UNIVERSITI PUTRA MALAYSIA

ANTIDIABETIC EFFECTS OF Melicope lunu-ankenda (GAERTN.) T.G. HARTLEY ON OBESE STZ-INDUCED DIABETIC RATS USING NMR-BASED METABOLOMICS

MIZHER HEZAM BAROOR AL-ZUAIDY

FSTM 2016 26
ANTIDIABETIC EFFECTS OF Melicope lunu-ankenda (GAERTN.) T.G. HARTLEY ON OBESE STZ-INDUCED DIABETIC RATS USING NMR-BASED METABOLOMICS

By

MIZHER HEZAM BAROOR AL-ZUAIDY

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

December 2016
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs, and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright© Universiti Putra Malaysia
DEDICATION

This thesis is dedicated to my parents, family, brothers, sisters and friends.
Abstract of thesis presented to the Senate of Universiti Putra Malaysia, in fulfilment of the requirement for the degree of Doctor of Philosophy

ANTIDIABETIC EFFECTS OF *Melicope lunu-ankenda* (GAERTN.) T.G. HARTLEY ON OBESE STZ-INDUCED DIABETIC RATS USING NMR-BASED METABOLOMICS

By

MIZHER HEZAM BAROOR AL-ZUAIDY

December 2016

Chairman : Prof. Azizah Abdul Hamid, PhD
Faculty : Food Science and Technology

In the present study, antioxidant and antidiabetic activities of different *Melicope Lunu-ankenda* (ML) ethanolic extracts were evaluated using *in vitro* and *in vivo* models. Proton nuclear magnetic resonance (*^1^H NMR*) and ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) were used to profile the bioactive metabolites in ML leaf extracts. Sixty percent ethanolic ML extract showed the highest inhibitory effect against α-glucosidase, DPPH scavenging activity and ferric reducing antioxidant power. Results based on cell line investigations showed that the leaf extract stimulated the glucose uptake by both 3T3-L1 and HepG2 cells. A discriminatory study on the metabolites responsible for the variation between different ethanolic ML extracts was successfully performed using *^1^H*-NMR-based metabolomics. Principal component analysis (PCA) and partial least square discriminant analysis (PLS-DA) scores revealed clear and distinct separations by PC1 and PC2 with an eigenvalue of 69.9%. The main bioactive compounds found responsible for the separation were isorhamnetin, skimmianine, scopoletin and melicarpinone. The antidiabetic effect was also carried out *in vivo* using rat models. The extract exerted its effect by decreasing the blood glucose level, insulin resistance, and increasing insulin sensitivity. The treatment of obese diabetic rats with ML extract also resulted in significant decrease in TG, TC, and LDL levels. However, HDL levels were significantly increased. The impact of treatment was also observed in terms of regulation of the renal injury markers and activities of liver enzymes.

In addition, NMR-based metabolomics and multivariate data analysis showed clear metabolic differences in the serum and urine samples of healthy, diabetic and treated diabetic Sprague-dawley rats. The metabolomics results demonstrated that the observed metabolic changes were linked with diabetes progression, and metabolic biomarkers were reflected by the perturbed metabolites, hence providing clear understanding regarding the underlying mechanism involved in generation and progression of diabetes. This study presented potent antidiabetic activity of ML and
describes its mechanism of action. The NMR based metabolomics approach is supportive for the additional understanding of diabetes-related mechanisms and enhances the metabolic pathways affected in the diabetic rats. These results of the present study may further contribute towards understanding of the underlying molecular mechanism of this medicinal remedy.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Doktor Falsafah

KESAN ANTIDIABETIK Melicope lunu-ankenda DI DALAM TIKUS DIABETIK TERARUH STZ OBES MENGUNAKAN METABOLOMIK BERASASKAN NMR

Oleh

MIZHER HEZAM BAROOR AL-ZUAIDY

Disember 2016

Pengerusi : Prof. Azizah Abdul Hamid, PhD
Fakulti : Sains dan Teknologi Makanan

Di samping itu, metabolomik berasaskan-NMR dan analisis data pelbagai pembolehubah menunjukkan perbezaan metabolik yang jelas di dalam sampel-sampel serum dan air kencing tikus Sprague-Dawley sihat, berdiabetes, dan berdiabetes yang dirawat. Keputusan metabolomik menunjukkan bahawa perubahan-perubahan metabolisme yang diperhatikan adalah berkaitan dengan perkembangan
diabetes, dan penanda-penanda biologi metabolisme digambarkan oleh metabolit-metabolit yang terganggu, justeru itu memberikan kefahaman yang jelas mengenai mekanisme asas yang terlibat dalam penjanaan dan perkembangan diabetes. Kajian ini telah membentangkan aktiviti antidiabetik ML yang kuat dan menerangkan mekanisme tindakannya. Pendekatan metabolomik berasaskan NMR menyokong pemahaman tambahan terhadap mekanisme-mekanisme yang berkaitan dengan diabetes dan meningkatkan laluan metabolik yang terlibat di dalam tikus berdiabetes. Hasil-hasil kajian ini mungkin boleh selanjutnya menyumbang ke arah pemahaman mengenai mekanisme di paras molekul bagi remedi mengubat ini.
ACKNOWLEDGEMENTS

All praise is to Almighty ALLAH (SWT) and peace is upon His messenger, prophet Mohammad (PBUH).

I appreciate and acknowledge the efforts of my humble supervisor, Prof. Dr. Azizah Abdul Hamid, for her general supervision coupled with excellent attention, patience and valuable suggestions offered throughout the course of this work.

I also want to give my warm appreciation to my committee members: Prof. Dr. Amin Ismail, Prof. Dr. Suhailda Mohamed and Dr. Ahmad Faizal Abdul Razis for their helpful suggestions, insights and comments.

I would like to thank the various members of our Research group with whom I had the opportunity to work with to mention few Dr. Muhammad Waseem Mumtaz,. They provided a friendly and cooperative atmosphere at work and also useful feedback and insightful comments on my work.

And also the entire staffs of the Faculty of Food Science and Technology and Institute of Bioscience for their kind support and assistance towards the successful completion of this thesis.

I will like to express my profound and heartfelt gratitude to my wife, daughters, relatives, friends and all other well-wishers for their interest and immense contributions in prayers, guidance and moral support towards my success.
I certify that a Thesis Examination Committee has met on 19 December 2016 to conduct the final examination of Mizher Hezam Baroor Al-Zaaidy on his thesis entitled "Antidiabetic Effects of Melicope lunu-ankenda (Gaertn.) T.G. Hartley on Obese STZ-Induced Diabetic Rats using NMR-Based Metabolomics" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Faridah binti Abas, PhD
Associate Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Chairman)

Son Radu, PhD
Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Internal Examiner)

Jinap binti Selamat, PhD
Professor
Institute of Tropical Agriculture & Food Security
Universiti Putra Malaysia
(Internal Examiner)

Farooq Anwar, PhD
Associate Professor
Prince Sattam Bin Abdulaziz University
Saudi Arabia
(External Examiner)

[Signature]

NOR AINI AB. SHUKOR, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 26 January 2017
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Azizah Abdul Hamid, PhD
Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Chairman)

Amin Ismail, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Suhaila Mohamed, PhD
Professor
Institute of Bioscience
Universiti Putra Malaysia
(Member)

Ahmad Faizal Abdul Razis, PhD
Associate Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Member)

ROBIAH BINTI YUNUS, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: ___________________________ Date: ___________________________

Name and Matric No.: Mizher Hezam Baroor AL-Zuaidy, GS37688
Declaration by Members of Supervisory Committee

This is to confirm that:
• the research conducted and the writing of this thesis was under our supervision;
• supervision responsibilities as stated in the University Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: ______________________________
Name of Chairman of Supervisory Committee: Professor Dr. Azizah Abdul Hamid

Signature: ______________________________
Name of Member of Supervisory Committee: Professor Dr. Amin Ismail

Signature: ___
Name of Member of Supervisory Committee: Professor Dr. Suhaila Mohamed

Signature: ___
Name of Member of Supervisory Committee: Assoc. Prof. Dr. Ahmad Faizal Abdul Razis
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xix</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION
1.1 Background 1
1.2 Problem Statement 3
1.3 Hypothesis 3
1.4 Objectives of the study 3

2 LITERATURE REVIEW
2.1 Diabetes mellitus and public health 4
2.2 Classification and etiology of diabetes mellitus (DM) 4
 2.2.1 Type 1 diabetes mellitus (T1DM) 4
 2.2.2 Type-2 diabetes mellitus (T2DM) 5
2.3 Diabetes and oxidative Stress 6
 2.3.1 Source of oxidative stress in diabetes 7
 2.3.2 Biomarkers of oxidative stress relative to diabetes mellitus 8
 2.3.2.1 Proteins 8
 2.3.2.2 Lipids 8
 2.3.2.3 Vitamins 8
 2.3.2.4 Glutathione 9
 2.3.2.5 Catalase 10
 2.3.2.6 Superoxide dismutase 10
 2.4 Insulin and its function in body 11
 2.4.1 Role of insulin resistance in development of T2DM 12
2.5 Alpha glucosidase inhibitors and diabetes mellitus 12
 2.5.1 Source and characteristics of α-glucosidase inhibitors 13
 2.3.3 Mechanism of α-glucosidase inhibitors 13
2.6 Plant Food Supplements 14
2.5 Melicope lunu-ankenda (ML) 14
2.6 Treatment strategies for diabetes mellitus 16
 2.6.1 Synthetic remedies for diabetes mellitus 16
 2.6.1 Herbal remedies for diabetes mellitus 17
2.7 Mechanism of medicinal plant action in diabetes mellitus 18
2.8 Phytochemicals and their significance 18
 2.8.1 Bioavailability of polyphenols 20
2.9 Modelling type 2 diabetes in rats using high fat diet and streptozotocin

2.10 Streptozotocin (STZ) treatment make the model T2DM animal

2.11 Metabolomics

2.11.1 Metabolomics and its applications

2.11.2 Metabolomics and its clinical applications

2.11.3 Metabolomics specific to diabetes mellitus

2.11.4 Analytical techniques for metabolomics

2.11.4.1 Nuclear magnetic resonance (NMR) spectroscopy

2.11.4.2 Mass spectrometry (MS)

2.11.4.3 Gas chromatography-mass spectrometry (GC-MS)

2.11.4.4 Liquid chromatography-mass spectrometry (LC-MS)

2.12 Chemometrics and metabolomics

2.12.1 Principal component analysis (PCA)

2.12.2 Partial least square discriminant analysis (PLS-DA)

2.12.3 Orthogonal projections to latent structures (OPLS)

3 BIOLOGICAL ACTIVITIES AND CYTOTOXICITY OF MELICOPA LUNU-ANKENDA LEAF EXTRACT, AN IN VITRO STUDY

3.1 Introduction

3.2 Methods and materials

3.2.1 Chemicals and reagents

3.2.2 Plant materials and extraction

3.2.3 Determination of total phenolic compounds (TPC)

3.2.4 Determination of total flavonoids content (TFC)

3.2.5 DPPH Radical scavenging activity

3.2.6 Ferric reducing antioxidant power (FRAP)

3.2.7 Inhibition of α-glucosidase activity assay

3.2.8 Maintenance of cell lines

3.2.9 Evaluation of cytotoxicity of 60% ethanolic ML extract

3.2.10 Glucose uptake studies of 60% ethanolic ML extract

3.2.11 Statistical analysis

3.3 Results

3.3.1 Percent extraction yield

3.3.2 Total phenolic compounds (TCP)

3.3.3 Total flavonoid content (TFC)

3.3.4 DPPH Radical scavenging activity

3.3.5 Ferric reducing antioxidant power

3.3.6 Inhibition of α-glucosidase activity

3.3.7 Glucose uptake study

3.3.8 Cytotoxicity Study

3.4 Discussion

3.5 Conclusion
6 METABOLITES CHANGES IN OBESE STZ INDUCED DIABETIC RATS TREATED WITH MELICOPLE LUNU-ANKENDA USING 1H-NMR BASED METABOLOMICS

6.1 Introduction 87
6.2 Methodology 88
 6.2.1 Animal study 88
 6.2.2 Serum and urine collection 88
 6.2.3 1H NMR Analysis of urine and serum 88
 6.2.4 1H NMR Spectral data reduction and multivariate data analysis 89
6.2.5 Statistical analysis 89
6.3 Results 89
 6.3.1 1H NMR Spectra of urine metabolites before treatment 89
 6.3.2 Multivariate data analysis of urine samples of obese diabetic and normal rats 92
 6.3.3 Multivariate data analysis of urine NMR data of all groups at week8 of treatment 94
 6.3.4 Metabolites analysis of urine NMR data of ML and metformin at different period of treatment 97
 6.3.5 1H NMR Spectra of serum metabolites before treatment 100
 6.3.6 Multivariate data analysis of serum samples of obese diabetic and normal rats 103
 6.3.7 Multivariate data analysis of serum NMR data of all groups at week8 of treatment 105
 6.3.8 Metabolites analysis of serum NMR data of ML extract and metformin at different period of treatment 110
6.4 Discussion 113
 6.4.1 Metabolic alterations in urine and serum samples of obese diabetic and normal rats 113
 6.4.2 Metabolic alterations of the response to ML extract treatment 115
 6.4.2.1 Lipid metabolism 116
 6.4.2.2 Glucose metabolism 117
 6.4.2.3 Tricarboxylic acid (TCA) cycle 117
 6.4.2.4 Amino acid metabolism 118
6.5 Conclusions 119

REFERENCES 122
APPENDICES 149
BIODATA OF STUDENT 155
LIST OF PUBLICATIONS 156
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Botanical classification of Melicope lunu-ankenda</td>
<td>14</td>
</tr>
<tr>
<td>3.1</td>
<td>Percentage yield of ML extracts at different % ethanol levels</td>
<td>37</td>
</tr>
<tr>
<td>3.2</td>
<td>Effect of ML extracts on HepG2 and 3t3-L1 viability after treatment with different concentration (3.125-200 µg/mL) for 24hr, 48hr and 72hr</td>
<td>44</td>
</tr>
<tr>
<td>4.1</td>
<td>1H NMR characteristics of identified metabolites in ML extract.</td>
<td>53</td>
</tr>
<tr>
<td>4.2</td>
<td>Major Identified compounds in ML Extract by UHPLC -MS/MS</td>
<td>55</td>
</tr>
<tr>
<td>4.3</td>
<td>The VIP values based on score plots of PLS model of the main compound reflecting their separation.</td>
<td>61</td>
</tr>
<tr>
<td>5.1</td>
<td>Composition of diet</td>
<td>65</td>
</tr>
<tr>
<td>5.2</td>
<td>Serum alanine aminotransferase (ALT), alkaline phosphatase (ALP) aspartate aminotransferase (AST), creatinine and urea levels at week 0 and week 8 of treatment in different groups</td>
<td>80</td>
</tr>
<tr>
<td>5.3</td>
<td>Weight of rat body organs liver, kidney and spleen</td>
<td>82</td>
</tr>
<tr>
<td>6.1</td>
<td>Relative quantitative of discriminating metabolites of urine in obese diabetic rats (DG) and normal diet rats (NG) before treatment</td>
<td>91</td>
</tr>
<tr>
<td>6.2</td>
<td>Relative quantitative of significant discriminating metabolites of urine at week 8 of treatment</td>
<td>96</td>
</tr>
<tr>
<td>6.3</td>
<td>Relative quantitative of discriminating metabolites of serum in obese diabetic rats (DG) and normal diet rats (NG) before treatment</td>
<td>102</td>
</tr>
<tr>
<td>6.4</td>
<td>Relative quantitative of significant discriminating metabolites of blood at week 8 of treatment</td>
<td>109</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>GSH synthesis</td>
<td>9</td>
</tr>
<tr>
<td>2.2</td>
<td>Main enzymatic antioxidant defines system in vivo and their reactions on scavenging free radicals and hydrogen oxide</td>
<td>10</td>
</tr>
<tr>
<td>2.3</td>
<td>Melicope lunu-ankenda</td>
<td>15</td>
</tr>
<tr>
<td>2.4</td>
<td>Basic chemical structure and numbering pattern of flavonoids</td>
<td>19</td>
</tr>
<tr>
<td>2.5</td>
<td>Typical procedure describing metabolite profiling based NMR</td>
<td>27</td>
</tr>
<tr>
<td>2.6</td>
<td>MS ion types usually involved in metabolite identification</td>
<td>28</td>
</tr>
<tr>
<td>3.1</td>
<td>TPC of different concentrations of ML ethanol Extraction</td>
<td>38</td>
</tr>
<tr>
<td>3.2</td>
<td>TFC of different concentrations of ML ethanol Extraction</td>
<td>39</td>
</tr>
<tr>
<td>3.3</td>
<td>DPPH scavenging activity of ethanolic ML extracts (40 %, 60 %, 80 % and 100 %)</td>
<td>40</td>
</tr>
<tr>
<td>3.4</td>
<td>FRAP value of different concentrations of ML ethanol extraction</td>
<td>41</td>
</tr>
<tr>
<td>3.5</td>
<td>Alpha-glucosidase inhibitory activity of different ethanolic ML extracts (40 %, 60 %, 80 % and 100 %)</td>
<td>42</td>
</tr>
<tr>
<td>3.6</td>
<td>Effects of different contention of ML extract on glucose uptake by HepG2</td>
<td>43</td>
</tr>
<tr>
<td>3.7</td>
<td>Effects of the crude extracts of ML on glucose uptake by 3T3-L1</td>
<td>44</td>
</tr>
<tr>
<td>4.1</td>
<td>The representative 1H-NMR spectra of the four ethanolic ML extracts (40 %, 60 %, 80 % and 100 %)</td>
<td>52</td>
</tr>
<tr>
<td>4.2</td>
<td>The representative expanded 1H NMR spectra (δ 4.5 to 8) of the four ML extracts (40 %, 60 %, 80 % and 100 %).</td>
<td>53</td>
</tr>
<tr>
<td>4.3</td>
<td>Figure 4.3. A & B- 1H–1H J-resolved spectra of 60% ML extract in the region δ 3.1 to 7.9.</td>
<td>54</td>
</tr>
<tr>
<td>4.4</td>
<td>Chemical structures of isorhamnetin; skimmianine; scopoletin; melicarpinone</td>
<td>54</td>
</tr>
<tr>
<td>4.5</td>
<td>ESI-MS/MS spectrums of A; isorhamnetin, B; skimmianine, C; scopoletin, and D; melicarpinone</td>
<td>55</td>
</tr>
<tr>
<td>4.6</td>
<td>A; the PCA score plot (PC1 vs. PC2) and B; loading scatter plot of 60 % and 80 %</td>
<td>57</td>
</tr>
<tr>
<td>4.7</td>
<td>The PLS loading column plots of 40, 60, 80 and 100 %</td>
<td>57</td>
</tr>
</tbody>
</table>
4.8 The biplot obtained from PLS describing the variation between the main bioactive compounds in the different ethanolic extract of ML and their correlation to DPPH and inhibition of α-glucosidase activity (IGA) 58

4.9 Permutation test of PLS model based on NMR data of DPPH and inhibition of α-glucosidase activity (IGA) 59

4.10 The regression coefficients of Y variables of PLS validation of DPPH and α-glucosidase inhibitory activity 60

5.1 Schematic diagram of the experimental design to evaluate the antidiabetic effect of 60% ethanolic of ML leaf extract in obese diabetic male Sprague-Dawley rats 60

5.2 Body weight gain of normal diet group (NG) and high fat diet (HFD) groups after 8 weeks of induce obesity 66

5.3 Average of food intake from the week0 to the week8 of treatment 69

5.4 Average of drinking water consumption from the week0 to the week8 of treatment 70

5.5 Body weight of normal diet group (NG), diabetic group (DG), metformin group (MG) low dose group (LDG) and high dose group (HDG) at week zero (wk0) and week eight (wk8) of treatment 70

5.6 Serum glucose level (mmol/L) of normal diet group (NG), obese diabetic group (DG), metformin group (MG) low dose group (LDG) and high dose group (HDG) at week zero (wk0) and week eight (wk8) of treatment 71

5.7 Serum insulin levels (ug/L) of normal diet group (NG), obese diabetic group (DG), metformin group (MG) low dose group (LDG) and high dose group (HDG) at week zero (wk0) and week eight (wk8) of treatment 72

5.8 Insulin sensitivity values of normal diet group (NG), diabetic group (DG), metformin group (MG) low dose group (LDG) and high dose group (HDG) at week zero (wk0) and week eight (wk8) of treatment 73

5.9 Insulin resistance values of normal diet group (NG), diabetic group (DG), metformin group (MG) low dose group (LDG) and high dose group (HDG) at week zero (wk0) and week eight (wk8) of treatment 74
5.10 Total cholesterol levels of normal diet group (NG), diabetic group (DG), metformin group (MG) low dose group (LDG) and high dose group (HDG) at week zero (wk0) and week eight (wk8) of treatment

5.11 Triglycerides levels of normal diet group (NG), diabetic group (DG), metformin group (MG) low dose group (LDG) and high dose group (HDG) at week zero (wk0) and week eight (wk8) of treatment

5.12 LDL levels of normal diet group (NG), diabetic group (DG), metformin group (MG) low dose group (LDG) and high dose group (HDG) at week zero (wk0) and week eight (wk8) of treatment

5.13 HDL levels of normal diet group (NG), diabetic group (DG), metformin group (MG) low dose group (LDG) and high dose group (HDG) at week zero (wk0) and week eight (wk8) of treatment

6.1 Typical 500 MHz 1HNMR urine A (1 to 3ppm), B (3 to 6ppm), and C (6- to 9ppm) spectra with identified metabolites collected from obese diabetes group (DG) and normal diet group (NG) Sprague Dawley rat

6.2 PCA score plot obtained using 1 H NMR data for urine samples from obese diabetic group (DG) and normal diet group (NG) before treatment

6.3 Loading plot obtained using 1 H NMR data for urine samples from obese diabetic group (DG) and normal diet group (NG)

6.4 PCA column plot obtained using 1 H NMR data for urine samples from obese diabetic group (DG) and normal diet group (NG)

6.5 PCA score plot (A) and loading plot (B) obtained using 1 H NMR data for urine samples from Sprague-Dawley at week8 of treatment

6.6 OPLS-DA score plots (A and B) of ML and metformin obtained using 1 H NMR data for urine samples from Sprague-Dawley rats, week0 (HDG0 and MG0), week4 (HDG4 and MG4) and week8 (HDG8 and MGF8)

6.7 Loading column plot of ML obtained using 1 H NMR data for urine samples from Sprague-Dawley rats, week0 (HDG0), and week8 (HDG8)

6.8 Loading column plot of metformin obtained using 1 H NMR data for urine samples from Sprague-Dawley rats, week0 (MG0), and week8 (MG8)
6.9 Typical 500 MHz 1HNMR serum (A&B) spectra collected from obese diabetes group (DG) and normal diet group (NG) Sprague Dawley rat before treatment

6.10 PCA score plot (A), loading plot (B) obtained using 1 H NMR data for serum samples from Sprague-Dawley rats, obese diabetic group (DG) and normal diet group (NG) before treatment

6.11 PCA column plot obtained using 1 H NMR data for serum samples from Sprague-Dawley rats, obese diabetic group (DG) and a normal die (ND) before treatment

6.12 PCA score plot (A) and OPLS-DA score (B) obtained using 1 H NMR data for serum samples from Sprague-Dawley rats, obese diabetic group (DG), normal diet group (NG), metformin group (MG), low dose group (LDG) or high dose group (HDG) at week8 of treatment

6.13 PCA Loading plot obtained using 1 H NMR data for serum samples from Sprague-Dawley rats, obese diabetic group (DG), normal diet group (NG), metformin group (MG), low dose group (LDG) or high dose group (HDG) at week8 of treatment

6.14 OPLS-DA score plot (A and B) of ML and metformin obtained using 1 H NMR data for serum samples from Sprague-Dawley rats at week8 of treatment

6.15 OPLS-DA loading column plot of ML obtained using 1 H NMR data for serum samples from Sprague-Dawley rats, Week0 (HDG0), and Week8 (HDFG8)

6.16 OPLS-DA loading column metformin obtained using 1 H NMR data for serum samples from Sprague-Dawley rats, Week0 (MG0), and Week8 (MG8)

6.17 Metabolism pathways describing regulation of potential urine and serum biomarkers upon ML extract treatment

A1 Normal rat at week8 of treatment

A2 Obese diabetic rat(DG) at week8 of treatment

A3 Obese diabetic rat treated with metformin at week8 of treatment

A4 Obese diabetic rat treated with high dose of ML extract at week8 of treatment

A5 Obese diabetic rat treated with low dose of ML extract at week8 of treatment
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>1H NMR</td>
<td>Proton Nuclear Magnetic Resonance Spectroscopy</td>
</tr>
<tr>
<td>d</td>
<td>Doublet</td>
</tr>
<tr>
<td>DPPH</td>
<td>Diphenyl picrylhydrazyl</td>
</tr>
<tr>
<td>ESI</td>
<td>Electrospray Ionization</td>
</tr>
<tr>
<td>FRAP</td>
<td>Ferric reducing antioxidant power</td>
</tr>
<tr>
<td>g</td>
<td>Gram</td>
</tr>
<tr>
<td>GAE</td>
<td>Gallic Acid Equivalent</td>
</tr>
<tr>
<td>gCOSY</td>
<td>Gradient Correlation Spectroscopy</td>
</tr>
<tr>
<td>gHMBC</td>
<td>Gradient Heteronuclear Multiple Bond Correlation</td>
</tr>
<tr>
<td>gHSQC</td>
<td>Gradient Heteronuclear Single-Quantum Coherence</td>
</tr>
<tr>
<td>Hz</td>
<td>Hertz</td>
</tr>
<tr>
<td>hr</td>
<td>hour</td>
</tr>
<tr>
<td>IC$_{50}$</td>
<td>Inhibition Concentration at 50 percent</td>
</tr>
<tr>
<td>IR</td>
<td>Infra-red</td>
</tr>
<tr>
<td>L</td>
<td>Litre</td>
</tr>
<tr>
<td>LC-MS</td>
<td>Liquid Chromatography–Mass Spectrometry</td>
</tr>
<tr>
<td>m</td>
<td>Multiplet</td>
</tr>
<tr>
<td>m/z</td>
<td>Mass per Charge</td>
</tr>
<tr>
<td>MHz</td>
<td>Mega Hertz</td>
</tr>
<tr>
<td>min</td>
<td>minute</td>
</tr>
<tr>
<td>mL</td>
<td>Millilitre</td>
</tr>
<tr>
<td>MS</td>
<td>Mass Spectrometry</td>
</tr>
<tr>
<td>MVDA</td>
<td>multivariate data analysis</td>
</tr>
<tr>
<td>°C</td>
<td>Degree in Celsius</td>
</tr>
<tr>
<td>OPLS-DA</td>
<td>Orthogonal Partial Least Squares–Discriminant Analysis</td>
</tr>
<tr>
<td>PC</td>
<td>Principal Component</td>
</tr>
<tr>
<td>PCA</td>
<td>Principal Component Analysis</td>
</tr>
<tr>
<td>PLS</td>
<td>Partial Least Squares</td>
</tr>
<tr>
<td>PLS-DA</td>
<td>Partial Least Squares–Discriminant Analysis</td>
</tr>
<tr>
<td>ppm</td>
<td>Part Per Million</td>
</tr>
<tr>
<td>QTOF</td>
<td>Quadrupole–Time of Flight mass spectrometer</td>
</tr>
</tbody>
</table>
ROS Reactive Oxygen Species
s Singlet
SIMCA Soft Independent Modelling of Class Analogy
TPC Total Phenolic Contents
UV Ultraviolet
UV/VIS Ultraviolet/visible
VIP variable importance in the projection
δ Chemical Shift in ppm
μg Microgram
μL Microliter
^{13}C Carbon-13
CHAPTER 1

INTRODUCTION

1.1 Background

Diabetes is a metabolic disorder usually characterized by hyperglycemia due to defects in insulin action, insulin secretion or both. Most of diabetes cases fall into two main etiopathogenetic categories. Type 1 diabetes mellitus (T1DM) results due to absolute deficiency of insulin secretion. The other category is type 2 diabetes mellitus (T2DM) caused by combination of resistance to insulin action and an insufficient compensatory insulin secretory response. Type 2 diabetes mellitus accounts for 90–95% of all diabetes cases (Inzucchi et al. 2010). Currently, around 387 million people are living with this disease all over the world, and the number is expected to increase up to 592 million by the year 2035 (Guariguata et al. 2014).

T2DM is a complex type of diabetes and may results in multiple complications including micro-vascular complications, retinopathy, nephropathy and neuropathy etc., (Fowler 2011).

Imbalance between antioxidant defences and reactive oxygen species (ROS) production causes oxidative stress, which can increase from rising generation and/or decreased elimination of ROS by antioxidant. Consequently, excess production of ROS and impairment of the antioxidant defence system leads to diabetes mellitus. In this regard, any substance that delays or inhibits or removes the oxidative stress is defined as antioxidant (Halliwell 2011). Some prospective studies support the assumption that the progress of type 2 diabetes may be reduced by the consumption of antioxidant-rich diets (Porter 2012).

The existing pharmacological treatment options based on sulfonylureas, thiazolidinedione, and metformin, do not improve adequately the underlying consequences of insulin resistance such as hyperglycemia, pancreatic β-cell damage and diabetic dyslipidaemia (Goldberg, Holman, and Drucker 2008). Although currently a number of effective Western medications are available for the treatment of T2DM, management of T2DM at lower cost with fewer side effects still remain a big challenge. These Western medicines although effective, but can have severe side effects including weight gain, increased risk of cardiovascular events and bone loss (Fowler 2011). These side effects could become more severe due to the continuous use of these synthetic drugs. Comparatively, herbal medications can be considered as good alternative with fewer side effects and low cost. Herbal medications can treat diabetes by number of curatives such as stimulation of insulin secretion, enhancement of insulin sensitivity, and/or reduction of carbohydrate absorption (Li et al. 2004, Prabhakar and Doble 2011). Unlike Western medicine, herbal medicines may contain numerous active ingredients targeting multiple mechanisms and therefore herbal medicine can be considered as potential candidate for the treatment
Recent studies established positive link between the plants and the decrease of chronic diseases, like diabetes mellitus (Bansal et al. 2012, Lee et al. 2014). Around 800 medicinal plants have been evaluated for their anti-diabetic potential for treatment or/and prevention of T2DM. (Prabhakar and Doble 2011). The natural product research is growing positively over the years and with improved “omics” technologies provides a platform to link traditional medicine and molecular pharmacology (Solanky et al. 2003, Wang, Lamers, et al. 2005, Yuliana et al. 2011). Out of all available “omics” technology, metabolomics is the latest which is recognized to be highly beneficial for the qualitative and quantitative characterization of all metabolites present in a cell, tissue, or/and organism under specific conditions (Colquhoun 2007). This emerging research field combines analytical chemistry, biochemistry and chemometrics and is highly emphatic for the analysis of thousands of small metabolites in any biological system. Mass spectrometry (MS) hyphenated with other analytical tools such as gas chromatography (GC), liquid chromatography (LC), nuclear magnetic resonance (NMR) spectroscopy and/or capillary electrophoresis (CE) are being used (Roessner and Beckles 2009). Comparatively for the monitoring of many endogenous “low-molecular-weight” metabolites LC/MS, NMR, and GC/M are the leading analytical plate forms (Bjerrum et al. 2009).

Use of animal model is highly imperative for the better understanding of metabolic disorders. Simulation of diabetic conditions based on animal model has been carried out by numerous researchers worldwide to explore the underlying molecular aspects and complications of this disease (Beckonert et al. 2007a, Tian et al. 2013).

Recently, metabolomics has been successfully applied by the researchers for the diagnosis and evaluation of the therapeutic effects linked with diabetes mellitus (DM) and its complications (Wu et al. 2014, Liu, Wang, et al. 2015). Numerous studies have been conducted previously with NMR-based metabolomics for the effective characterization of metabolites in serum, urine, or kidney tissue samples using diabetic rat models (Zhao et al. 2010, Tian et al. 2013, Emwas et al. 2015). So, metabolomics exhibit potential to identify overall alteration in metabolite levels during the treatments of diabetic cases.

Malaysia with its extensive flora presents an untapped capacity for the natural product research. *Melicope lunu-ankenda* (ML) is one of the *Melicope* species belonging to family Rutaceae and found all around the world especially in tropical
Asia and Australia. In Malaysia twenty-four Melicope species have been identified (Kassim et al. 2013). Its leaves are popular as salad and condiment for food flavoring. The leaves and flower are also traditionally being consumed to manage hypertension, menstrual disorder and fever etc. (Ramli et al. 2004, Tan, Yin, and Chan 2012). Presence of secondary metabolites including; alkaloids, flavonoids, acetophenones and coumarins in several Melicope species further ascertain its emphatic health benefits (Fauvel et al. 1981, Parsons et al. 1994). However, there are no reported on antidiabetic effects of this plant in high fat diet (HFD) rats and induced into diabetic condition with a low-dose of streptozotocin (STZ).

1.2 Problem Statement

Present study is therefore aimed at evaluating the Melicope lunu-ankenda extract for its functionalities i.e., antioxidant and antidiabetic potential both in vitro and in vivo. It is also identify the main bioactive compounds (in plant) and detects the biomarkers (animal bio-fluids) relating to antidiabetic effect of standardized ML extract on obese diabetic rats and subsequently to establish its efficacy as potent natural antidiabetic agent that may be used as functional foods or as natural alternative or in combinations to the conventional drugs for the treatment of diabetes mellitus.

1.3 Hypothesis

This study hypothesizes that animal model of HFD induced diabetes may be linked with many perturbations in serum biochemistry and metabolic pathways. The leaf extract of ML may show therapeutic efficacy in vivo study. It is expected that a 1H NMR metabolomics method combined with suitable multivariate data analysis may be a good method to study these perturbations and the therapeutic effect of ML leaf extract.

1.4 Objectives of the study

1. To evaluate antidiabetic and antioxidant property of ML leaf extract.
2. To profile the bioactive compounds in ML leaf extract.
3. To evaluate the anti-diabetic activity of ML extract in obese diabetic Sprague-Dawley.
4. To determine the metabolic perturbations of obese diabetic Sprague-Dawley and the therapeutic effects of ML leaf extract.
REFERENCES

Bictash, Magda, Timothy Ebbels, Queenie Chan, Ruey Leng Loo, Ivan Yap, Ian J. Brown, Maria De Iorio, Martha Daviglus, Elaine Holmes, and Jeremiah Stamler. 2010. "Metabolic phenotyping in epidemiology and metabolome-wide association studies." Journal of clinical epidemiology no. 63 (9):970.

Cloarec, Olivier, Marc-Emmanuel Dumas, Andrew Craig, Richard H. Barton, Johan Trygg, Jane Hudson, Christine Blancher, Dominique Gauguer, John C. Lindon, and Elaine Holmes. 2005. "Statistical total correlation spectroscopy:
an exploratory approach for latent biomarker identification from metabolic 1H NMR data sets." *Analytical chemistry* no. 77 (5):1282-1289.

Deng, Ming-Jie, Xiao-Dong Lin, Qiu-Ting Lin, De-Fu Wen, Mei-Ling Zhang, Xian-Qin Wang, Hong-Chang Gao, and Jia-Ping Xu. 2015. "A 1 H-NMR based study on hemolymph metabolomics in eri silkworm after oral administration of 1-deoxynojirimycin." *PloS one* no. 10 (7):e0131696.

Ferrannini, Ele, Andrea Natali, Stefania Camastra, Monica Nannipieri, Andrea Mari, Klaus-Peter Adam, Michael V. Milburn, Gabi Kastenmüller, Jerzy Adamski,

plant extracts containing phenolic compounds." *Journal of agricultural and food chemistry* no. 47 (10):3954-3962.

Mansuri, Mushirbhai Inayathbai. 2014. "Evaluation of antidiabetic and antihyperlipidemic activity of euphorbia neriifolia linn. in animal models."

Michiels, Carine, Martine Raes, Olivier Toussaint, and José Remacle. 1994. "Importance of Se-glutathione peroxidase, catalase, and Cu/Zn-SOD for cell

Michl, Johanna, Geoffrey C. Kite, Stefan Wanke, Oliver Zierau, Guenter Vollmer, Christoph Neinhuis, Monique S. J. Simmonds, and Michael Heinrich. 2015. "LC-MS-and 1H NMR-Based Metabolomic Analysis and *in Vitro* Toxicological Assessment of 43 Aristolochia Species." *Journal of natural products.*

Somanah, Jhoti, Emmanuel Bourdon, Philippe Rondeau, Theshean Bahorun, and Okezie I. Aruoma. 2014. "Relationship between fermented papaya preparation supplementation, erythrocyte integrity and antioxidant status in pre-diabetics." *Food and Chemical Toxicology* no. 65:12-17.

