO-HM and BCTO:Er$^{3+}$-HM. The Solid Sloping Lines Represent Arrhenius Linear Fits Drawn through the Experimental Points According to Equation (4.5). The Correlation Coefficient R^2-values for the Linear Fits are Indicated

A1 Cross-sectional Layout of TGA

A2 Schematic Layout of the PC Controlled FE-SEM

A3 Schematic View of Electronic Densimeter MS-300S (Protected by the Airtight Windshield)

A4 Schematic Drawing Showing the Front Panel of Agilent 4294A Precision Impedance Analyzer with the Connected Agilent 16047E Test Fixture

B1 Diffraction Patterns Showing the Experimental Data (Black Circles) are Compared with the Calculated One (Red Curves) for (a) Bi$_2$O$_3$-TiO$_2$ and (b) Bi$_2$O$_3$-Cr$_2$O$_3$-TiO$_2$ Powder Mixtures before Milling that are Plotted Together with the Residual Intensity Differences. Vertical Bars Indicate the Positions of the Bragg Peaks. Final Agreement Values of R Indices and GOF-index are Included

B2 Diffraction Patterns Showing the Experimental Data (Black Circles) are Compared with the Calculated One (Red Curves) for the Conventional Milling of (a) Bi$_2$O$_3$-TiO$_2$ and (b) Bi$_2$O$_3$-Er$_2$O$_3$-TiO$_2$ Powder Mixtures that are Plotted Together with the Residual Intensity Differences. Vertical Bars Indicate the Positions of the Bragg Peaks. Final Agreement Values of R Indices and GOF-index are Included

B3 Diffraction Patterns Showing the Experimental Data (Black Circles) are Compared with the Calculated One (Red Curves) for the Conventional Milling of (a) Bi$_2$O$_3$-Cr$_2$O$_3$-TiO$_2$ and (b) Bi$_2$O$_3$-Er$_2$O$_3$-C$_2$O$_3$-TiO$_2$ Powder Mixtures that are Plotted Together with the Residual Intensity Differences. Vertical Bars Indicate the Positions of the Bragg Peaks. Final Agreement Values of R Indices and GOF-index are Included
Diffraction Patterns Showing the Experimental Data (Black Circles) are Compared with the Calculated One (Red Curves) for the High Energy Milling of (a) Bi$_2$O$_3$-TiO$_2$ and (b) Bi$_2$O$_3$-Er$_2$O$_3$-TiO$_2$ Powder Mixtures that are Plotted Together with the Residual Intensity Differences. Vertical Bars Indicate the Positions of the Bragg Peaks. Final Agreement Values of R Indices and GOF-index are Included.

Diffraction Patterns Showing the Experimental Data (Black Circles) are Compared with the Calculated One (Red Curves) for the High Energy Milling of (a) Bi$_2$O$_3$-Cr$_2$O$_3$-TiO$_2$ and (b) Bi$_2$O$_3$-Er$_2$O$_3$-Cr$_2$O$_3$-TiO$_2$ Powder Mixtures that are Plotted Together with the Residual Intensity Differences. Vertical Bars Indicate the Positions of the Bragg Peaks. Final Agreement Values of R Indices and GOF-index are Included.

Diffraction Patterns Showing the Experimental Data (Black Circles) are Compared with the Calculated One (Red Curves) for the Sintered BTO-CM at (a) 700°C, (b) 750°C, (c) 800°C, (d) 850°C, (e) 900°C, (f) 950°C, and (g) 1000°C that are Plotted Together with the Residual Intensity Differences. Vertical Bars Indicate the Positions of the Bragg Peaks. Final Agreement Values of R Indices and GOF-index are Included.

Diffraction Patterns Showing the Experimental Data (Black Circles) are Compared with the Calculated One (Red Curves) for the Sintered BTO:Er$_{3+}$-CM at (a) 700°C, (b) 750°C, (c) 800°C, (d) 850°C, (e) 900°C, (f) 950°C, and (g) 1000°C that are Plotted Together with the Residual Intensity Differences. Vertical Bars Indicate the Positions of the Bragg Peaks. Final Agreement Values of R Indices and GOF-index are Included.

Diffraction Patterns Showing the Experimental Data (Black Circles) are Compared with the Calculated One (Red Curves) for the Sintered BCTO-CM at (a) 700°C, (b) 750°C, (c) 800°C, (d) 850°C, (e) 900°C, (f) 950°C, and (g) 1000°C that are Plotted Together with the Residual Intensity Differences. Vertical Bars Indicate the Positions of the Bragg Peaks. Final Agreement Values of R Indices and GOF-index are Included.

Diffraction Patterns Showing the Experimental Data (Black Circles) are Compared with the Calculated One (Red Curves) for the Sintered BCTO:Er$_{3+}$-CM at (a) 700°C, (b) 750°C, (c) 800°C, (d) 850°C, (e) 900°C, (f) 950°C, and (g) 1000°C that are Plotted Together with the Residual Intensity Differences. Vertical Bars Indicate the Positions of the Bragg Peaks. Final Agreement Values of R Indices and GOF-index are Included.
B10 Diffraction Patterns Showing the Experimental Data (Black Circles) are Compared with the Calculated One (Red Curve) for the Sintered BTO-HM at (a) 700°C, (b) 750°C, (c) 800°C, (d) 850°C, (e) 900°C, (f) 950°C, and (g) 1000°C that are Plotted Together with the Residual Intensity Differences. Vertical Bars Indicate the Positions of the Bragg Peaks. Final Agreement Values of R Indices and GOF-index are Included

B11 Diffraction Patterns Showing the Experimental Data (Black Circles) are Compared with the Calculated One (Red Curves) for the Sintered BTO:Er³⁺-HM at (a) 700°C, (b) 750°C, (c) 800°C, (d) 850°C, (e) 900°C, (f) 950°C, and (g) 1000°C that are Plotted Together with the Residual Intensity Differences. Vertical Bars Indicate the Positions of the Bragg Peaks. Final Agreement Values of R Indices and GOF-index are Included

B12 Diffraction Patterns Showing the Experimental Data (Black Circles) are Compared with the Calculated One (Red Curves) for the Sintered BCTO-HM at (a) 700°C, (b) 750°C, (c) 800°C, (d) 850°C, (e) 900°C, (f) 950°C, and (g) 1000°C that are Plotted Together with the Residual Intensity Differences. Vertical Bars Indicate the Positions of the Bragg Peaks. Final Agreement Values of R Indices and GOF-index are Included

B13 Diffraction Patterns Showing the Experimental Data (Black Circles) are Compared with the Calculated One (Red Curves) for the Sintered BCTO:Er³⁺-HM at (a) 700°C, (b) 750°C, (c) 800°C, (d) 850°C, (e) 900°C, (f) 950°C, and (g) 1000°C that are Plotted Together with the Residual Intensity Differences. Vertical Bars Indicate the Positions of the Bragg Peaks. Final Agreement Values of R Indices and GOF-index are Included
LIST OF ABBREVIATIONS

PZT Lead zirconium titanate
Fe-RAMs Ferroelectric random access memories
DRAMs Dynamic random access memories
FE-PE Ferroelectric-paraelectric phase transition
SHS Self-propagating high-temperature synthesis
FTIR Fourier transform infrared spectroscopy
TGA Thermogravimetric analysis
DTA Differential thermal analysis
XRD X-ray diffraction
XPS X-ray photoelectron spectroscopy
SEM Scanning electron microscopy
TEM Transmission electron microscopy
EDS Energy dispersive X-ray spectroscopy
EXAFS Extended X-ray absorption fine structure
BPR Ball-to-powder weight ratio
MCA Mechanochemical activation
SSR Solid-state reaction
Log Logarithm
CPE Constant phase element
ICSD Inorganic crystal structure database
FWHM Breath of the peak at half of maximum intensity
CC Cole-Cole
CD Cole-Davidson
HN Havriliak-Negami
IBLC Internal barrier layer capacitor
SBLC Surface barrier layer capacitor
MUT Material under test
ESRF European synchrotron radiation facility
LFD Low-frequency dispersion
BTO-CM Heat-treated Bi₂O₃-TiO₂ after conventional milling
BTO:Er³⁺-CM Heat-treated Bi₂O₃-Er₂O₃-TiO₂ after conventional milling
BCTO-CM Heat-treated Bi₂O₃-Cr₂O₃-TiO₂ after conventional milling
BCTO:Er³⁺-CM Heat-treated Bi₂O₃-Er₂O₃-Cr₂O₃-TiO₂ after conventional milling
BTO-HM Heat-treated Bi₂O₃-TiO₂ after high energy milling
BTO:Er³⁺-HM Heat-treated Bi₂O₃-Er₂O₃-TiO₂ after high energy milling
BCTO-HM Heat-treated Bi₂O₃-Cr₂O₃-TiO₂ after high energy milling
BCTO:Er³⁺-HM Heat-treated Bi₂O₃-Er₂O₃-Cr₂O₃-TiO₂ after high energy milling
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>Number of oxygen octahedra in the pseudo-perovskite blocks</td>
</tr>
<tr>
<td>a</td>
<td>Crystallographic a-axis</td>
</tr>
<tr>
<td>b</td>
<td>Crystallographic b-axis</td>
</tr>
<tr>
<td>c</td>
<td>Crystallographic c-axis</td>
</tr>
<tr>
<td>A</td>
<td>Cationic site occupied by a mono, di, or trivalent large cation</td>
</tr>
<tr>
<td>B</td>
<td>Cationic site occupied by a tri, penta, or hexavalent small cation</td>
</tr>
<tr>
<td>A⁺</td>
<td>Alkali metal cation of Dion-Jacobson phase</td>
</tr>
<tr>
<td>x⁺</td>
<td>Formal charge associated with A cation</td>
</tr>
<tr>
<td>y⁺</td>
<td>Formal charge associated with B cation</td>
</tr>
<tr>
<td>T<sub>Curie</sub></td>
<td>Curie temperature</td>
</tr>
<tr>
<td>T<sub>melting</sub></td>
<td>Melting temperature</td>
</tr>
<tr>
<td>T<sub>sinter</sub></td>
<td>Sintering temperature</td>
</tr>
<tr>
<td>T<sub>DTG</sub></td>
<td>Derivative peak temperature</td>
</tr>
<tr>
<td>ΔT<sub>relax</sub></td>
<td>Degree of relaxation behaviour</td>
</tr>
<tr>
<td>a<sub>o</sub>, b<sub>o</sub>, c<sub>o</sub></td>
<td>Orthorhombic lattice parameters</td>
</tr>
<tr>
<td>a<sub>T</sub>, c<sub>T</sub></td>
<td>Tetragonal lattice parameters</td>
</tr>
<tr>
<td>a<sub>m</sub>, b<sub>m</sub>, c<sub>m</sub></td>
<td>Monoclinic lattice parameters</td>
</tr>
<tr>
<td>V<sub>m</sub></td>
<td>Monoclinic unit cell volume</td>
</tr>
<tr>
<td>V<sub>o</sub></td>
<td>Orthorhombic unit cell volume</td>
</tr>
<tr>
<td>δ</td>
<td>Orthorhombicity</td>
</tr>
<tr>
<td>ρ<sub>XRD</sub></td>
<td>Theoretical X-ray density</td>
</tr>
<tr>
<td>+q</td>
<td>Positive charge</td>
</tr>
<tr>
<td>−q</td>
<td>Negative charge</td>
</tr>
<tr>
<td>μ<sub>d</sub></td>
<td>Dipole moment</td>
</tr>
<tr>
<td>l</td>
<td>Finite distance</td>
</tr>
<tr>
<td>E</td>
<td>Electric field</td>
</tr>
<tr>
<td>D</td>
<td>Phase of induction</td>
</tr>
<tr>
<td>a<sub>m</sub></td>
<td>Molecular polarisability</td>
</tr>
<tr>
<td>x(t)</td>
<td>Time variable displacement</td>
</tr>
<tr>
<td>γ</td>
<td>Damping coefficient</td>
</tr>
<tr>
<td>W</td>
<td>Potential energy</td>
</tr>
<tr>
<td>Γ<sub>ij</sub></td>
<td>Charge transfer rate</td>
</tr>
<tr>
<td>r<sub>ij</sub></td>
<td>Hopping distance</td>
</tr>
<tr>
<td>ξ</td>
<td>Localization length</td>
</tr>
<tr>
<td>Δ<sub>ij</sub></td>
<td>Transition energy</td>
</tr>
<tr>
<td>f</td>
<td>Frequency in Hz</td>
</tr>
<tr>
<td>ω</td>
<td>Angular frequency in rad/s</td>
</tr>
<tr>
<td>ω<sub>R</sub></td>
<td>Resonant angular frequency</td>
</tr>
<tr>
<td>ϵ<sub>εr(max)</sub></td>
<td>Maximum for the real part of the complex relative permittivity</td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>$\varepsilon_{r(\text{max})}$</td>
<td>Maximum for the imaginary part of the complex relative permittivity</td>
</tr>
<tr>
<td>ε_0</td>
<td>Permittivity of free space</td>
</tr>
<tr>
<td>ε^*</td>
<td>Complex relative permittivity</td>
</tr>
<tr>
<td>ε_r</td>
<td>Real part of the complex relative permittivity or dielectric constant</td>
</tr>
<tr>
<td>ε_i</td>
<td>Imaginary part of the complex relative permittivity or dielectric loss</td>
</tr>
<tr>
<td>$\varepsilon_r(\infty)$</td>
<td>High-frequency limit of dielectric constant</td>
</tr>
<tr>
<td>$\varepsilon_r(s)$</td>
<td>Static value of low-frequency dielectric constant</td>
</tr>
<tr>
<td>$\varepsilon_r\text{(CC)}$</td>
<td>CC-derived dielectric loss</td>
</tr>
<tr>
<td>$\varepsilon_r\text{(CD)}$</td>
<td>CD-derived dielectric loss</td>
</tr>
<tr>
<td>$\varepsilon_r\text{(HN)}$</td>
<td>HN-derived dielectric loss</td>
</tr>
<tr>
<td>C^*</td>
<td>Complex capacitance</td>
</tr>
<tr>
<td>C'</td>
<td>Real part of the complex capacitance</td>
</tr>
<tr>
<td>C''</td>
<td>Imaginary part of the complex capacitance</td>
</tr>
<tr>
<td>C_0</td>
<td>Capacitance of empty cell</td>
</tr>
<tr>
<td>$\tan \delta$</td>
<td>Dissipation factor</td>
</tr>
<tr>
<td>i</td>
<td>Imaginary operator with $(-1)^{1/2}$</td>
</tr>
<tr>
<td>M^*</td>
<td>Complex dielectric modulus</td>
</tr>
<tr>
<td>M'</td>
<td>Real part of the complex dielectric modulus</td>
</tr>
<tr>
<td>M''</td>
<td>Imaginary part of the complex dielectric modulus</td>
</tr>
<tr>
<td>Z^*</td>
<td>Complex impedance</td>
</tr>
<tr>
<td>Z'</td>
<td>Real part of the complex impedance</td>
</tr>
<tr>
<td>Z''</td>
<td>Imaginary part of the complex impedance</td>
</tr>
<tr>
<td>G_p</td>
<td>Parallel conductance</td>
</tr>
<tr>
<td>C_p</td>
<td>Parallel capacitance</td>
</tr>
<tr>
<td>R_p</td>
<td>Parallel resistance</td>
</tr>
<tr>
<td>C_s</td>
<td>Series capacitance</td>
</tr>
<tr>
<td>R_s</td>
<td>Series resistance</td>
</tr>
<tr>
<td>R_{el}</td>
<td>Electrode resistance</td>
</tr>
<tr>
<td>R_{sl}</td>
<td>Schottky layer resistance</td>
</tr>
<tr>
<td>R_{gb}</td>
<td>Grain boundary resistance</td>
</tr>
<tr>
<td>R_g</td>
<td>Grain resistance</td>
</tr>
<tr>
<td>C_{el}</td>
<td>Electrode capacitance</td>
</tr>
<tr>
<td>C_{sl}</td>
<td>Schottky layer capacitance</td>
</tr>
<tr>
<td>C_{gb}</td>
<td>Grain boundary capacitance</td>
</tr>
<tr>
<td>C_g</td>
<td>Grain capacitance</td>
</tr>
<tr>
<td>C_∞</td>
<td>High-frequency limit of capacitance</td>
</tr>
<tr>
<td>L_s</td>
<td>Series stray inductance</td>
</tr>
<tr>
<td>Q_{CPE}</td>
<td>Pre-factor of CPE</td>
</tr>
<tr>
<td>Z_{CPE}</td>
<td>Impedance of CPE</td>
</tr>
<tr>
<td>m</td>
<td>Dispersion index of CPE</td>
</tr>
<tr>
<td>σ_{ac}</td>
<td>Alternating current conductivity</td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>σ_{dc}</td>
<td>Direct current conductivity</td>
</tr>
<tr>
<td>$E_a(\text{gg})$</td>
<td>Activation energy for grain growth</td>
</tr>
<tr>
<td>$E_a(g)$</td>
<td>Activation energy for grain</td>
</tr>
<tr>
<td>$E_a(\text{gb})$</td>
<td>Activation energy for grain boundary</td>
</tr>
<tr>
<td>$E_a(\text{el})$</td>
<td>Activation energy for electrode-interface</td>
</tr>
<tr>
<td>$E_a(\sigma_{dc})$</td>
<td>Activation energy for direct current conductivity</td>
</tr>
<tr>
<td>$E_a(\rho_{dc})$</td>
<td>Activation energy for alternating current conductivity</td>
</tr>
<tr>
<td>$E_a(\rho_{ac})$</td>
<td>Activation energy for direct current specific resistivity</td>
</tr>
<tr>
<td>k_B</td>
<td>Boltzmann constant or constant of proportionality</td>
</tr>
<tr>
<td>A_D</td>
<td>Dispersive amplitude of Debye response</td>
</tr>
<tr>
<td>τ_D</td>
<td>Relaxation time of Debye response</td>
</tr>
<tr>
<td>A_{CC}</td>
<td>Dispersive amplitude of CC response</td>
</tr>
<tr>
<td>τ_{CC}</td>
<td>Relaxation time of CC response</td>
</tr>
<tr>
<td>α_{CC}</td>
<td>CC-associated empirical exponent</td>
</tr>
<tr>
<td>A_{CD}</td>
<td>Dispersive amplitude of CD response</td>
</tr>
<tr>
<td>τ_{CD}</td>
<td>Relaxation time of CD response</td>
</tr>
<tr>
<td>β_{CD}</td>
<td>CD-associated empirical exponent</td>
</tr>
<tr>
<td>A_{HN}</td>
<td>Dispersive amplitude of HN response</td>
</tr>
<tr>
<td>τ_{HN}</td>
<td>Relaxation time of HN response</td>
</tr>
<tr>
<td>α_{HN}, β_{HN}</td>
<td>HN-associated empirical exponents</td>
</tr>
<tr>
<td>V_O</td>
<td>Doubly ionized oxygen vacancies</td>
</tr>
<tr>
<td>h^+</td>
<td>Electronic holes</td>
</tr>
<tr>
<td>e^-</td>
<td>Excess electrons</td>
</tr>
<tr>
<td>R^2</td>
<td>Correlation coefficient of linear fit</td>
</tr>
<tr>
<td>$</td>
<td>Z</td>
</tr>
<tr>
<td>θ_Z</td>
<td>Impedance phase</td>
</tr>
<tr>
<td>R_{wp}</td>
<td>Rietveld conceived of weighted profile R-factor</td>
</tr>
<tr>
<td>R_{exp}</td>
<td>Rietveld conceived of expected R-factor</td>
</tr>
<tr>
<td>R_p</td>
<td>Rietveld conceived of profile R-factor</td>
</tr>
<tr>
<td>χ^2</td>
<td>Goodness of fit value, $(R_{wp}/R_{exp})^2$</td>
</tr>
</tbody>
</table>

xlii
CHAPTER 1

INTRODUCTION

1.1 Research Background

Dielectrics, their breadth of discipline in general classified into physics, electrical engineering, materials science, and chemistry, are publicly recognized for their passive electrical insulation properties under the influence of magnetic, electric, or electromagnetic field. From a global perspective view yearly, the research output in the dielectric field is in the rapid ascending order, notably in South-East Asia countries which published considerable dielectric studies. As traced back to the early year before 1980, lead and barium-containing perovskite compounds have been the dominant scientific studies in various matter forms (polymer, ceramic, thin film, glass, rubber, liquid, gas) and were being investigated in the dielectric functions of polarization, relaxation, conduction, and high frequency phenomena. As time ages by, approaches have been taken toward driving down the extensive use of lead following its lifetime adverse effects on environment and human health. In particular, this cumulative metal toxicant poses a high exposure risk to the occupational health during the manufacture of lead zirconium titanate (PZT)-based nanotechnologies. Yet the demands of PZT-based high performance nanofabrication in sensors and actuators are dramatically growing since the discovery of pioneering PZT ceramic with exceptional piezoelectric properties by the Japanese physicists in 1952 (Shirane and Suzuki, 1952). In order to comply with the Restriction of Hazardous Substances Directive, lead-free and environment-friendly alternatives are of priority since year 2003 thereof, being the primary on-going quests for at least comparable piezoelectric and ferroelectric attributes to their lead counterparts. Until now, bismuth-based materials have gained the most popularity among the other non-toxic alternatives, being featured with superior properties across many disciplines as a consequence of their unique crystal structures. These types of lighter, synthetic materials are further described in the later section, whose foremost bismuth titanate (Bi$_4$Ti$_3$O$_{12}$) is meant to act as the parent subject for the present studied variants of related structures.

1.2 Understanding of Bismuth-based Aurivillius Ceramics

Bismuth (Bi)-based ceramics are undeniably categorized as one of the complex-oxide families of layered structural-type involving the basis of perovskite structure. The prototypical representation of layered Bi-containing oxides is Bi$_4$Ti$_3$O$_{12}$ (n = 3, being the number of oxygen octahedron that forms the pseudo-perovskite blocks), whose crystal structure as shown in Figure 1.2(a) is built by three interleaving pseudo-perovskite blocks (Bi$_2$Ti$_3$O$_{10}$)$^{2-}$ between fluorite-like (Bi$_2$O$_2$)$^{2+}$ slabs stacked along a crystallographic c-direction. This sandwiched-like intergrowth configuration is known as Aurivillius phase, named in respect to Bengt Aurivillius who pioneered Bi$_2$O$_3$-TiO$_2$ solid solution in 1949 (Aurivillius, 1949). A general expression (Bi$_2$O$_2$)$^{2+}$(A$_{n-1}$B$_n$O$_{3n+1}$)$^{2-}$ applicable to the exploiting of other homologous Aurivillius series in one crystallographic direction was developed. Here, the notations A and B are the cationic sites occupied by larger (i.e., mono, di, or
chemistry of Aurivillius phase to $A'_{[A_{n-1}B_nO_{3n+1}]}$ of Dion-Jacobson phase (see Figure 1.4).

Figure 1.2: Aristotype Tetragonal Crystal Structure of Aurivillius Phase (a) $n = 3 \text{ Bi}_4\text{Ti}_3\text{O}_{12}$, along with Other Orthorhombic-type Aurivillius Phases Characterized by Different Thicknesses of Perovskite-like Slabs as in (b) $n = 1 \text{ Bi}_2\text{MoO}_6$, (c) $n = 4 \text{ Bi}_5\text{FeTi}_3\text{O}_{15}$, and (d) $n = 6 \text{ Bi}_7\text{Fe}_3\text{Ti}_3\text{O}_{21}$
of a high non-linear dielectric response. The phase transition of Bi$_4$Ti$_3$O$_{12}$ from tetragonal to orthorhombic structure (i.e. changes in the lattice parameters by lowering of symmetry as shown in Figure 1.8) upon cooling undergoes three structural distortions simultaneously as follows (Benedek et al., 2015):

a) Off-centering of Bi cation and O anion in the perovskite blocks.
b) Octahedral tilting along the crystallographic a-direction.
c) Rotation of oxygen octahedra around the crystallographic c-direction.

Figure 1.7: Curie Temperature T_{Curie} Determinations of Bi$_4$Ti$_3$O$_{12}$ at Constant Frequency 1 MHz. Note that the Samples were Produced via Self-propagating High-temperature Synthesis (SHS) and Solid State Reaction
(Source: Macedo et al., 2004)

Figure 1.8: Phase Transition of Bi$_4$Ti$_3$O$_{12}$ with the Variation of Lattice Parameters as a Function of Temperature. Orthorhombic-associated Lattice Parameters are Indicated by a_o, b_o, and c_o; while Tetragonal-associated Lattice Parameters are Indicated by a_T and c_T, Respectively
(Source: Jardiel et al., 2008)
1.3 Problem Statement

Researches on Bi-layered oxides have always been accompanied by a number of shortcomings that tend to limit the leveraging of their key resources, varying according to the fabrication techniques. The expected challenges hereafter consider the solid state synthesis via conventional and high energy milling, both of which are employed in the current research. In the conventional processing, the reaction path takes place in two-steps heat treatment, opening up the possibility of causing the evaporation of bismuth oxide Bi$_2$O$_3$ species at high sintering temperatures due to its hygroscopic nature in Bi volatility. This is the unfavourable situation triggering conceivably the materials of non-stoichiometric form, thus leading to the consequences of having oxygen deficiencies and instability in oxidation state of titanium (Ti) ions in which the positioning and generation are difficult to control (Zhang et al., 2014; Siriprapa et al., 2013). The volatile species provokes further complication on the possible formation of intermediate phases upon sintering process, such as sillenite phase which reacts with the presence of precursor TiO$_2$ phase toward the synthesis of primary Bi$_4$Ti$_3$O$_{12}$ pure phase. Such temperature-driven transient intermediate phase formation may result in poor densification of the materials associated with exaggerated grain growth, dampening the dielectric properties which immediately raise a question on whether the usage of starting nanopowders herein would manage to provide improved reactivity for the densification of end product during the conventional sintering process.

The above mentioned inefficiencies in the conventional processing are practically preventable through the process of high energy milling. Such milling speed is apparently intense, being advantageous in avoiding the evaporation of Bi$_2$O$_3$ during the subsequent sintering as the volatile Bi ions are effectively relieved at the sites of high-impact ball collision where the mechanochemical reaction takes place in the condition of instant “hot spots” of localized heat and pressure (Friščič et al., 2013). As a result, mechanical energy is transferred into the system, providing mass transfer to achieve a potential direct milling synthesis of single-phase Bi-based material whilst inducing better sinterability for the concomitant formation of amorphous and crystalline phases. In some particular cases such as the pure and erbium (Er)-doped Bi$_5$CrTi$_3$O$_{15}$, the direct synthesis difficulties by intensive milling alone can be anticipated from the viewpoint of multi-valence configuration of chromium (Cr) cation and the strength of Er-cation substitution, thus the corresponding complete phase formations require sintering. Also these present a major concern in which the process ahead may stand a chance to leave behind a powder contamination to the end product. One of the many sources of contamination can be intuitively attributed to the adsorption of oxygen and nitrogen on the powder and mill media surfaces especially under the ambient atmosphere (Suryanarayana, 2004b), creating impurity problems that definitely constrain the study to some extent.

On dielectric data analysis, the interpretations of the variation of real and imaginary components of the complex permittivity have been a challenging goal in both theoretical and practical significances, especially under frequency domain response. The experimental dielectric data upon simulation require theoretical support to extract more detailed information about the polarization phenomena. On this matter,
an analytical dielectric function based on any superposition of the Debye, Cole-Cole, Cole-Davison, and Havriliak-Negami dispersion mechanisms plus a direct current conductivity term is taken into consideration (Grosse, 2014), which is useful to approximate the dispersion behaviour. As this fitting process is totally based on trial and error approach, figuring out the appropriate initial guess values for each parameter with sufficient accuracy becomes time consuming, being particularly challenging in Bi-based materials due to the anisotropy of properties on dielectric relaxation.

The origin of dielectric properties associated with these materials is always related to the oxygen vacancies, which raise a question of the ways the defects, or more specifically the missing oxygen atoms do the trick and to what degree they contribute to ion transport at the stage of different sintering temperatures in different processing methods. The challenge continues as to answer on how the emergence of rare-earth Er element as A-site substitute in influencing the dielectric properties of three-layered Bi$_4$Ti$_3$O$_{12}$ and four-layered Bi$_5$CrTi$_3$O$_{15}$ compounds, also, to what extent these modified materials might function when subjected to different sintering temperatures and processing methods. Since the best fits of each dielectric data follow algorithm that indeed is purely mathematical derived, it turns out to be an arduous task to shed light on the underlying physical nature governing the relaxation polarization. Therefore, other empirical dielectric functions such as the representations in terms of dielectric modulus, conductivity, and impedance are proposed, which are expected to convey the supportive physical processes from their perspectives.

1.4 Scope of Research

In this research, solid state reaction via conventional and high energy milling methods are employed to synthesize $n = 3$ Bi$_4$Ti$_3$O$_{12}$ and higher homologous Aurivillius oxides $n = 4$ Bi$_5$CrTi$_3$O$_{15}$ at various sintering temperatures ranging from 700°C to 1000°C. Following the same procedures, the base Bi$_4$Ti$_3$O$_{12}$ and Bi$_5$CrTi$_3$O$_{15}$ compounds are tuned by substituting single isovalent Er$^{3+}$ cation composition on the Bi-sites of the structure, forming the modified Bi$_{1.25}$Er$_{0.75}$Ti$_3$O$_{12}$ compound and turning out to be the first time in synthesizing Bi$_{1.25}$Er$_{0.75}$CrTi$_3$O$_{15}$ compound. These series altogether are systematically made in attempting to answer the following utmost objectives:

1) To identify the role of Bi-site substitutional Er$^{3+}$ cation and to make a comparison of methods between similar samples in view of the phase formation, microstructure, and dielectric properties.

2) To determine the underlying physical interpretations of the dielectric properties in the samples through an empirical fit of relaxation functions in the frequency range of 100 Hz – 10 MHz at room temperature and elevated temperatures in the range of 100 – 300°C.

3) To study the effect of sintering temperature on densification and microstructure that controls the dielectric properties of the samples.
1.5 Dissertation Organization

The dissertation is organized into five chapters. Up to this point we have built a better understanding of how the Bi-related Aurivillius ceramics behave and perform mostly in terms of crystallographic aspect. This is followed by the consideration of potential issues behind the synthesis and characterization. In addition, the present research directions and strategies are also clearly defined.

We continue in Chapter 2 with a specific review of the literatures concerning the synthesis of Bi$_4$Ti$_3$O$_{12}$ and its higher homologous derivatives, starting with the attempt to gather relevant scientific information limited to the published literatures on the solid state syntheses using conventional and high energy milling approaches. Following this manner, the subsequent discussion in the aspects of electrical and structural studies is developed, focusing on a wide range of past achievements relating to the parent and their modified Aurivillius compounds. The last discussion in this chapter is devoted to the practical significance of frequency domain in interpreting particularly the dielectric phenomena, and at this stage, to enter into the dielectric concept at the most fundamental level, as well as an outline of some aspects of presentation of dielectric data.

Chapter 3 provides a descriptive procedure of the synthesis techniques employed, detailing every process involved which begins with the sample preparation and ends with the methods of characterization and measurement. Chapter 4 presents a wide range of experimental findings. We begin with the interpretations of each system from thermal, crystallographic, and morphological analyses, all of which are made clearer independently according to the type of processing methods concerned. While presenting the room-temperature measured dielectric data involving the manipulated variable of frequency, the treatment of interpretational analysis based on an empirical fitting function is provided. In the same way, some significances of frequency domain dielectric response measured over a range of temperatures are highlighted. In order to make the fullest possible understanding of the frequency range of room-temperature measured dielectric data, impedance representations of these data are presented along with an equivalent circuit modelling. A comparison of processing methods evaluated from the aspect of dielectric analysis is also given. Chapter 5 concludes the main findings and suggests the prospect of future work.

Bai, W., Chen, C., Yang, J., Zhang, Y., Qi, R., Huang, R., Tang, X., Duan, C. G. and Chu, J. (2015). Dielectric behaviors of Aurivillius Bi$_5$Ti$_3$Fe$_{0.5}$Cr$_{0.5}$O$_{15}$ multiferroic polycrystals: Determining the intrinsic magnetoelectric responses by impedance spectroscopy. *Scientific Reports*, 5, 17846.

Jonscher, A. K. and Deori, K. L. (1979). The dielectric response of K$_x$Al$_x$Ti$_{8-x}$O$_{16}$ and K$_x$Mg$_{8-x}$Ti$_{8-x}$O$_{16}$. *Journal of Materials Science*, 14, 1308-1320.

Klimkowicz, A., Świerczek, K., Yamazaki, T. and Takasaki, A. (2016). Enhancement of the oxygen storage properties of BaPrMn$_2$O$_{5+\delta}$ and BaSmMn$_2$O$_{5+\delta}$ oxides by a high-energy milling. *Solid State Ionics*, 298, 66-72.

Lomanova, N. A., Semenov, V. G., Panchuk, V. V. and Gusarov, V. V. (2012). Structural changes in the homologous series of the Aurivillius phases Bi$_{n+1}$Fe$_{2n-3}$Ti$_3$O$_{3n+3}$. *Journal of Alloys and Compounds*, 528, 103-108.

Zangina, T., Hassan, J., Matori, K. A., Azis, R. S., Ahmadu, U. and See, A. (2016). Sintering behavior, ac conductivity and dielectric relaxation of Li$_{1.3}$Ti$_{1.7}$Al$_{0.3}$PO$_4$ NASICON compound. *Results in Physics*, 6, 719-725.

