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January 2018 

 

 

Chair: Jumiah binti Hassan, PhD  

Faculty: Institute of Advanced Technology 
 
 

Aurivillius compounds, (Bi2O2)
2+

(Bin1TinO3n+1)
2

, are structurally constructed by 

alternately stacking n perovskite units of (Bin1TinO3n+1)
2

 with two fluorite-like 

layers of (Bi2O2)
2+

. Three-layered Bi4Ti3O12 system in this kind of compounds is 

extensively studied. In most cases, the modification is done by doping various types 

of rare-earth ions at Bi-site to reduce high electrical conductivity for more effective 

ferroelectric dielectrics. Unlike the three-layered Aurivillius systems, attention to the 

four-layered Aurivillius systems isostructural with Bi5FeTi3O15 is scarce, especially 

Bi5CrTi3O15. Such a case involving the magnetic Cr
3+

 ions was only reported from 

the analysis of powder neutron diffraction data. 
 

 

Preparation of the Aurivillius compounds is commonly done by conventional solid 

state reaction method. However, this economical method requires high-temperature 

solid state reaction to reach single phase. Here, high energy milling at room 

temperature for the mechanosynthesis of Aurivillius compounds with Bi4Ti3O12, 

Bi3.25Er0.75Ti3O12, Bi5CrTi3O15, and Bi4.25Er0.75CrTi3O15 compositions is employed. 

These mechanosynthesized samples subjected to a range of sintering temperatures 

(700 – 1000
o
C) are systematically compared with the conventionally processed 

samples in terms of X-ray Diffraction (XRD) analysis, Field Emission Scanning 

Electron Microscopy (FE-SEM) observation, dielectric, and density measurements.  

 

 

All the comparative results obtained point to the effectiveness of the high energy 

milling over the conventional processing technique as a more efficient solid-phase 

formation method in synthesizing the studied samples. This is first demonstrated by 

room-temperature XRD studies. The sintering temperature at which these 

mechanosynthesized compounds show complete formation of the pure phase are 

comparatively lower than those of conventionally processed samples as a result of 

the mechanochemical reaction by high energy milling.  
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Consequently, FE-SEM observations of the mechanosynthesized samples reveal 

distinct grain morphologies contrary to the plate-like grain morphologies in the 

conventionally processed samples, in which the latter display grain growth with 

increasing sintering temperature controlled by anisotropic grain boundary. For the 

mechanosynthesized Bi4Ti3O12, triple junction controlled grain growth is evident, 

while the grain growth of mechanosynthesized Bi4.25Er0.75CrTi3O15 is discovered for 

the first time being governed via multiple ordered coalescence of nanocrystals. Also, 

the mechanochemical effect triggers the improved sintered densities in the 

mechanosynthesized samples. For this reason, the mechanosynthesized samples 

exhibit much higher room-temperature dielectric constant values in the frequency 

range of 100 Hz – 10 MHz.  

 

 

All samples prepared by both methods exhibit common feature in the variation of 

dielectric constant with respect to frequency, which follows directly from the 

relationship between densification and sintering temperature. Moreover, very similar 

intrinsic frequency dispersion of dielectric responses could be observed, with the 

physical basis for the interpretation is based on the empirical fitting model of 

relaxation functions: Cole-Cole, Cole-Davidson, and Havriliak-Negami.  

 

 

Besides comparison of methods, the influence of Er
3+

 dopant on the parent structure 

of Bi4Ti3O12 and Bi5CrTi3O15 is also investigated. The marked contributions of this 

dopant are from the grain growth inhibition due to the grain boundary segregation of 

Er
3+

 and weak low-frequency dispersion of the dielectric constant in the doped 

samples. These experimental evidences reflect the suppression of oxygen vacancies, 

which is also manifested in one of the fitting parameters, the reduced direct current 

conductivity. 
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DAN Bi5CrTi3O15 DALAM BENTUK TULEN DAN Er-TERTUKAR GANTI 

 

 

Oleh 

WONG YICK JENG 

Januari 2018 

 

 

Pengerusi: Jumiah binti Hassan, PhD 

Fakulti: Institut Teknologi Maju 

 

 

Penstrukturan sebatian Aurivillius, (Bi2O2)
2+

(Bin1TinO3n+1)
2

, adalah secara susunan 

selang n unit perovskit (Bin1TinO3n+1)
2

 dengan dua lapisan bak fluorit (Bi2O2)
2+

. 

Sistem Bi4Ti3O12 berlapis tiga dalam sebatian jenis ini telah dikaji dengan meluas. 

Dalam kebanyakan kes, ia diubah suai menerusi pendopan dengan pelbagai ion nadir 

bumi di tapak-Bi untuk mengurangkan kekonduksian elektrik demi feroelektrik 

dielektrik yang lebih berkesan. Tidak serupa dengan sistem Aurivillius berlapis tiga, 

perhatian kepada sistem Aurivillius berlapis empat yang isostruktur dengan 

Bi5FeTi3O15 adalah kurang, terutamanya Bi5CrTi3O15. Kes seperti ini yang 

melibatkan ion magnet Cr
3+

 hanya dilaporkan dari analisis data pembelauan neutron 

serbuk. 

 

  

Penyediaan sebatian Aurivillius biasanya dilakukan dengan menggunakan kaedah 

tindak balas keadaan pepejal konvensional. Namun begitu, kaedah berekonomi ini 

memerlukan tindak balas keadaan pepejal yang bersuhu tinggi untuk mencapai fasa 

tunggal. Di sini, kisaran bertenaga tinggi pada suhu bilik digunakan untuk sintesis 

mekanik sebatian Aurivillius dengan komposisi Bi4Ti3O12, Bi3.25Er0.75Ti3O12, 

Bi5CrTi3O15, dan Bi4.25Er0.75CrTi3O15. Perbandingan sistematik bagi sampel-sampel 

tersintesis secara mekanik ini yang disinter pada julat suhu di antara 700 – 1000
o
C 

dengan sampel-sampel terproses scara konventional adalah dari segi analisis belauan 

sinar-X (XRD), cerapan mikroskopi elektron pengimbasan pancaran medan (FE-

SEM), pengukuran dielektrik, dan ketumpatan.  

 

 

Kesemua keputusan perbandingan yang diperoleh menghala tuju kepada 

keberkesanan kisaran bertenaga tinggi sebagai kaedah pembentukan fasa pepejal 

yang lebih cekap daripada teknik pemprosesan konvensional dalam mensintesiskan 

sampel kajian. Demonstrasi pertama ini adalah dari kajian XRD pada suhu bilik. 

Suhu pensinteran di mana sampel-sampel tersintesis secara mekanik ini 
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menunjukkan pembentukan lengkap fasa tulen adalah lebih rendah berbanding 

dengan sampel-sampel terproses scara konvensional akibat tindak balas kimia 

mekanik menerusi kisaran bertenaga tinggi. 

 

 

Oleh sebab itu, permerhatian FE-SEM bagi sampel-sampel tersintesis secara 

mekanik mendedahkan morfologi butiran berbeza yang berlawanan dengan 

morfologi bak plat pada sampel-sampel terproses scara konventional, di mana 

morfologi yang kedua memaparkan pertumbuhan butiran dengan peningkatan suhu 

pensinteran yang dikawal secara sempadan butiran anisotropi. Bagi sampel Bi4Ti3O12 

yang tersintesis secara mekanik, pertumbuhan butiran kawalan simpangan tiga 

adalah jelas, sedangkan pertumbuhan bijian Bi4.25Er0.75CrTi3O15 dikawal melalui 

koalesens tertib berganda hablur nano merupakan penemuan yang pertama kali. Juga, 

kesan kimia mekanik mencetuskan penumpatan tersinter yang lebih baik dalam 

sampel. Atas sebab ini, sampel-sampel tersintesis secara mekanik menunjukkan nilai 

pemalar dielektrik yang lebih tinggi pada suhu bilik dalam julat frekuensi 100 Hz – 

10 MHz.  

 

 

Kesemua sampel yang disediakan oleh kedua-dua kaedah menunjukkan sifat sepunya 

dalam perubahan pemalar dielektrik merujuk kepada frekuensi, yang mana ianya 

mengikut secara langsung dari perhubungan antara penumpatan dan suhu 

pensinteran. Tambahan pula, serakan frekuensi intrinsik sambutan dielektrik yang 

sangat serupa dapat diperhatikan, dengan asas fizikal untuk pentafsiran adalah 

berdasarkan model penyuaian empirik fungsi kesantaian: Cole-Cole, Cole-Davidson, 

dan Havriliak-Negami.  

 

 

Selain daripada kaedah bandingan, pengaruh dopan Er
3+

 terhadap struktur induk 

Bi4Ti3O12 dan Bi5CrTi3O15 turut disiasat. Sumbangan ketara dopan tersebut adalah 

dari perencatan pertumbuhan butiran disebabkan oleh pengasingan sempadan butiran 

Er
3+

 dan serakan frekuensi rendah pemalar dielektrik yang lemah dalam sampel-

sampel terdop. Bukti-bukti eksperimen ini mencerminkan penindasan kekosongan 

oksigen, dinyatakan dalam salah satu parameter penyuaian juga, iaitu kekonduksian 

arus terus terkurang. 
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4.21 Representative Examples of the Microstructural 

Comparison between BTO-CM (Left Side) and 

BTO:Er
3+

-CM (Right Side), Highlighting the Grain 

Structures after Doping are of the Refined-types and Way 

Susceptible against Grain Coarsening with Sintering 

Temperature. Scale Bars are 2 m 98 

4.22 Magnified Morphological Images of BTO:Er
3+

-CM 

Depicting the EDS Measurements where the Grain 

Interiors and Grain Boundaries are Targeted as Indicated 

by “+”. (   700
o
C, (b) 750

o
C, (c) 800

o
C, (d) 850

o
C, (e) 

900
o
C, (f) 950

o
C, and (g) 1000

o
C. Insets Show the 

Corresponding Results Portion of the Intensity Profiles 

where the Signals of Bi, Er, Ti, and O are the Most 

Evident 99 

4.23 Comparison of Relative Density (Top Panel) and Aspect 

Ratio (Bottom Panel) between BTO-CM and BTO:Er
3+

-

CM as a Function of Sintering Temperature. The Relative 

Density is Defined on the Basis of Theoretical X-ray 

Density of Bi4Ti3O12,  XRD = 8.04 g/cm
3
 101 

4.24 EDS-measured Er/Bi Atomic Ratio from the Grain 

Interior Plotted as a Function of Sintering Temperature. 

The Horizontal Dashed Line Represents the Theoretical 

Er/Bi Atomic Ratio for the Formation of Bi3.25Er0.75Ti3O12 

Single-phase Microstructure Solid Solution 102 

4.25 A Series of FE-SEM Overview Images Illustrating the 

Microstructural Evolution of BCTO-CM over a Wide 

Range of Sintering Temperatures. (a) 700
o
C, (b) 750

o
C, 

(c) 800
o
C, (d) 850

o
C, (e) 900

o
C, (f) 950

o
C, and (g) 

1000
o
C. The Assigne  Regions of “A”, “B”,  n  “C”  re 

for EDS Analysis 103 

4.26 Measured Aspect Ratio and Relative Density of BCTO-

CM as a Function of Sintering Temperature. The Relative 

Density is Defined on the Basis of Theoretical X-ray 

Density of Bi5CrTi3O15,  XRD = 8.15 g/cm
3
 104 

4.27 FE-SEM Micrographs from Figure 4.25(d – g) after 

Image Processing by ImageJ Software for Clearer Grain 

Boundary Traces. The Sintered Appearances of 

Dislocations (White Arrows), Lobate Grain Boundaries 

(Yellow Arrows), New Subgrains Formation (Dotted 

Yellow Circles), and Process of Grain-rotation-induced 

Grain Coalescence (Yellow Rectangular Dashed Frames) 

are Marked. Scale Bars are 4 m 
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4.28 A Series of FE-SEM Overview Images Illustrating the 

Microstructural Evolution of BCTO:Er
3+

-CM over a 

Wide Range of Sintering Temperatures. (a) 700
o
C, (b) 

750
o
C, (c) 800

o
C, (d) 850

o
C, (e) 900

o
C, (f) 950

o
C, and (g) 

1000
o
C. EDS Spots  re In i  te  by “+”. Arrows Show 

the Deformed Grains Composed of Rearrangement of 

Dislocations 108 

4.29 Magnified FE-SEM Micrographs Showing the Prominent 

Traces of Gliding Dislocation Revealed as (a) Cleavage 

Steps at 950
o
C and (b) Parallel Slip Lines at 1000

o
C, on 

the Surface of Deformed Regions in BCTO:Er
3+

-CM 109 

4.30 Portion of EDS Spectrum Showing the Peak Overlay 

Interference between Cr-L and O-K Lines in the Case of 

BCTO:Er
3+

-CM Sintered at 900
o
C 110 

4.31 Comparison of Maximum Achievable Relative Density 

(Top Panel) and Aspect Ratio (Bottom Panel) between 

BCTO-CM and BCTO:Er
3+

-CM at the Respective 

Sintering Temperature. The Relative Density is Defined 

on the Basis of Theoretical X-ray Density of Bi5CrTi3O15, 

 XRD = 8.15 g/cm
3
 110 

4.32 Phase Formation of BTO-HM with the Application of 

Heat: (a) A Series of Full-range XRD Patterns Showing 

the Single-phase Signature of Bi4Ti3O12 over a Range of 

Sintering Temperatures. (b) The Milled-associated 

Pattern to Track the Phase Changes on Sintering. The 

Assigned (hkl) Indices of Reflections are Based on the 

Crystallographic Planes of Pure Orthorhombic Bi4Ti3O12 

Phase (ICSD PDF #98-000-8636) 112 

4.33 Close Examination of the Peak-splitting Behaviours in the 

Vicinity of 2Associated with Crystallographic Index of 

(a) (020)/(200), (b) (026)/(206), (c) (028)/(208), (d) 

(0214)/(2014), (e) (137)/(317), and (f) (040)/(400) Planes. 

All of Which Evidences the Orthorhombic Symmetry in 

BTO-HM Samples Heat-Treated at Various Temperatures 113 

4.34 Phase Formation of BTO:Er
3+

-HM with the Application 

of Heat: (a) Full-range Diffraction Data (Top Panel) 

Showing Similar Pattern Characteristics at Each Sintering 

Temperature, All of which Point to the Formation of 

Single-phase Substitutional Solid Solution of 

Bi3.25Er0.75Ti3O12. The Bottom Panel Gives the Milled-

associated Pattern to Trace the Phase Changes on 

Sintering. (b) Comparative XRD Patterns in a Narrow 2 

Range from 29.8
o
 to 30.8

o
 between BTO-HM and 

BTO:Er
3+

-HM. The Assigned (hkl) Indices of Reflections 

are Based on the Crystallographic Planes of Pure 

Monoclinic Bi4Ti3O12 phase (ICSD PDF #98-002-7739) 114 
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4.35 Phase Formation of BCTO-HM with the Application of 

Heat: (a) Stack Plot of XRD Data Illustrating the 

Formation of Single-phase Bi5CrTi3O15 over a Range of 

Sintering Temperatures. (b) The Corresponding Milled 

Profile to Trace the Phase Changes on Sintering. The 

Assigned (hkl) Indices of Reflections are Based on the 

Crystallographic Planes of Pure Orthorhombic 

Bi5FeTi3O15 Phase (ICSD PDF #98-003-1589) 115 

4.36 Phase Formation of BCTO:Er
3+

-HM with the Application 

of Heat: (a) Stack Plot of XRD over a Range of Sintering 

Temperatures (Top Panel), with the Patterns in Shaded 

Regions are Those of which Characterize the Formation 

of Single-phase Substitutional Solid Solution of 

Bi4.25Er0.75CrTi3O15. The Bottom Panel Gives the Milled-

associated Pattern to Trace the Phase Changes on 

Sintering. (b) The Corresponding (191) Peak Shifting 

Behaviours in Comparison with BCTO:Er
3+

-CM. The 

Assigned (hkl) Indices of Reflections are Based on the 

Crystallographic Planes of Pure Orthorhombic 

Bi5FeTi3O15 Phase (ICSD PDF #98-003-1589) 117 

4.37 FE-SEM Images of the Morphological Evolution for 

BTO-HM after Sintering at Different Temperatures. (a) 

700
o
C, (b) 750

o
C, (c) 800

o
C, (d) 850

o
C, (e) 900

o
C, (f) 

950
o
C, and (g) 1000

o
C. “+”  re the EDS Spots. S  le 

Bars are 2m. The Triple Junctions are Indicated by 

White Arrows. Some Intergranular Fractures Propagating 

along the Grain Boundaries and Triple Junctions are 

Indicated by Dashed White Circles 118 

4.38 Close-up FE-SEM Image of BTO-HM Sintered at 700
o
C, 

Showing the Representative Morphology of Agglomerate 

with Larger Density Than Its Surrounding 119 

4.39 FE-SEM Images of the Morphological Evolution for 

BTO:Er
3+

-HM after Sintering at Different Temperatures. 

(a) 700
o
C, (b) 750

o
C, (c) 800

o
C, (d) 850

o
C, (e) 900

o
C, (f) 

950
o
C, and (g) 1000

o
C. “+”  re the EDS Spots. S  le 

Bars are 2m 120 

4.40 EDS Point Spectra Recorded from the Regions of BTO-

Er
3+

-HM L belle   s “A” in Figures 4.39(   – (g). All the 

Essential Elements are Readily Detected 121 

4.41 FE-SEM Images of the Morphological Evolution for 

BCTO-HM after Sintering at Different Temperatures. (a) 

700
o
C, (b) 750

o
C, (c) 800

o
C, (d) 850

o
C, (e) 900

o
C, (f) 

950
o
C, and (g) 1000

o
C. “A”  n  “B”  re the EDS Spots. 

The New Subgrains Formations are Indicated by Dotted 

Yellow Circles 
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4.42 FE-SEM Images of the Morphological Evolution for 

BCTO:Er
3+

-HM after Sintering at Different 

Temperatures. (a) 700
o
C, (b) 750

o
C, (c) 800

o
C, (d) 850

o
C, 

(e) 900
o
C, (f) 950

o
C, and (g) 1000

o
C; (h) the 

Corresponding Mean Grain Size Diameter as a Function 

of Sintering Temper ture. “A”, “B”,  n  “C”  re the EDS 

Spots. Regions Framed by the White Squares in (e) are 

where the Grains Approach an Initial Cuboidal Shape. 

Scale Bars are 2 m 124 

4.43 Enlarged FE-SEM View on a Coarse Cuboic Shaped 

Grain in the Sintered Sample of BCTO:Er
3+

-HM at 

1000
o
C, Clearly Revealing the Nano-scale Stacking 

Patterns as Indicated by the Alphabets 125 

4.44 Relative Density Variations as a Function of Sintering 

Temperature by Comparing a Range of Samples between 

(a) BTO-HM and BTO-CM, (b) BTO:Er
3+

-HM and 

BTO:Er
3+

-CM, (c) BCTO-HM and BCTO-CM, (d) 

BCTO:Er
3+

-HM and BCTO:Er
3+

-CM 126 

4.45 Dielectric Response of BTO-CM over a Range of 

Sintering Temperatures (a) 700 – 900
o
C, (b) 950 and 

1000
o
C, Characterized by Dependence of Linearly Plotted 

 r
  (Top Panel) and Logarithmically Plotted  r

  (Bottom 

Panel) on Logarithm of. Open Symbols are the 

Experimental Data, and Solid Lines are the Best Fits to 

the Observed Responses in Accordance with Equation 

(4.1). LFD for 700 and 750
o
C are Shown in Considerable 

Enlargement in Inset of the Top Panel (a) 128 

4.46 Dielectric Response of BTO:Er
3+

-CM over a Range of 

Sintering Temperatures (a) 700 – 850
o
C, (b) 900 – 

1000
o
C, Characterized by Dependence of Linearly Plotted 

 r
  (Top Panel) and Logarithmically Plotted  r

  (Bottom 

Panel) on Logarithm of . Open Symbols are the 

Experimental Data, and Solid Lines are the Best Fits to 

the Observed Responses in Accordance with Equation 

(4.1). LFD for 700 and 800
o
C are Shown in Considerable 

Enlargement in Inset of the Top Panel (a) 129 

4.47 Dielectric Behaviour of BCTO-CM over a Range of 

Sintering Temperatures (a) 700 – 850
o
C, (b) 900 – 

1000
o
C, with  r

  (Top Panel) and  r
  (Bottom Panel) are 

Plotted Linearly and Logarithmically against Logarithmic 

of , Respectively. Open Symbols are the Experimental 

Data, and Solid Lines are the Best Fits to the Observed 

Responses in Accordance with Equation (4.1). Variations 

of  r
  (900 – 1000

o
C) are Plotted Logarithmically in Inset 

of the Top Panel (b) on Log Coordinates of Narrow 

Frequency Range of 10
6
 – 10

8
 Hz to Stress the Aberration 

of Equation (4.1) Due to the Effect of Resonance 130 
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4.48 Dielectric Behaviour of BCTO:Er
3+

-CM in the Sintering 

Temperature Range of 700 – 1000
o
C, with (a)  r

  and (b) 

 r
  are Plotted Linearly and Logarithmically against 

Logarithmic of , Respectively. Open Symbols are the 

Experimental Data, and Solid Lines are the Best Fits to 

the Observed Responses in Accordance with Equation 

(4.1). LFD for 700 and 750
o
C are Shown in Considerable 

Enlargement in Inset of (a) 131 

4.49 Log-log Frequency Dependence of (a)  r
  and (b)  r

  for 

BTO-HM Covering the Sintering Temperature Range of 

700 – 1000
o
C. Open Symbols are the Experimental Data, 

and Solid Lines are the Best Fits to the Observed 

Responses in Accordance with Equation (4.1). Inset of (a) 

is in Semi-logarithmic Coordinates Showing Clearly LFD 

for the Samples Sintered from 700 to 850
o
C 132 

4.50 Log-log Presentation of (a)  r
 ( )  and (b)  r

 ( )  for 

BTO:Er
3+

-HM Covering the Sintering Temperature 

Range of 700 – 1000
o
C. Open Symbols are the 

Experimental Data, and Solid Lines are the Best Fits to 

the Observed Responses in Accordance with Equation 

(4.1) 133 

4.51 Frequency Dependence of (a)  r
  and (b)  r

  for BCTO-

HM Covering the Sintering Temperature Range of 700 – 

1000
o
C Plotted in Log-log Representation. Open Symbols 

are the Experimental Data, and Solid Lines are the Best 

Fits to the Observed Responses in Accordance with 

Equation (4.1). Insets of (a) Give the Corresponding 

Semi-logarithmic Variations of  r
 ( ) in which LFD are 

Clearly Discernible 134 

4.52 Dielectric Behaviour of BCTO:Er
3+

-HM in the Sintering 

Temperature Range of (a) 700 – 850
o
C, (b) 900 – 1000

o
C, 

with  r
  (Top Panel) and  r

  (Bottom Panel) in Log-log 

Representation. Open Symbols are the Experimental 

Data, and Solid Lines are the Best Fits to the Observed 

Responses in Accordance with Equation (4.1). Inset of 

the Top Panel (b) Gives Variations of  r
 ( ) in Linear-log 

Coordinates Showing Clearly LFD (900 – 1000
o
C) 135 

4.53 M'' vs. M' Plots of BTO-CM at the Sintering Temperature 

of (a) 700
o
C, (b) 800

o
C, (c) 900

o
C, and (d) 1000

o
C. LFD-

 sso i te  Rel x tions  re M rke  by “ st”, whi h  re 

Followed at Much Higher Frequencies by Another 

Rel x tion Pro ess Denote  by “2n  . Inset Plots of (a) 

 n  (b  M gnify the “ st  Regions for whi h the Low-

frequency Arcs are Clearly Evident. Arrows Show the 

Sense of Frequency Increment 136 
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4.54 M'' vs. M' Plots of BCTO-CM at the Sintering 

Temperature of (a) 700
o
C, (b) 750

o
C, (c) 800

o
C, and (d) 

850
o
C. LFD- sso i te  Rel x tions  re M rke  by “ st”, 

which are Followed at Much Higher Frequencies by 

Another Rel x tion Pro ess Denote  by “2n  . The 

Enlarged Logarithmic Scale in Inset of (b) Clearly 

Emphasizing the Very Shallow Low-frequency Arc in the 

“ st  Regions. Arrows Show the Sense of Frequen y 

Increment 136 

4.55 Variation of  r
  and  r

  over an Extended Frequency Range 

of 10
7
 – 10

8
 Hz for BTO:Er

3+
-HM at the Sintering 

Temperature of (a) 700
o
C and (b) 750

o
C. Both Samples 

are Characterized by Anomalous Dispersion of Initial 

Rise of  r
  before a Sudden Drop Passing through Zero to 

Negative Values at  in Excess of 10
8
 Hz. Note the Semi-

logarithmic Plotting. The Reproduced Solid Curves 

Overlapping This Range of Experimental Data are Based 

on Equations (2.12) and (2.13) 138 

4.56 Nyquist Plot of BTO-CM Taken over a Range of 

Sintering Temperatures of 700 – 1000
o
C. Experimental 

Data Points are Represented by Open Symbols, All are 

Fitted with the Solid Lines According to the Equivalent 

Circuit Model in Figure 4.60. Arrows Indicate the 

Direction of Increasing Frequency 140 

4.57 Nyquist Plot of BCTO-CM Taken over a Range of 

Sintering Temperatures of 700 – 850
o
C. Experimental 

Data Points are Represented by Open Symbols, All are 

Fitted with the Solid Lines According to the Equivalent 

Circuit Model in Figure 4.60. Arrows Indicate the 

Direction of Increasing Frequency 140 

4.58 Nyquist Plot of BTO-HM Taken over a Range of 

Sintering Temperatures of 700 – 1000
o
C. Experimental 

Data Points are Represented by Open Symbols, All are 

Fitted with the Solid Lines According to the Equivalent 

Circuit Model in Figure 4.60. Arrows Indicate the 

Direction of Increasing Frequency 141 

4.59 Nyquist Plot of BCTO-HM Taken over a Range of 

Sintering Temperatures of 700 – 850
o
C. Experimental 

Data Points are Represented by Open Symbols, All are 

Fitted with the Solid Lines According to the Equivalent 

Circuit Model in Figure 4.60. Arrows Indicate the 

Direction of Increasing Frequency 
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4.60 Series-parallel Type of RC Equivalent Circuit Used to 

Describe the Impedance Behaviours of BTO-CM (700 – 

1000
o
C), BCTO-CM (700 – 850

o
C), BTO-HM (700 – 

1000
o
C), BTO:Er

3+
-HM (700 – 1000

o
C), BCTO-HM 

(700 – 850
o
C), and BCTO:Er

3+
-HM (700 – 850

o
C). 

Indices: el= Electrode, gb= Grain Boundary, g= Grain, 

R= Resistance, C= Capacitance, CPE= Constant Phase 

Element 142 

4.61 Comparison of Log-log  r
 ( ) between (a) BTO-CM and 

BTO:Er
3+

-CM, (b) BCTO-CM and BCTO:Er
3+

-CM, (c) 

BTO-HM and BTO:Er
3+

-HM, (d) BCTO-HM and 

BCTO:Er
3+

-HM at Some Selected Sintering 

Temperatures 142 

4.62 Nyquist Plot of BTO:Er
3+

-HM Taken over a Range of 

Sintering Temperatures of 700 – 1000
o
C. Experimental 

Data Points are Represented by Open Symbols, All are 

Fitted with the Solid Lines According to the Equivalent 

Circuit Model in Figure 4.60. Arrows Indicate the 

Direction of Increasing Frequency 143 

4.63 Nyquist Plot of BCTO:Er
3+

-HM Taken over a Range of 

Sintering Temperatures of 700 – 850
o
C. Experimental 

Data Points are Represented by Open Symbols, All are 

Fitted with the Solid Lines According to the Equivalent 

Circuit Model in Figure 4.60. Arrows Indicate the 

Direction of Increasing Frequency 144 

4.64 Nyquist Plot of BCTO:Er
3+

-CM Taken over a Range of 

Sintering Temperatures of 700 – 1000
o
C. Each Response 

is Satisfactorily Fitted with Solid Curve from the Series-

parallel Combination of RC Components Shown in 

Insets of Each Diagram. Arrows Indicate the Ascending 

Frequency Order 144 

4.65 Nyquist Plot of BTO:Er
3+

-CM Taken over a Range of 

Sintering Temperatures of 800 – 1000
o
C. Experimental 

Data Points are Represented by Open Symbols, All are 

Fitted with the Solid Lines According to the Equivalent 

Circuit Model in Figure 4.66. Arrows Indicate the 

Direction of Increasing Frequency 145 

4.66 Series-parallel Type of RC Equivalent Circuit 

Applicable to the Experimental Impedance Behaviours 

for BTO:Er
3+

-CM in the Sintering Temperature Range of 

800 – 1000
o
C 
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4.67 Nyquist Plot of BCTO-CM Sintered at (a) 900
o
C, (b) 

950
o
C, and (c) 1000

o
C. Open Symbols are the 

Experimental Data Points, All are Fitted with the Solid 

Lines According to the Equivalent Circuit Model Given 

in (d). Arrows Indicate the Direction of Increasing 

Frequency 146 

4.68 Blot Plot of  Z  vs. Log f in Lin-log Format at the 

Sintering Temperature of (a) 900
o
C, (b) 950

o
C, and (c) 

1000
o
C Representing the Nyquist Plot of BCTO-CM 

Given in Figure 4.67(a – c). The Markings Indicated by 

Dashed Boxes are Phase Shift Due to the High-frequency 

Inductive Behaviour 147 

4.69 Nyquist Plot of BTO:Er
3+

-CM Sintered at (a) 700
o
C and 

(b) 750
o
C. Open Symbols are the Experimental Data 

Points, All are Fitted with the Solid Lines According to 

the Equivalent Circuit Model Given in (c). Arrows 

Indicate the Direction of Increasing Frequency 147 

4.70 Blot Plot of  Z  vs. Log f in Lin-log Format at the 

Sintering Temperature of (a) 700
o
C and (b) 750

o
C 

Representing the Nyquist Plot of BTO:Er
3+

-CM Given in 

Figure 4.69(a) and (b). The Markings Indicated by 

Dashed Boxes are Phase Shift Due to the High-frequency 

Inductive Behaviour 148 

4.71 Nyquist Plot of BCTO-HM Sintered at (a) 900
o
C, (b) 

950
o
C, and (c) 1000

o
C. Open Symbols are the 

Experimental Data Points, All are Fitted with the Solid 

Lines with (a) and (b) are Based on the Equivalent Circuit 

Model Given in (d). The Equivalent Circuit Model that 

Fits the Response at 1000
o
C is Shown in Inset of (c). 

Arrows Indicate the Direction of Increasing Frequency. 

Indices: sl= Schottky Layer 148 

4.72 Comparison of Log-log  r
 ( ) between (a) BTO-CM and 

BTO-HM,  (b) BTO:Er
3+

-CM and BTO:Er
3+

-HM, (c) 

BCTO-CM and BCTO-HM, (d) BCTO:Er
3+

-CM and 

BCTO:Er
3+

-HM at Some Selected Sintering 

Temperatures 149 

4.73 Logarithmic Frequency Dependence of  r
  and  r

  

Measured over a Range of Elevated Temperatures in the 

Sample of BTO-CM Sintered at (a) 950
o
C and (b) 

1000
o
C. Open Symbols are the Experimental Data, and 

Solid Line Approximations to the Observed Responses 

are in Accordance with Equation (4.1). Arrows Indicate 

the Direction of Increasing Measured Temperature 
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4.74 Logarithmic Frequency Dependence of  r
  and  r

  

Measured over a Range of Elevated Temperatures in the 

Sample of BTO:Er
3+

-CM Sintered at (a) 950
o
C and (b) 

1000
o
C. Open Symbols are the Experimental Data, and 

Solid Line Approximations to the Observed Responses 

are in Accordance with Equation (4.1). Arrows Indicate 

the Direction of Increasing Measured Temperature 151 

4.75 Logarithmic Frequency Dependence of  r
  and  r

  

Measured over a Range of Elevated Temperatures in the 

Sample of BTO-HM Sintered at (a) 850
o
C and (b) 

1000
o
C. Open Symbols are the Experimental Data, and 

Solid Line Approximations to the Observed Responses 

are in Accordance with Equation (4.1). Arrows Indicate 

the Direction of Increasing Measured Temperature 152 

4.76 Logarithmic Frequency Dependence of  r
  and  r

  

Measured over a Range of Elevated Temperatures in the 

Sample of BTO:Er
3+

-HM Sintered at (a) 850
o
C and (b) 

1000
o
C. Open Symbols are the Experimental Data, and 

Solid Line Approximations to the Observed Responses 

are in Accordance with Equation (4.1). Arrows Indicate 

the Direction of Increasing Measured Temperature 153 

4.77 Logarithmic Frequency Dependence of  r
  and  r

  

Measured over a Range of Elevated Temperatures in the 

Sample of BCTO-HM Sintered at (a) 700
o
C and (b) 

800
o
C. Open Symbols are the Experimental Data, and 

Solid Line Approximations to the Observed Responses 

are in Accordance with Equation (4.1). Arrows Indicate 

the Direction of Increasing Measured Temperature 154 

4.78 Logarithmic Frequency Dependence of  r
  and  r

  

Measured over a Range of Elevated Temperatures in the 

Sample of BCTO:Er
3+

-HM Sintered at (a) 700
o
C and (b) 

800
o
C. Open Symbols are the Experimental Data, and 

Solid Line Approximations to the Observed Responses 

are in Accordance with Equation (4.1). Arrows Indicate 

the Direction of Increasing Measured Temperature 155 

4.79 Comparison of Some    -derived Arrhenius Plot between 

BTO-CM and BTO:Er
3+

-CM. The Solid Sloping Lines 

Represent Arrhenius Linear Fits Drawn through the 

Experimental Points According to Equation (4.5). The 

Correlation Coefficient R
2
-values for the Linear Fits are 

Indicated 
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4.80 Comparison of Some    -derived Arrhenius Plot between 

BTO-HM and BTO:Er
3+

-HM. The Solid Sloping Lines 

Represent Arrhenius Linear Fits Drawn through the 

Experimental Points According to Equation (4.5). The 

Correlation Coefficient R
2
-values for the Linear Fits are 

Indicated 157 

4.81 Comparison of Some    -derived Arrhenius Plot between 

BCTO-HM and BCTO:Er
3+

-HM. The Solid Sloping 

Lines Represent Arrhenius Linear Fits Drawn through the 

Experimental Points According to Equation (4.5). The 

Correlation Coefficient R
2
-values for the Linear Fits are 

Indicated 157 

A1 Cross-sectional Layout of TGA 173 

A2 Schematic Layout of the PC Controlled FE-SEM 174 

A3 Schematic View of Electronic Densimeter MS-300S 

(Protected by the Airtight Windshield) 175 

A4 Schematic Drawing Showing the Front Panel of Agilent 

4294A Precision Impedance Analyzer with the Connected 

Agilent 16047E Test Fixture 176 

B1 Diffraction Patterns Showing the Experimental Data 

(Black Circles) are Compared with the Calculated One 

(Red Curves) for (a) Bi2O3-TiO2 and (b) Bi2O3-Cr2O3-

TiO2 Powder Mixtures before Milling that are Plotted 

Together with the Residual Intensity Differences. Vertical 

Bars Indicate the Positions of the Bragg Peaks. Final 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1  Research Background 

 

Dielectrics, their breadth of discipline in general classified into physics, electrical 

engineering, materials science, and chemistry, are publicly recognized for their 

passive electrical insulation properties under the influence of magnetic, electric, or 

electromagnetic field. From a global perspective view yearly, the research output in 

the dielectric field is in the rapid ascending order, notably in South-East Asia 

countries which published considerable dielectric studies. As traced back to the early 

year before 1980, lead and barium-containing perovskite compounds have been the 

dominant scientific studies in various matter forms (polymer, ceramic, thin film, 

glass, rubber, liquid, gas) and were being investigated in the dielectric functions of 

polarization, relaxation, conduction, and high frequency phenomena. As time ages 

by, approaches have been taken toward driving down the extensive use of lead 

following its lifetime adverse effects on environment and human health. In particular, 

this cumulative metal toxicant poses a high exposure risk to the occupational health 

during the manufacture of lead zirconium titanate (PZT)-based nanotechnologies. 
Yet the demands of PZT-based high performance nanofabrication in sensors and 

actuators are dramatically growing since the discovery of pioneering PZT ceramic 

with exceptional piezoelectric properties by the Japanese physicists in 1952 (Shirane 

and Suzuki, 1952). In order to comply with the Restriction of Hazardous Substances 

Directive, lead-free and environment-friendly alternatives are of priority since year 

2003 thereof, being the primary on-going quests for at least comparable piezoelectric 

and ferroelectric attributes to their lead counterparts. Until now, bismuth-based 

materials have gained the most popularity among the other non-toxic alternatives, 

being featured with superior properties across many disciplines as a consequence of 

their unique crystal structures. These types of lighter, synthetic materials are further 

described in the later section, whose foremost bismuth titanate (Bi4Ti3O12) is meant 

to act as the parent subject for the present studied variants of related structures. 

 

 

1.2 Understanding of Bismuth-based Aurivillius Ceramics 

 

Bismuth (Bi)-based ceramics are undeniably categorized as one of the complex-

oxide families of layered structural-type involving the basis of perovskite structure. 

The prototypical representation of layered Bi-containing oxides is Bi4Ti3O12 (n = 3, 

being the number of oxygen octahedron that forms the pseudo-perovskite blocks), 

whose crystal structure as shown in Figure 1.2(a) is built by three interleaving 

pseudo-perovskite blocks (Bi2Ti3O10)
2

 between fluorite-like (Bi2O2)
2+

 slabs stacked 

along a crystallographic c-direction. This sandwiched-like intergrowth configuration 

is known as Aurivillius phase, named in respect to Bengt Aurivillius who pioneered 

Bi2O3-TiO2 solid solution in 1949 (Aurivillius, 1949). A general expression 

(Bi2O2)
2+

(An1BnO3n+1)
2

 applicable to the exploiting of other homologous 

Aurivillius series in one crystallographic direction was developed. Here, the 

notations A and B are the cationic sites occupied by larger (i.e., mono, di, or 
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(a) (b) 

Bismuth oxygen 

layers 

   (Bi2O2)
2+ 

Pseudo-perovskite 

layers 

   (Bi2Ti3O10)
2 

Pseudo-perovskite 

layers 

   (MoO4)
2 

Bismuth oxygen 

layers 

   (Bi2O2)
2+ 

(c) (d) 

Pseudo-perovskite 

layers 

   (Bi3FeTi3O12)
2 

Bismuth oxygen 

layers 

   (Bi2O2)
2+ Bismuth oxygen 

layers 

   (Bi2O2)
2+ 

Pseudo-perovskite 

layers 

   (Bi5Fe3Ti3O19)
2 

Half unit of pseudo-

perovskite layers 

   (Bi5Fe3Ti3O19)
2 

chemistry of Aurivillius phase to A
 
[An1BnO3n+1] of Dion-Jacobson phase (see 

Figure 1.4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: Aristotype Tetragonal Crystal Structure of Aurivillius Phase (a) n = 

3 Bi4Ti3O12, along with Other Orthorhombic-type Aurivillius Phases 

Characterized by Different Thicknesses of Perovskite-like Slabs as in (b) n = 1 

Bi2MoO6, (c) n = 4 Bi5FeTi3O15, and (d) n = 6 Bi7Fe3Ti3O21  
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Frequency = 1 MHz 

Bi4Ti3O12 – SHS 

 Bi4Ti3O12 – Solid-state reaction 

 

of a high non-linear dielectric response. The phase transition of Bi4Ti3O12 from 

tetragonal to orthorhombic structure (i.e. changes in the lattice parameters by 

lowering of symmetry as shown in Figure 1.8) upon cooling undergoes three 

structural distortions simultaneously as follows (Benedek et al., 2015): 

a) Off-centering of Bi cation and O anion in the perovskite blocks. 

b) Octahedral tilting along the crystallographic a-direction. 

c) Rotation of oxygen octahedra around the crystallographic c-direction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.7: Curie Temperature TCurie Determinations of Bi4Ti3O12 at Constant 

Frequency 1 MHz. Note that the Samples were Produced via Self-propagating 

High-temperature Synthesis (SHS) and Solid State Reaction    

(Source: Macedo et al., 2004) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.8: Phase Transition of Bi4Ti3O12 with the Variation of Lattice 

Parameters as a Function of Temperature. Orthorhombic-associated Lattice 

Parameters are Indicated by ao, bo, and co; while Tetragonal-associated Lattice 

Parameters are Indicated by aT and cT, Respectively  

(Source: Jardiel et al., 2008) 
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1.3 Problem Statement 

 

Researches on Bi-layered oxides have always been accompanied by a number of 

shortcomings that tend to limit the leveraging of their key resources, varying 

according to the fabrication techniques. The expected challenges hereafter consider 

the solid state synthesis via conventional and high energy milling, both of which are 

employed in the current research. In the conventional processing, the reaction path 

takes place in two-steps heat treatment, opening up the possibility of causing the 

evaporation of bismuth oxide Bi2O3 species at high sintering temperatures due to its 

hygroscopic nature in Bi volatility. This is the unfavourable situation triggering 

conceivably the materials of non-stoichiometric form, thus leading to the 

consequences of having oxygen deficiencies and instability in oxidation state of 

titanium (Ti) ions in which the positioning and generation are difficult to control 

(Zhang et al., 2014; Siriprapa et al., 2013). The volatile species provokes further 

complication on the possible formation of intermediate phases upon sintering 

process, such as sillenite phase which reacts with the presence of precursor TiO2 

phase toward the synthesis of primary Bi4Ti3O12 pure phase. Such temperature-

driven transient intermediate phase formation may result in poor densification of the 

materials associated with exaggerated grain growth, dampening the dielectric 

properties which immediately raise a question on whether the usage of starting 

nanopowders herein would manage to provide improved reactivity for the 

densification of end product during the conventional sintering process. 

 

  

The above mentioned inefficiencies in the conventional processing are practically 

preventable through the process of high energy milling. Such milling speed is 

apparently intense, being advantageous in avoiding the evaporation of Bi2O3 during 

the subsequent sintering as the volatile Bi ions are effectively relieved at the sites of 

high-impact ball collision where the mechanochemical reaction takes place in the 

 on ition of inst nt “hot spots” of lo  lize  he t  n  pressure (Friščić et  l., 20 3 . 

As a result, mechanical energy is transferred into the system, providing mass transfer 

to achieve a potential direct milling synthesis of single-phase Bi-based material 

whilst inducing better sinterability for the concomitant formation of amorphous and 

crystalline phases. In some particular cases such as the pure and erbium (Er)-doped 

Bi5CrTi3O15, the direct synthesis difficulties by intensive milling alone can be 

anticipated from the viewpoint of multi-valence configuration of chromium (Cr) 

cation and the strength of Er-cation substitution, thus the corresponding complete 

phase formations require sintering. Also these present a major concern in which the 

process ahead may stand a chance to leave behind a powder contamination to the end 

product. One of the many sources of contamination can be intuitively attributed to 

the adsorption of oxygen and nitrogen on the powder and mill media surfaces 

especially under the ambient atmosphere (Suryanarayana, 2004b), creating impurity 

problems that definitely constrain the study to some extent. 

 

 

On dielectric data analysis, the interpretations of the variation of real and imaginary 

components of the complex permittivity have been a challenging goal in both 

theoretical and practical significances, especially under frequency domain response. 

The experimental dielectric data upon simulation require theoretical support to 

extract more detailed information about the polarization phenomena. On this matter, 
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an analytical dielectric function based on any superposition of the Debye, Cole-Cole, 

Cole-Davison, and Havriliak-Negami dispersion mechanisms plus a direct current 

conductivity term is taken into consideration (Grosse, 2014), which is useful to 

approximate the dispersion behaviour. As this fitting process is totally based on trial 

and error approach, figuring out the appropriate initial guess values for each 

parameter with sufficient accuracy becomes time consuming, being particularly 

challenging in Bi-based materials due to the anisotropy of properties on dielectric 

relaxation.  

 

 

The origin of dielectric properties associated with these materials is always related to 

the oxygen vacancies, which raise a question of the ways the defects, or more 

specifically the missing oxygen atoms do the trick and to what degree they contribute 

to ion transport at the stage of different sintering temperatures in different processing 

methods. The challenge continues as to answer on how the emergence of rare-earth 

Er element as A-site substitute in influencing the dielectric properties of three-

layered Bi4Ti3O12 and four-layered Bi5CrTi3O15 compounds, also, to what extent 

these modified materials might function when subjected to different sintering 

temperatures and processing methods. Since the best fits of each dielectric data 

follow algorithm that indeed is purely mathematical derived, it turns out to be an 

arduous task to shed light on the underlying physical nature governing the relaxation 

polarization. Therefore, other empirical dielectric functions such as the 

representations in terms of dielectric modulus, conductivity, and impedance are 

proposed, which are expected to convey the supportive physical processes from their 

perspectives. 

 

 

1.4 Scope of Research 

 

In this research, solid state reaction via conventional and high energy milling 

methods are employed to synthesize n = 3 Bi4Ti3O12 and higher homologous 

Aurivillius oxides n = 4 Bi5CrTi3O15 at various sintering temperatures ranging from 

700
o
C to 1000

o
C. Following the same procedures, the base Bi4Ti3O12 and 

Bi5CrTi3O15 compounds are tuned by substituting single isovalent Er
3+

 cation 

composition on the Bi-sites of the structure, forming the modified Bi3.25Er0.75Ti3O12 

compound and turning out to be the first time in synthesizing Bi4.25Er0.75CrTi3O15 

compound. These series altogether are systematically made in attempting to answer 

the following utmost objectives: 

1) To identify the role of Bi-site substitutional Er
3+

 cation and to make a 

comparison of methods between similar samples in view of the phase 

formation, microstructure, and dielectric properties. 

2) To determine the underlying physical interpretations of the dielectric 

properties in the samples through an empirical fit of relaxation functions in 

the frequency range of 100 Hz – 10 MHz at room temperature and elevated 

temperatures in the range of 100 – 300
o
C. 

3) To study the effect of sintering temperature on densification and 

microstructure that controls the dielectric properties of the samples. 
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1.5 Dissertation Organization 

 

The dissertation is organized into five chapters. Up to this point we have built a 

better understanding of how the Bi-related Aurivillius ceramics behave and perform 

mostly in terms of crystallographic aspect. This is followed by the consideration of 

potential issues behind the synthesis and characterization. In addition, the present 

research directions and strategies are also clearly defined.  

 

 

We continue in Chapter 2 with a specific review of the literatures concerning the 

synthesis of Bi4Ti3O12 and its higher homologous derivatives, starting with the 

attempt to gather relevant scientific information limited to the published literatures 

on the solid state syntheses using conventional and high energy milling approaches. 

Following this manner, the subsequent discussion in the aspects of electrical and 

structural studies is developed, focusing on a wide range of past achievements 

relating to the parent and their modified Aurivillius compounds. The last discussion 

in this chapter is devoted to the practical significance of frequency domain in 

interpreting particularly the dielectric phenomena, and at this stage, to enter into the 

dielectric concept at the most fundamental level, as well as an outline of some 

aspects of presentation of dielectric data.  

 

 

Chapter 3 provides a descriptive procedure of the synthesis techniques employed, 

detailing every process involved which begins with the sample preparation and ends 

with the methods of characterization and measurement. Chapter 4 presents a wide 

range of experimental findings. We begin with the interpretations of each system 

from thermal, crystallographic, and morphological analyses, all of which are made 

clearer independently according to the type of processing methods concerned. While 

presenting the room-temperature measured dielectric data involving the manipulated 

variable of frequency, the treatment of interpretational analysis based on an empirical 

fitting function is provided. In the same way, some significances of frequency 

domain dielectric response measured over a range of temperatures are highlighted. In 

order to make the fullest possible understanding of the frequency range of room-

temperature measured dielectric data, impedance representations of these data are 

presented along with an equivalent circuit modelling. A comparison of processing 

methods evaluated from the aspect of dielectric analysis is also given. Chapter 5 

concludes the main findings and suggests the prospect of future work. 
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