

UNIVERSITI PUTRA MALAYSIA

DEVELOPMENT OF A NANOMATERIAL-BASED ELECTROCHEMICAL IMMUNOSENSOR FOR DETECTION OF AFLATOXIN B1 IN PEANUTS

FARAH ASILAH BINTI AZRI

FSTM 2016 18

DEVELOPMENT OF A NANOMATERIAL-BASED ELECTROCHEMICAL IMMUNOSENSOR FOR DETECTION OF AFLATOXIN B_1 IN PEANUTS

By

FARAH ASILAH BINTI AZRI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Master of Science

March 2016

COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

DEVELOPMENT OF A NANOMATERIAL-BASED ELECTROCHEMICAL IMMUNOSENSOR FOR DETECTION OF AFLATOXIN B₁ IN PEANUTS

By

FARAH ASILAH BINTI AZRI

March 2016

Chairman:Professor Fatimah Abu Bakar, PhDFaculty:Food Science and Technology

Aflatoxin B₁ is epidemiologically implicated as carcinogen in humans due to contamination in several agricultural commodities either pre- or post-harvest under favourable conditions of temperature and humidity. Development of rapid and sensitive method for detecting aflatoxin B_1 is important for food safety and quality to minimise the exposure of this toxin towards consumers. In this study, the use of multi-walled carbon nanotube (MWCNT) with chitosan (CS) was investigated as a modifier on the screen-printed carbon electrode (SPCE). The modification of electrode was studied as a platform to fabricate the immunoassay for further electrochemical reaction to occur. MWCNT was first successfully functionalised via strong acid treatment (H₂SO₄:HNO₃) by adding carboxylic acid (-COOH) groups and increased the MWCNT's surface area. The characterisation was done by FTIR and the additional group was confirmed by the presence of peak at 1715 cm⁻¹ and shorter nanotube can be seen through FESEM. Based on the electrochemical analysis, the modification of SPCE with the functionalised MWCNT greatly enhanced the current response up to 7 times. The modification of SPCE was optimised through various parameters, which includes pH, scan rate, MWCNT ratio, drop coating volume and drying condition. Ten microliters of MWCNT:CS (with mixing ratio, 5:1) for electrode coating and oven dried for 10 minutes at 80°C were optimal for electrode casting. Furthermore, the electrochemical scan was done under 0.1 Vs⁻¹ of scan rate and PBS pH7 was used throughout this study. An indirect competitive ELISA was optimised prior to transferring onto the modified electrode. Through checkerboard study, the concentration of AFB₁-BSA at 0.25 µg/mL and anti-AFB₁ of primary antibody at 1/5000 (v/v) gave high absorbance with low IC₅₀ value of 0.0183 ng/mL. Futhermore, 8% skimmed milk produced the lowest background reading and was used as blocking agent. By using multi-level factorial design, an interaction plot between pH, incubation time and incubation temperature was obtained. It can be deduced that pH 7 with 0.5 hour incubation time at 25°C was optimal for the competition between primary antibody and free antigen to compete for binding site. From the result, the working range of AFB₁ was between 0.001 to 10 ng/mL $(R^2=0.9875)$ and the LOD was found at 0.15 pg/mL. A stable fabrication of AFB₁-BSA onto the modified SPCE was obtained by activating the carboxylic acid groups using coupling agent, NHS and EDC. AFB₁ was quantified indirectly based on the

activity of HRP enzyme that caused TMB $_{(ox)}$ to be reduced at potential between 0.2 to 0.3 V, where the peak was detected in electrochemical system. A non-linear calibration curve was plotted with R² of 0.9873 and IC₅₀ of 0.0015 ng/mL. The linear working range was between 0.0001 to 10 ng/mL with LOD of 0.03 pg/mL. Furthermore, the reproducibility and repeatability of this immunosensor were 4.78% and 2.71%, respectively. The test using spiked peanut sample gave good recovery of 80-127%. As a conclusion, a sensitive immunosensor with MWCNT/CS base electrode was successfully developed for detection of AFB₁.

Abstrak tesis yang dikemukan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Master Sains

PEMBANGUNAN SENSOR IMUNO ELEKTROKIMIA BERASASKAN BAHAN NANO UNTUK PENGESANAN AFLATOKSIN B1 DALAM **KACANG TANAH**

Oleh

FARAH ASILAH BINTI AZRI

Mac 2016

Pengerusi Fakulti

:

Profesor Fatimah Abu Bakar, PhD : Sains dan Teknologi Makanan

Aflatoksin B₁ dikaitkan sebagai karsinogen kepada manusia yang diakibatkan oleh kontaminasi pelbagai hasil pertanian sama ada sebelum atau selepas penuaian di bawah suhu dan kelembapan yang sesuai. Pembangunan kaedah pengesanan aflatoksin B1 yang cepat dan sensitif adalah penting untuk pengawalan kualiti dan keselamatan makanan demi mengurangkan pendedahan toksin ini terhadap para pengguna. Dalam penyelidikan ini, penggunaan tiub nano karbon pelbagai dinding (MWCNT) dan kitosan (CS) telah dikaji sebagai pengubah suai elektrod skrin bercetak karbon (SPCE). Pengubah suaian elektrod ini dikaji sebagai tapak yang sesuai untuk fabrikasi asai imuno, di mana tindak balas elektrokimia akan berlaku. MWCNT telah berjaya difungsikan dengan menggunakan rawatan asid kuat (H₂SO₄:HNO₃) untuk menambahkan kumpulan asid karbosilik (-COOH) dan meningkatkan luas permukaan. Pencirian telah dilakukan dengan FTIR dan kehadiran puncak pada 1715 cm⁻¹ membuktikan penambahan kumpulan. Selain itu, tiub nano yang lebih pendek dapat dilihat melalui FESEM. Berdasarkan analisis electrokimia, pengubahsuaian elektrod dengan menggunakan MWCNT telah meningkatkan gerak balas arus sebanyak 7 kali ganda. Pengubahsuaian SPCE dioptimumkan melalui pelbagai parameter termasuk pH, kadar imbas, nisbah MWCNT:CS, isipadu penyalutan dan cara pengeringan. Sepuluh microliter larutan MWCNT:CS (dengan nisbah 5:1) lalu dikeringkan di dalam ketuhar pada suhu 80°C selama 10 minit adalah optima untuk pengubahsuaian elektrod. Selain itu, imbasan elektrokimia telah dilakukan pada kadar imbas 0.1 Vs⁻¹ dan PBS pH 7 digunakan sepanjang kajian ini. Pengoptimaan ELISA dilakukan sebelum memindahkan asai ini ke atas elektrod yang telah diubah suai. Melalui petak segi empat, 0.25 µg/mL AFB₁-BSA dan 1/5000 (v/v) anti-AFB₁ memberikan nilai keserapan yang tinggi dengan nilai IC₅₀ yang rendah iaitu 0.0183 ng/mL. Tambahan pula, 8% susu siringan memberikan bacaan latar belakang yang paling rendah lalu digunakan sebagai agen penghalang. Dengan menggunakan pelbagai arak reka bentuk faktorial, plot saling tindak di antara tiga faktor iaitu pH, masa inkubasi dan suhu inkubasi telah dibina. Oleh itu, pH 7 dengan 0.5 jam masa inkubasi pada suhu 25°C adalah keadaan yang optimal untuk persaingan di antara antibodi primer dan antigen bebas demi tapak penambatan. Berdasarkan hasil kajian, julat kerja bagi AFB₁ adalah di antara 0.001 to

10 ng/mL (R²=0.9875) dengan LOD adalah pada 0.15 pg/mL. Fabrikasi AFB₁-BSA yang stabil telah dilakukan di atas SPCE yang telah dilabah suai dengan mengaktifkan kumpulan asid karboksilik dengan menggunakan agen pengganding, NHS dan EDC. AFB₁ dikesan secara tidak terus berdasarkan aktiviti enzim HRP yang menyebabkan TMB _(ox) diturunkan pada keupayaan di antara 0.2 hingga 0.3 V, di mana puncak dikesan di dalam sistem elektrokimia,. Lengkung tidak linear telah dibina dengan nilai R²=0.9873 dan IC₅₀ of 0.0015 ng/mL. Julat kerja yang linear adalah di antara 0.0001 hingga 10 ng/mL dengan LOD pada 0.03 pg/mL. Selain itu, kebolehasilan semula dan kebolehulangan semula bagi sensor imuno ini adalah pada 4.78% dan 2.71%, masing-masing. Ujian dengan menggunakan sampel kacang yang dipakukan menunjukkan perolehan yang baik dengan nilai 80-127%. Sebagai kesimpulan, sensor imuno yang sensitif dengan elektrod berasaskan MWCNT/CS telah berjaya dihasilkan untuk pengesanan AFB₁.

ACKNOWLEDGEMENTS

In the name of Allah, the most beneficent, the most merciful. Alhamdulillah, all praise and gratitude to Him for His blessing and love that allow me to undergo this journey and finally complete this piece of work.

First and foremost, I would like to extend my deepest gratitude to my supervisor, Professor Dr. Fatimah Abu Bakar, my co- supervisors, Professor Dr. Nor Azah Yusof and Dr. Rashidah Sukor for their invaluable guidance and encouragement throughout my study. Not forgotten, Dr. Reza Hajian who helped me a lot throughout this study. A million thanks for sharing all the knowledges, experiences, supports and motivations. I have learned a lot for this 3 years' time.

My heartfelt thanks to my beloved family members especially my parents, Ayah and Ibu for their unconditional love, blessing, support and understanding throughout my study. Also, thanks to my sisters, Angah and Jaja, my only little brother, Ayeish and my very best of friends whom like a family to me especially Rawa, Kaysee, Sha, Fidi, Atyn and Afri for your presence in my ups and downs. Family is surely the best therapist.

Not forgotten, to all my awesome friends in the laboratory especially Dr. Zukhruf, Selvi, Hafiz, Zhet, Mardhiyah, Jaini, Diana, Lai and Norlia for all the support, sharing knowledge, memories and invaluable friendship throughout the time I spent in UPM and the trips that we have gone together. You will all be missed.

Next, I would like to acknowledge the Ministry of Science, Technology and Innovation (MOSTI) of Malaysia for the financial support through the Universiti Putra Malaysia Graduate Research Fellowship (GRF). And also, thank you to Ministry of Education of Malaysia for the MyBrain15 scholarship.

Last but not least, a special appreciation and gratitude to anyone else whose name is not mentioned here who also contributed and extended their helping hand especially the lab assistants and science officers in the faculty and making this piece of work feasible. I certify that a Thesis Examination Committee has met on 11 March 2016 to conduct the final examination of Farah Asilah binti Azri on her thesis entitled "Development of a Nanomaterial-Based Electrochemical Immunosensor for Detection of Aflatoxin B_1 in Peanuts" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Yaya Rukayadi, PhD

Associate Professor Faculty of Food Science and Technology Universiti Putra Malaysia (Chairman)

Dato' Abu Bakar bin Salleh, PhD

Professor Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Malaysia (Internal Examiner)

Bahruddin Saad, PhD

Professor Universiti Sains Malaysia Malaysia (External Examiner)

ZULKARNAIN ZAINAL, PhD Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: 25 May 2016

This thesis was submitted to the Senate of Universiti Putra Malysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Fatimah Abu Bakar, PhD

Professor Faculty of Food Science and Technology Universiti Putra Malaysia (Chairman)

Nor Azah Yusof, PhD

Professor Faculty of Science Universiti Putra Malaysia (Member)

Rashidah Sukor, PhD

Senior Lecturer Faculty of Food Science and Technology Universiti Putra Malaysia (Member)

BUJANG BIN KIM HUAT, PhD Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date:

Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Reasearch and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceeding, popular writings, seminar papers, manuscripts, poster, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: _

Date:

Name and Matric No: Farah Asilah Binti Azri, GS35877

Declaration by Members of Supervisory Committee

This is to confirm that:

- The research conducted and the writing of this thesis was under our supervision;
- Supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: ______ Name of Member of Supervisory Committee: Professor Dr. Nor Azah Yusof

Signature: Name of Member of Supervisory Committee: Dr. Rashidah Sukor

TABLE OF CONTENTS

		Page
ABSTRA	CT	i
ABSTRA	K	iii
ACKNO	WLEDGEMENTS	V
APPROV	VAL	vi
DECLA	RATION	viii
LIST OF	TABLES	XV
LIST OF	FIGURES	xvi
LIST OF	ABBREVIATIONS	xxi
CHAPTI		
1 IN	TRODUCTION	
1.1	Background	1
1.2	2 Aim and objectives	2
2 LI	TERATURE REVIEW	
2.1	Sources and occurrence of mycotoxins in foods	3
2.2	2 Aflatoxins	3
2.3	Consumption of highly risk contaminated food in Malaysia	4
2.4	Methods of detection	5
	2.4.1 Chromatography	5
	2.4.2 Enzyme linked immunosorbent assay (ELISA)	6

2.7.2	Elizynie linked minulosofoent assay (ELISA)			
	2.4.2.1	Formats of	of ELISA	6
		2.4.2.1.1	Direct competitive ELISA	7
		2.4.2.1.2	Indirect competitive ELISA	7
		2.4.2.1.3	Sandwich ELISA	7
Biosens	or			7
2.5.1	Electroch	emical im	nunosensor	8
	2.5.1.1	Antigen-a	antibody interaction	9
	2.5.1.2	Immobili	sation strategy	9
	2.5.1.3	Electrode	system	11
	2.5.1.4	Measurer	nent of the electrochemical	11
		reaction		11
	2515	Undrogo	provide and 2 2' 5 5'	

2.5

2.5.2

C

2.5.1.5	Hydrogen peroxide and 3,3',5,5'-	10
	tetrametylbenzidine as mediator	12
Applicat	ion of nanomaterials in biosensor	13
2.5.2.1	Types of nanomaterial	14
2.5.3.2	Advantages of nanomaterial	16
	implementation	10

3	NAN	DIFICAI JOTURE	ION OF S (MWCN)	SPCE WII F) AND CH	H MULTI-WALLED CARBON	
	3 1	Introdu	ction	I) AND CI	IIIOSAN (CS)	18
	3.1	Materia	als and Me	thods		20
	5.2	3 2 1	Chemic	als and read	tents	20
		3.2.1	Instrum	antation	sents	20
		5.2.2	2221	Uot plata	stirror	20
			3.2.2.1	Weter her	Stiller	20
			$\begin{array}{c} 5.2.2.2\\ 2.2.2.2 \end{array}$	Filter	ui someator	20
			3.2.2.3	Filler		21
			3.2.2.4	Electroch	emical measurement	21
			3.2.2.3	Screen-pr	Inted carbon electrode (SPCE)	21
			3.2.2.0	Cable cor	inector	21
		2 2 2	3.2.2.1 E	Cell for e	Iectrolyte CMWCNIT	22
		3.2.3	Function	nalisation o	I MWCN I	
			3.2.3.1	Comparis	son between two different	22
			2222	Character	S	
			3.2.3.2	Character	han nonatuba (f MWCNTa)	22
					Equip Transform Infromed	
				3.2.3.2.1	Speetrosceny, ETID	23
				2 2 2 2 2 2	Field Emission Sconning	
				3.2.3.2.2	Flectron Microscony EESEM	23
				37333	Cyclic Voltammetry (CV)	
				5.2.5.5.5	analysis	23
		324	Formati	on of f-MW	/CNT/Chitosan solution	23
		3.2.7	Dron ca	st of MWC	NT/CS onto the SPCE	23
		5.2.5	3 2 5 1	MWCNT	CS mixing ratio	23
			3252	Volume o	of dronlet	23
			3253	Drying co	ondition	24
		326	Flectroc	hemical stu	Idies	24
		5.2.0	3261	Effect of	scan rate	24
			3262	nH of sur	porting electrolyte	24
			3263	Precision	of the modified electrode	24
	33	Results	and Discus	sions	of the mounted electrode	23
	5.5	3 3 1	Charact	erisation of	ovidised MWCNT	25
		5.5.1	3311	FTIR ana	lycis	25
			3.3.1.1	Surface n	horphology: FE-SEM	23
			3313	Cyclic vo	ltammetry (CV) analysis	20
		337	nH of si	innorting el	ectrolyte	30
		333	Effect o	f scan rate	cettoryte	33
		3.3.5	Ontimis	ation of SP	CE costing	33
		5.5.4		Study of	MWCNT and CS (MWCNT/CS)	55
			5.5.7.1	ratio		33
			3342	Dron coa	ting volume of MWCNT/CS	
			J.J.T.4	matrix		35
			3343	Drving co	ondition	36
		335	Precisio	n of modifi	ed electrode	37
	34	Conclu	sion	n or mount		37
	<i></i>	Conciu	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			51

C

4	OPT	IMISAT	TION OF H	ENZYME-LINKED IMMUNOSORBENT	
	ASSA	AY (ELI	ISA)		
	4.1	Introdu	uction		39
	4.2	Materi	als and met	thods	
		4.2.1	Chemical	s and reagents	40
		4.2.2	Preparati	on of buffers, standard solution and coating	40
			conjugate	ć	40
			4.2.2.1	Preparation of carbonate buffer (coating	40
				buffer)	40
			4.2.2.2	Preparation of phosphate-buffered saline (PBS)	40
			4.2.2.3	Preparation of AFB ₁ -BSA as coating conjugate	40
			4.2.2.4	Preparation of AFB ₁ standard	41
		4.2.3	Develop	ment and optimisation of assay	41
			4.2.3.1	Indirect ELISA	41
			4.2.3.2	Indirect ELISA checkerboard	41
			4.2.3.3	Competitive indirect ELISA (CI-ELISA)	42
		4.2.4	Optimisa	tion of assay conditions	43
			4.2.4.1	Blocking agents	43
			4.2.4.2	pH, incubation time and incubation	12
				temperature	43
		4.2 <mark>.5</mark>	Data ana	lyses	43
	4.3	Result	ts and Disc	ussions	45
		4.3.1	Indirect	ELISA Checkerboard	45
		4.3.2	Assay o	ptimisation	46
			4.3.2.1	Optimal concentration of antibody and	16
				coating conjugate	-0
			4.3.2.2	Optimal blocking agent and condition	49
			4.3.2.2	Optimal pH, incubation time and	50
				incubation temperature	50
		4.3.3	Standar	d calibration curve of AFB ₁	52
		4.3.4	Limit of	detection (LOD) in spectrophotometric	53
			ELISA		
	4.4	Conclu	ision		54
5	DEV	ELOPN	IENT	AND CHARACTERISATION OF	
	AFL	ATOXI	N B_1 IMN	IUNOSENSOR BASED ON INDIRECT	
			IVE ELIS	A	50
	5.1	Introd		4 1	56
	5.2	Materi	als and Me	thods	
		5.2.1	Chemic	als and reagents	57
		5.2.2	Instrum		57
		5.2.3	Electroc	nemical Measurement	58
			5.2.3.1	Supporting electrolyte	58
			5.2.3.2	Cyclic voltammetry analysis for enzyme-	58
			5000	Substrate reagent in immunosensor	
			5.2.3.3	immunosensor	58

C

xii

	5.2.4	Study of a	ntigen imn	nobilisation metho	od	58
		5.2.4.1 5.2.4.2	Covalent b	anding		59 50
	525	J.2.4.2 Developm	Covalent of elec	trochemical imm	inosensor	59 59
	5.2.5	5 2 5 1	Ontimisati	on of immunosen	sor response	59
		5.2.5.2	Characteris	sation of SPE surf	face before	
		0.2.0.12	and after a	ntigen immobilisa	ation	59
		5.2.5.3	Performan	ice of the immuno	osensor	59
	5.2.6	Validation	n of develo	ped immunosenso	or	60
		5.2.6.1	Test on rea	l sample		60
		5.2.6.2	Comparati	ve study on perfor	rmance	60
			between de	eveloped immuno	sensor and	
			spectropho	tometric ELISA		
5.3	Results	and Discus	sions			
	5.3.1	Optimisat	ion of hydr	ogen peroxide co	ncentrations	60
	5.3.2	Character	isation stuc	ly of the enzyme-	substrate	61
	5.3.3	Chronoan	perometry	study of enzyme	activity using	63
	524	TMB/H ₂ ($)_2$	1 1 1		1 (2
	5.3.4	DPV anal	ysis of redu	iction peak at sele	ected potentia	l 63
	5.5.5	Optimal a	ntigen imn	DE surface hefer	DO and often	64
	5.5.0	immobili	isation of an	tigen and antibod	e and after	00
	537	Flectroch	emical resp	onse	у	67
	5.5.1	5371	Effect of s	can rate		67
	5.3.8	Construct	ion of AFE	alibration curv	e based on	68
	01010	immunos	ensor			00
	5.3.9	Limit of c	letection (L	OD) in electroche	emical ELISA	. 69
	5.3.10	Reproduc	ibility and	repeatability of th	e developed	70
		immunos	ensor	1.4		/0
	5.3.11	Test on re	al sample			71
5.4	Conclus	sion				72
SUMN	MARY,	GENI	ERAL	CONCLUSIO	N ANI	D 74
RECO	DMMENI	DATION F	OR FUTU	RE RESEARCH	I	/4
EREN	CES					76

6	SUMMARY, RECOMMEND	GENERAL ATION FOR FUT	CONCLUSION URE RESEARCH	AND	74
RE	FERENCES				76
AP	PENDICES				87
BI	ODATA OF STUD	ENT			90
LIS	ST OF PUBLICAT	IONS			91

LIST OF TABLES

Table		Page
2.1	Comparison of the developed immunosensor for AFB_1 over a decade.	10
2.2	Various types of biosensor with the implementation of nanomaterials for food analysis	17
3.1	Electrochemical parameters obtained from voltammograms in Figure 3.12	30
3.2	Precision of the modified electrodes based on the anodic current produced ($n=5$).	37
4.1	Inter-plate schedule of the factors of pH, incubation time and incubation temperature at different levels.	44
4.2	Effect of concentrations of AFB ₁ -BSA as coating conjugate and anti-AFB ₁ from rabbit as primary antibody towards the indirect competitive ELISA assay.	48
5.1	Determination of AFB ₁ in spiked peanuts sample by electrochemical ELISA (immunosensor) and spectrophotometric ELISA.	111

6

LIST OF FIGURES

Figure		Page
2.1	Structure of naturally occurring aflatoxins B_1 , B_2 , G_1 and G_2 . Aflatoxin M_1 and M_2 were derived from AFB ₁ through enzymatic hydroxylation. Adapted from Food-Info (2014).	4
2.2	Immunoassay formats without the competition of free analyte (a) Direct format (b) Indirect format (c) Sandwich format. \bigcirc = Analyte, γ = Anti-analyte antibody, χ = Anti-antibody conjugated enzyme, χ = anti-analyte conjugated enzyme.	6
2.3	The principle of biosensor which incorporates the interaction of bioreceptors with the analyte before being converted into measurable signal.	8
2.4	Screen-printed carbon electrode (SPCE) by Dropsens which made up of carbon working electrode, carbon counter electrode and silver/silver chloride reference electrode. Adapted from Dropsens (n.d).	11
2.5	A typical cyclic voltammogram of species in solution for the important peak parameter. A reversible reaction of cathodic (c) and anodic (a), E_p refers to peak potential and i_p refers to peak current. Adapted from Das (2013).	12
2.6	Types of nanomaterials. (A) Nanotubes; (B) nanoparticles; (C) nanofiber and (D) nanowire.	14
2.7	Nano-based analytical approaches. Adapted from Valdes <i>et al.</i> (2009).	16
3.1	Attachment of carboxyl groups (CO=OH) onto the surface of MWCNT via acid functionalisation.	19
3.2	Molecular structure of chitosan with the presence of natural hydroxyl and amino groups.	20
3.3	Schematic diagram of the complete set up of instruments for the analysis.	21
3.4	FTIR spectra of (i) pristine MWCNT (ii) functionalised MWCNT treated with piranha and (iii) functionalised MWCNT treated with H ₂ SO ₄ +HNO ₃ .	26

 \bigcirc

3.5	FESEM image under 25000X magnification of (A) pristine MWCNT, (B) functionalised MWCNT by H_2SO_4 and HNO ₃ , (C) functionalised MWCNT by piranha solution. FESEM image under 200 000X magnification with diameter of nanotubes of (D) pristine MWCNT, \in functionalised MWCNT by H_2SO_4 and HNO ₃ , (F) functionalised MWCNT by piranha.	28
3.6	Cyclic voltamogram of bare and modified SPCE in 0.1M PBS with 5 Mm of K_3 [Fe(CN) ₆] at a scan rate of 0.1 V/s. Scan was set to 3 cycles from -0.6 to 0.7 V (vs. Ag/AgCl).	30
3.7	Cyclic voltamogram for the effect of Ph of supporting electrolyte (0.01 M PBS) in 5 Mm of $K_3[Fe(CN)_6]$ at a scan rate of 0.1 Vs ⁻¹ , Scan was set to 3 cycles from -0.4 to 0.6 V relative to Ag/AgCl reference electrode.	31
3.8	The variation in pH values of 0.1M PBS with 5 Mm of $K_3[Fe(CN)_6]$ at a scan rate of 0.1 V/s. (a) pH 1 (b) pH 3 (c) pH 5 (d) pH 7 (e) Ph 9 (f) pH 11.	32
3.9	Cyclic voltamograms showing the variation in scan rates of modified SPCE in 0.1M PBS with 5 Mm of $K_3[Fe(CN)_6]$ at a scan rate of 0.1 V/s. Scan was set to 3 cycles from -0.6 to 0.7 V (vs. Ag/AgCl).	33
3.10	 (A) Cyclic voltamogram of different modifier ratios at a scan rate of 0.1 V/ from -0.4 to 0.5 V (vs. Ag/AgCl). (B) Study of ratio MWCNT: CS in 0.5% chitosan (mean values ± % RSD, n=3) 	34
3.11	(A) Cyclic voltamogram of different modifier volume dropped onto the SPCE at a scan rate of 0.1 V/ from - 0.4 to 0.5 V (vs. Ag/AgCl). (B) Study on the drop coating volume of MWCNT:CS suspension onto the working (mean \pm SD, n=3).	35
3.12	Cyclic voltamogram of the SPCE dried in different drying conditions at a scan rate of 0.1 V/ from -0.4 to 0.5 V (vs. Ag/AgCl) (B) Study on the drying method of the casted SPCE with MWCNT/CS matrix (mean \pm SD, n=3)	36
4.1	Schematic diagram of checkerboard design in 96-wells microtiter plate for optimisation of reagents.	42
4.2	Schematic diagram of indirect competitive ELISA format.	43

4.3	Optimisation of different concentrations of AFB ₁ -BSA conjugate and anti-aflatoxin B ₁ antibody in an indirect format without using AFB ₁ standard (non-competitive).	45
4.4	Competitive indirect ELISA using six different concentrations of coating antigen and primary antibody (anti-aflatoxin B ₁), (A) 0.5μ g/ml; 1/10000 (v/v), (B) 0.25μ g/ml; 1/5000 (v/v), (C) 1.0μ g/ml; 1/2500 (v/v), (D) 1.0μ g/ml; 1/20000 (v/v), (E) 1.0μ g/ml; 1/10000 (v/v), (F) 0.25μ g/ml; 1/2500 (v/v). Each point represents the mean \pm SD of three replicates.	47
4.5	Absorbance reading of different blocking agents (milk and BSA) at various concentrations in non-competitive ELISA. Error bars indicate = SD, $n=3$.	49
4.6	Effect of various blocking agents on background reading by 8% skimmed milk, 1% BSA, casein, protein-free and superblock.	50
4.7	The normal probability plot of the data residual against percentage of response based on IC_{50} value. The straight line indicates the normal distribution line and the data scatter along the line.	51
4.8	Interaction plot between pH of buffer, incubation time and incubation temperature, based on the IC_{50} value obtained from the absorbance reading of the indirect competitive ELISA.	52
4.9	Calibration curve of AFB ₁ for indirect ELISA format using spectrophotometric detection. Wells were coated with AFB ₁ -BSA (0.25 μ g/mL), blocked with 8% skimmed milk and followed by competition between anti-AFB ₁ (1/5000, v/v) and free AFB ₁ (0-1000 ng/mL) before adding the anti-rabbit IgG-HRP (1/5000, v/v). Error bar = standard deviation, n=3. (b) Linear regression of standard curve with AFB ₁ working range from 0.001 to 10 ng/mL.	54
5.1	The complete schematic diagram of the multi-walled carbon nanotube based immunosensor based on indirect competitive ELISA. Υ = Primary antibody, anti-aflatoxin B ₁ ; Υ = Secondary antibody HRP conjugate, anti-rabbit IgG-HRP; = Coating conjugate, AFB ₁ -BSA; = Free analyte, AFB ₁ standard (sample).	57

	5.2	Schematic diagram of the chemical reaction between hydrogen peroxide (H_2O_2) and the TMB mediator with the presence of HRP as catalyse.	61
	5.3	Cyclic voltammetric response at different H_2O_2 concentrations (0.0015 to 0.15%) with fixed TMB concentration and IgG-HRP in PBS, pH 7. Scan was done from -1.0 to 1.0 V with three numbers of cycles at scan rate of 100 mVs ⁻¹ .	61
	5.4	Cyclic voltammetry of blank 0.1 M PBS, 0.1 M PBS containing H_2O_2 /TMB and 0.1 M PBS containing H_2O_2 /TMB/IgG-HRP. PBS pH 7.0 in 0.15 M NaCl, Scan range between -1 to 1 V with scan rate 100 mVs ⁻¹ .	62
	5.5	Current response of chronoamperometric studies of TMB and H_2O_2 with the addition of secondary antibody conjugated with HRP (1/5000, v/v) on the SPCE/MWCNT/CS at a constant potential, -100 mV.	63
	5.6	Current response of differential pulse voltammetry studies of TMB and H_2O_2 with the addition of secondary antibody conjugated with HRP (1/5000, v/v) on the SPCE/MWCNT/CS.	64
	5.7	Differential pulse voltammograms (DPVs) of the developed immunosensor based on indirect competitive ELISA assay in supporting electrolyte (0.1 M PBS containing 0.05% H ₂ O ₂ and TMB) at different immobilisation method of antigen.	65
	5.8	The condition of SPCE after the analysis. (A) Unmodified SPCE (without MWCNT/CS); (B) AFB ₁ - BSA coated on the modified SPCE by physical adsorption; (C) AFB ₁ -BSA coated on the modified SPCE by covalent attachment.	66
	5.9	Differential pulse voltammograms (DPVs) of the developed immunosensor based on indirect competitive ELISA assay in supporting electrolyte (0.1 M PBS containing 0.05% H ₂ O ₂ and TMB) at each step of ELISA.	67
	5.10	Differential pulse voltammograms (DPVs) of the developed immunosensor based on indirect competitive ELISA assay in supporting electrolyte (0.1M PBS containing 0.05% H ₂ O ₂ and TMB) at different step potentials (a) 0.005 V (b) 0.01 V (c) 0.015 V (d) 0.025 V (e) 0.05 V which respectively affect the scan rate.	68

- 5.11 Differential pulse voltammetry analysis (DPV) within potential range of 0 to 0.5 V by using TMB and 0.06 % H_2O_2 as substrate. Detection of aflatoxin B₁ based on the reduction of TMB_(ox) by HRP enzyme. The current peaks were found at 0.25 \pm 0.1 V.
- 5.12 Calibration curve of the indirect competitive immunosensor for aflatoxin B_1 analysis on a modified SPCE with MWCNT/CS using optimised parameters. Measured by differential pulse voltammetry analysis (DPV) within potential range of 0 to 0.5 V by using TMB and 0.06 % H₂O₂ as substrate. The current peaks were found at 0.25 \pm 0.1 V. (a) The curve was fitted by non-linear regression. (b) Linear regression of standard curve. Error bar = SD, n=3.

69

LIST OF ABBREVIATIONS

Ab	Antibody
AF	Aflatoxin
AFB ₁	Aflatoxin B ₁
AFB ₁ -BSA	Aflatoxin conjugated with BSA
AFB ₁ -HRP	Aflatoxin conjugated with HRP
Ag	Antigen
Ag/AgCl	Silver/silver chloride
Anti-IgG-HRP	Anti-antibody IgG labeled with HRP
В	Background
BSA	Bovine Serum ALbumin
СООН	Carboxyl terminal
CS	Chitosan
CV	Cyclic voltammetry
CV%	Coefficient of variation
DPV	Differential pulse voltammetry
EDC	N-ethyl-N'-(3-dimethylaminopropyl)-carbodiimide
ELISA	Enzyme-Linked Immunosorbent Assay
CI-ELISA	Competitive Indirect Enzyme-Linked Immunosorbent Assay
f-MWCNT	Functionalised multi-walled carbon nanotube
FTIR	Fourier transform infrared spectroscopy
FE-SEM	Field Emission Scanning Electron Microscope
GPES	General Purpose Electrochemical Software
H_2O_2	Hydrogen peroxide

 $\overline{\mathbf{G}}$

H_2SO_4	Sulphuric acid
HRP	Horseradish peroxidase
IC ₅₀	Adequate sensitivity
K ₃ [Fe(CN)] ₆	Potassium Ferricyanide
LOD	Limit of detection
MWCNT	Multi-walled carbon nanotube
NHS	N-hydroxysuccinimide
Ox	Oxidised
PBS	Phosphate-buffered saline
PBS-T	0.05% tween-20 (v/v) to the PBS
ppb	Part per billion
ppt	Part per trillion
Red	Reduced
RSD	Relative standard deviation
S	Signal
S/B	Signal/Background
SPCE	Screen-printed carbon electrode
ТМВ	3,3',5,5'-tetramethylbenzidine
TMB (ox)	Oxidised TMB
TMB (red)	Reduced TMB

CHAPTER 1

INTRODUCTION

1.1 Background

Aflatoxin is a secondary metabolites derived from the *Aspergillus* genus which are highly toxic, carcinogenic, teratogenic and mutagenic compounds (Afsah-Hejri *et al.*, 2013). Fungi can be found widely in various food and feedstuffs namely peanuts, corn, rice, wheat, cottonseed and spices (Leong *et al.*, 2010). Malaysia is a tropical country with high temperature and high relative humidity. Therefore, presence of mycotoxins can be expected. Arzandeh *et al.* (2010) reported that 75% (out of 84 samples) of raw peanut kernels, which were collected randomly from Malaysian supermarket was confirmed to contain aflatoxin B₁. Moreover, 10.71% of samples were exceeded the maximum tolerable limit of 15 ng/g set by Codex (Arzandeh *et al.*, 2010). Futhermore, Ali *et al.* (2005) also reported a high occurrence of aflatoxin B₁ (70%) in traditional herbal medicines from Malaysia and Indonesia.

Mycotoxin contamination of foodstuffs is a serious matter that causes a major health threat for human and animals, as well as affecting the economy, significantly. Aflatoxin exposure to human can be by either directly or indirectly consumption of the contaminated food or inhalation of AFB_1 -contaminated dust (Afsah-Hejri *et al.*, 2013). Due to the proven risk related with aflatoxins, the current maximum level for aflatoxins set by the European Commission is 2 ng/g for AFB_1 in corn, groundnuts, nuts, dried fruit and cereals (Piermarini *et al.*, 2007). Hence, it is very important to protect humans and animals by restricting their exposure to aflatoxins.

Due to the significant health risks related with the occurrence of aflatoxins in food, and also to gratify the severe legal requirement, it is vital to have efficient techniques for the detection (Ammida *et al.*, 2006). Immunoassay or enzyme-linked immunosorbent assay (ELISA) can be considered as a rapid method that offers simplicity, sensitivity and selectivity compared to other traditional techniques which required extensive clean up procedure, labour consuming and costly (such as liquid chromatography). ELISA is a calorimetric technique that can be used in huge scale screenings and chromogenic substrates offer long lasting stability of a coloured product after the reaction is complete (Kadir, 2010). Kolosova *et al.* (2006) have reported a direct competitive ELISA based on monoclonal antibody for detection of aflatoxin B₁ in grain samples. Hence, in this study, the incorporation of ELISA into electrochemical biosensing technique was investigated to enhance the sensitivity.

Biosensor is a device that can determine the analyte based on the incorporation of bioactive materials with physiochemical transducing element (Mosiello and Lamberti, 2011). The biological material can be classified as affinity or biocatalytic such as antibodies, DNA, receptor protein, enzymes, tissues, whole cells or organs interrelating with specific analyte. The interaction can then be converted by the transducer into a quantifiable electrical signal. In this study, an antibody-based

biosensor, also known as immunosensor, was developed by integrating the optimised ELISA system onto the electrochemical sensing component. Holford *et al.* (2012) have reviewed the recent trends in antibody-based sensors in the past decades. They concluded that one major challenge for many of these immunosensors is limited use in the laboratory surroundings. Therefore, many researches were conducted by using technology of screen-printed electrodes, which can be manufactured reasonably cheap and can be advanced for commercial purposes. This technology can be applied into a portable sensor that can be used on site.

Many researches have been done over decades on the detection of aflatoxin B_1 . Various techniques, types of electrodes, modifications, detector components as well as the type of sample have been explored. Nanomaterials including nanotube, nanofilm, nanoparticle and nanofiber display unique physical and chemical features which can help to enhance the sensitivity of the developed sensor (Sonawane et al., 2014). Although substantial progress has been made in exploring carbon nanotube based as electrodes and biosensor, there is no report on commercialised device or for aflatoxin B₁ detection (Veetil and Ye, 2007). Therefore, this study was undertaken to discover the potential of multi-walled carbon nanotube and chitosan as the modifier on the sensing components and incorporating an indirect competitive ELISA under optimal conditions. Hypothesis that can be deduced for this study is that the implementation of nanomaterials and ELISA system in the development of electrochemical immunosensor can increase the sensitivity as well as improve the current conductivity. The importance of this study is to develop a sensitive immunosensor for rapid detection of aflatoxin B_1 . Moreover, the finding may have significant contribution towards food safety and quality, subsequently emphasize the citizen on the risk of consumption.

1.2 Aim and objectives

The aim of this study is to develop a rapid and sensitive electrochemical immunosensor for detection of aflatoxin B_1 (AFB₁) in food samples, which is peanuts. The use of multi-walled carbon nanotube (MWCNT) and chitosan (CS) were implemented as nanomaterials to modify the electrode and subsequently enhance the performance of the sensor. In order to achieve this aim, there were three objectives that needed to be focused on including:

- 1. To modify the screen-printed carbon electrode with multi-walled carbon nanotubes and chitosan.
- 2. To optimise the competitive indirect enzyme-linked immunosorbent assay (ELISA).
- 3. To develop and characterise the immunosensor for aflatoxin B_1 based on indirect competitive ELISA.

REFERENCES

- Abuilaiwi, F. A, Laoui, T., Al-Harthi, M., and Atieh, M. A. (2010). Modification and functionalization of multiwalled carbon nanotube (mwcnt) via fischer esterification. *The Arabian Journal for Science and Engineering*, *35*(1C), 37– 48.
- Adanyi, N., Levkovets, I. A., Rodriguez-Gil, S., Ronald, A., Varadi, M., and Szendro, I. (2007). Development of immunosensor based on OWLS technique for determining Aflatoxin B₁ and Ochratoxin A. *Biosensors and Bioelectronics*, 22(6), 797–802.
- Adschiri, T., Hakuta, Y., Sue, K., and Arai, K. (2001). Hydrothermal synthesis of metal oxide nanoparticles at supercritical conditions. *Journal of Nanoparticle Research*, *3*, 227–235.
- Afsah-Hejri, L., Jinap, S., Hajeb, P., Radu, S., and Shakibazadeh, S. (2013). A review on mycotoxins in food and feed: Malaysia case study. *Comprehensive Reviews in Food Science and Food Safety*, 12(6), 629–651.
- Ahammad, A. J. S., Lee, J.J., and Rahman, M. A. (2009). Electrochemical sensors based on carbon nanotubes. *Sensors*, 9(4), 2289–2319.
- Akiladevi, D., and Basak, S. (2010). Carbon nanotubes (CNTs) production, characterisation and its applications. *International Journal of Advances in Pharmaceutical Sciences*, 1(3), 187–195.
- Alcaide-Molina, M., Ruiz-Jimenez, J., Mata-Granados, J. M., and Luque de Castro, M. D. (2009). High through-put aflatoxin determination in plant material by automated solid-phase extraction on-line coupled to laser-induced fluorescence screening and determination by liquid chromatography-triple quadrupole mass spectrometry. *Journal of Chromatography A*, 1216(7), 1115–1125.
- Ali, N., Hashim, N. H., Saad, B., Safan, K., Nakajima, M., and Yoshizawa, T. (2005). Evaluation of a method to determine the natural occurrence of aflatoxins in commercial traditional herbal medicines from Malaysia and Indonesia. *Food* and Chemical Toxicology, 43(12), 1763–1772.
- Ammida, N. H. S., Micheli, L., Piermarini, S., Moscone, D., and Palleschi, G. (2006). Detection of AFB₁ in barley: comparative study of immunosensor and HPLC. *Analytical Letters*, 39(8), 1559–1572.
- Ammida, N. H. S., Micheli, L., Piermarini, S., Moscone, D., and Palleschi, G. (2006). in Barley: Comparative Study of Immunosensor and HPLC. *Analytical Letters*, 39(8), 1559–1572.
- Arzandeh, S., Selamat, J., and Lioe, H. (2010). Aflatoxin in raw peanut kernels marketed in Malaysia. *Journal of Food and Drug Analysis*, 18(1), 44–50.

- ASEAN. (2015). Regulatory limits of mycotoxins in ASEAN countries Aflatoxins. Retrieved from www.asean.org/Aflatoxins
- Balasubramanian, K., and Burghard, M. (2005). Chemically functionalized carbon nanotubes. *Small*, 1(2), 180–192.
- Baruwati, B., Kumar, D. K., and Manorama, S. V. (2006). Hydrothermal synthesis of highly crystalline ZnO nanoparticles: A competitive sensor for LPG and EtOH. Sensors and Actuators, B: Chemical, 119(2), 676–682.
- Bennett, J. W., and Klich, M. (2003). Mycotoxins. *Clinical Microbiology Reviews*, *16*(3), 497–516.
- Bhattacharya, R., and Mukherjee, P. (2008). Biological properties of "naked" metal nanoparticles. *Advanced Drug Delivery Reviews*, 60(11), 1289–1306.
- Bonroy, K., Frederix, F., Reekmans, G., Dewolf, E., de Palma, R., Borghs, G., and Goddeeris, B. (2006). Comparison of random and oriented immobilisation of antibody fragments on mixed self-assembled monolayers. *Journal of Immunological Methods*, 312(1-2), 167–181.
- Brera, C., Debegnach, F., Minardi, V., Pannunzi, E., De Santis, B., and Miraglia, M. (2007). Immunoaffinity column cleanup with liquid chromatography for determination of aflatoxin B₁ in corn samples: interlaboratory study. *Journal of AOAC International*, 90(3), 765–772.
- Carlson, M. A., Bargeron, C. B., Benson, R. C., Fraser, A. B., Phillips, T. E., Velky, J. T., and Ko, H. W. (2000). An automated, handheld biosensor for aflatoxin. *Biosensors and Bioelectronics*, 14(10-11), 841–848.
- Chan, C. E., Choi, J., Lee, M. and Koo, K. (2008). Fabrication of an electrochemical immunosensor with self-assembled peptide nanotubes. *Colloids and Surfaces A: Physiochemical and Engineering Aspects*, 313–314, 95–99.
- Chen, G., Lin, Y., and Wang, J. (2006). Monitoring environmental pollutants by microchip capillary electrophoresis with electrochemical detection. *Talanta*, 68(3), 497–503.
- Chen, H., Seiber, J. N., and Hotze, M. (2014). ACS select on nanotechnology in food and agriculture: A perspective on implications and applications. *Journal of Agricultural and Food Chemistry*, 62(6), 1209–1212.
- Cheng, Y., Liu, Y., Huang, J., Xian, Y., Zhang, W., Zhang, Z. and Jin, L. (2008). Rapid amperometric detection of coliforms based on MWNTs/Nafion composite film modified glass carbon electrode. *Talanta*, 75, 167–171.
- Chiu, H., and Yeh, C. (2007). Hydrothermal synthesis of SnO₂ nanoparticles and their gas-sensing of alcohol. *Journal of Physical Chemistry. C*, 111, 7256–7259.

- Crooks, R. M., Zhao, M. Q., Sun, L., Chechik, V., and Yeung, L. K. (2001). Dendrimer-encapsulated metal nanoparticles: Synthesis, characterization, and applications to catalysis. *Accounts of Chemical Research*, *34*(3), 181–190.
- Cubukcu, M., Timur, S., and Anik, U. (2007). Examination of performance of glassy carbon paste electrode modified with gold nanoparticle and xanthine oxidase for xanthine and hypoxanthine detection. *Talanta*, *74*(3), 434–439.
- Daling, L., Yi, S., Dongsheng, Y., and Jing, Z. (2007). The assembly of a novel enzyme biosensor for aflatoxin B₁. *Online Chinese Technology Thesis*, 5, 1–10.
- Daou, T. J., Pourroy, G., Begin-Colin, S., Greneche, J. M., Ulhaq-Bouillet, C., Legare, P., and Rogez, G. (2006). Hydrothermal synthesis of monodisperse magnetite nanoparticles. *Chemistry of Materials*, 18(18), 4399–4404.
- Das, S. (2013). Cyclic Voltammetry. *Cyclic Voltammetry, Urrjaa*, P011. Retrieved from http://urrjaa.blogspot.my/2013/08/cyclic-voltammetry-urrjaa-p0110-2013.html
- Datsyuk, V., Kalyva, M., Papagelis, K., Parthenios, J., Tasis, D., Siokou, A., and Galiotis, C. (2008). Chemical *carbon*, 46(6), 833–840.
- Dhanasekaran, D., Shanmugapriya, S., Thajuddin, N. and Panneerselvam, A. (2011). Aflatoxins and aflatoxicosis in human and animals. In G. G. Ramon, (Ed.), *Aflatoxins - Biochemistry and Molecular Biology* (pp. 221–254). China: InTech.
- Dropsens. (n.d). Products list: screen-printed electrodes. Retrived from http://www.dropsens.com/en/screen_printed_electrodes_pag.html
- Edinboro, L. E., and Karnes, H. T. (2005). Determination of aflatoxin B_1 in sidestream cigarette smoke by immunoaffinity column extraction coupled with liquid chromatography/mass spectrometry. *Journal of Chromatography A*, 1083(1-2), 127–132.
- Elizalde-Gonzalez, M. P., Mattusch, J., and Wennrich, R. (1998). Stability and determination of aflatoxins by high-performance liquid chromatography with amperometric detection. *Journal of Chromatography A*, 828(1-2), 439–444.
- Espinosa-Calderon, A., Contreras-Medina, L. M., Munoz-Huerta, R. F., Millan-Almaraz, J. R., Gonzalez, R. G. G., and Torres-Pacheco, I. (2011). Methods for detection and quantification of aflatoxins. In I. Torress-Pacheco (Ed.), *Aflatoxins - Detection, Measurement and Control*, (pp. 109–128). Shanghai: InTech.
- Ferreira, N. S., and Sales, M. G. F. (2014). Disposable immunosensor using a simple method for oriented antibody immobilization for label-free real-time detection of an oxidative stress biomarker implicated in cancer diseases. *Biosensors and Bioelectronics*, 53, 193–199.

- Figarol, A., Pourchez, J., Boudard, D., Forest, V., Tulliani, J. M., Lecompte, J. P., and Grosseau, P. (2014). Biological response to purification and acid functionalization of carbon nanotubes. *Journal of Nanoparticle Research*, 16(7), 2507.
- Food-Info. (2014). Aflatoxins. Retrieved from http://www.foodinfo.net/uk/tox/afla.htm
- Gibbs, J. (2001). Effective blocking procedures. *ELISA Technical Bulletin Corning Incorporated Life Sciences Kennebunk, ME*, (3), 1–6.
- Gomathi, P., Ragupathy, D., Choi, J. H., Yeum, J. H., Lee, S. C., Kim, J. C., and Ghim, H. Do. (2011). Fabrication of novel chitosan nanofiber/gold nanoparticles composite towards improved performance for a cholesterol sensor. *Sensors and Actuators, B: Chemical*, 153, 44-49.
- Guo, Y. (2006). Efficient mixed-level fractional factorial designs: Evaluation, augmentation and application. *PhD Thesis. The Florida State University*.
- Habibi, B., and Pournaghi-Azar, M. H. (2010). Simultaneous determination of ascorbic acid, dopamine and uric acid by use of a MWCNT modified carbonceramic electrode and differential pulse voltammetry. *Electrochimica Acta*, 55(19), 5492–5498.
- He, Z. H., and Jin, W. R. (2002). Electrochemical detection of horseradish peroxidase at zeptomole level. *Electroanalysis*, 14(23), 1674–1678.
- Herzallah, S. M. (2009). Determination of aflatoxins in eggs, milk, meat and meat products using HPLC fluorescent and UV detectors. *Food Chemistry*, 114(3): 1141–1146.
- Heurich, M. (2008). Development of an affinity sensor for ochratoxin A. *PhD Thesis. Cranfield University.*
- Holford, T. R. J., Davis, F., and Higson, S. P. J. (2012). Recent trends in antibodybased sensors. *Biosensors and Bioelectronics*, 34(1), 12–24.
- Huang, J., Liu, Y., and You, T. (2010). Carbon nanofiber based electrochemical biosensors: A review. *Analytical Methods*, 2(3), 202–211.
- Huang, T. S., Tzeng, Y., Liu, Y. K., Chen, Y. C., Walker, K. R., Guntupalli, R., and Liu, C. (2004). Immobilization of antibodies and bacterial binding on nanodiamond and carbon nanotubes for biosensor applications. *Diamond and Related Materials*, 13(4-8), 1098–1102.
- Ivell, R., Teerds, K., and Hoffman, G. E. (2014). Proper application of antibodies for immunohistochemical detection: Antibody crimes and how to prevent them. *Endocrinology*, 155(3), 676–687.

- Jaimez, J., Fente, C. A., Vazquez, B. I., Franco, C. M., Cepeda, A., Mahuzier, G., and Prognon, P. (2000). Application of the assay of aflatoxins by liquid chromatography with fluorescence detection in food analysis. *Journal of Chromatography A*, 882(1-2), 1–10.
- Jianrong, C., Yuqing, M., Nongyue, H., Xiaohua, W., and Sijiao, L. (2004). Nanotechnology and biosensors. *Biotechnology Advances*, 22(7), 505–518.
- Jin, X., Jin, X., Liu, X., Chen, L., Jiang, J., Shen, G., and Yu, R. (2009). Biocatalyzed deposition amplification for detection of aflatoxin B₁ based on quartz crystal microbalance. *Analytica Chimica Acta*, 645(1-2), 92–97.
- Josephy, P. D., Elingg, T., and Mason, R. P. (1982). The horseradish peroxidasecatalyzed oxidation of 3,5,3',5'- Tetramethylbenzidine free radical and chargetransfer complex intermediates. *The Journal of Biological Chemistry*, 257(7), 3669-3675.
- Kadir, M. K. A. (2010). Development of immunosensor for mycotoxins analysis. *PhD Thesis. Cranfield University.*
- Kathi, J., and Rhee, K. Y. (2008). Surface modification of multi-walled carbon nanotubes using 3-aminopropyltriethoxysilane. *Journal of Materials Science*, 43(1), 33–37.
- Kaushik, A., Solanki, P. R., Pandey, M. K., Ahmad, S., and Malhotra, B. D. (2009). Cerium oxide-chitosan based nanobiocomposite for food borne mycotoxin detection. *Applied Physics Letters*, 95(17), 2009–2011.
- Khan, R., and Dhayal, M. (2008). Nanocrystalline bioactive TiO₂-chitosan impedimetric immunosensor for ochratoxin-A. *Electrochemistry Communications*, 10(3), 492–495.
- Kolosova, A. Y., Shim, W. B., Yang, Z. Y., Eremin, S. A., and Chung, D. H. (2006). Direct competitive ELISA based on a monoclonal antibody for detection of aflatoxin B₁. Stabilization of ELISA kit components and application to grain samples. *Analytical and Bioanalytical Chemistry*, 384(1), 286–294.
- Kwoun, S. J., Kwoun, S. J., Lec, R. M., Lec, R. M., Han, B., Han, B., and Ko, F. K. (2001). Proceedings of the IEEE 27th Annual Northeast: *Polymer nanofiber thin films for biosensor applications. Bioengineering Conference,* Storrs, Connecticut. 31 March-1 April 2001.
- Leong, Y. H., Ismail, N., Latif, A. A., and Ahmad, R. (2010). Aflatoxin occurrence in nuts and commercial nutty products in Malaysia. *Food Control*, *21*(3), 334– 338.
- Li, D., Frey, M. W., and Baeumner, A. J. (2006). Electrospun polylactic acid nanofiber membranes as substrates for biosensor assemblies. *Journal of Membrane Science*, 279(1-2), 354–363.

- Liao, W. C., and Annie Ho, J. A. (2014). Improved activity of immobilized antibody by paratope orientation controller: Probing paratope orientation by electrochemical strategy and surface plasmon resonance spectroscopy. *Biosensors and Bioelectronics*, 55, 32–38.
- Lin, K., Yang, C., and Chen, S. (2015). Fabrication of a nonenzymatic glucose sensor based on multi- walled carbon nanotubes decorated with platinum and silver hybrid composite. *International Journal of Electrochemical Science*, 10, 3726–3737.
- Liu, Y., Qin, Z., Wu, X., and Jiang, H. (2006). Immune-biosensor for aflatoxin B₁ based bio-electrocatalytic reaction on micro-comb electrode. *Biochemical Engineering Journal*, 32(3), 211–217.
- Liu, Y., Wang, M., Zhao, F., Xu, Z., and Dong, S. (2005). The direct electron transfer of glucose oxidase and glucose biosensor based on carbon nanotubes/chitosan matrix. *Biosensors and Bioelectronics*, 21(6), 984–988.
- Mansor, N. B. A., Tessonnier, J. P., Rinaldi, A., Reiche, S., and Kutty, M. G. (2012). Chemically modified multi-walled carbon nanotubes (MWCNTs) with anchored acidic groups. *Sains Malaysiana*, 41(5), 603–609.
- Mahapatro, A. and Singh, D. K. (2011). Biodegradable nanoparticles are excellent vehicle for site directed in-vivo delivery of drugs and vaccines. Journal of Nanobiotechnology, 9(55), 1-11.
- Maragos, C. M., and Thompson, V. S. (1999). Fiber-optic immunosensor for mycotoxins. *Natural Toxins*, 7(6), 371–376.
- Masoomi, L., Sadeghi, O., Banitaba, M. H., Shahrjerdi, A., and Davarani, S. S. H. (2013). A non-enzymatic nanomagnetic electro-immunosensor for determination of Aflatoxin B₁ as a model antigen. Sensors and Actuators, B: Chemical, 177, 1122–1127.
- Midio, A. F., Campos, R. R., Sabino, M. (2001). Occurrence of aflatoxins B₁, B₂, G₁ and G₂ in cooked food components of whole meals marketed in fast food outlets of the city of Sao Paulo, SP, Brazil. *Food Additive Contaminant*, 18, 315–318.
- Miller, J. (1995). Fungi and mycotoxins in grain: Implications for stored product research. *Journal of Stored Products Research*, 31, 1–16.
- Monosik, R., Stredansky, M., and Sturdik, E. (2012). Biosensors classification, characterization and new trends. *Acta Chimica Slovaca*, 5(1), 109–120.
- Mosiello, L., and Lamberti, I. (2011). Biosensors for aflatoxins detection. In I. Torres-Pacheco (Ed.), *Aflatoxins- Detection, measurement and control* (pp. 147-160). Shanghai: InTech.

- Owino, J. H. O., Arotiba, O. A., Hendricks, N., Songa, E. A., Jahed, N., Waryo, T. T., and Iwuoha, E. I. (2008). Electrochemical immunosensor based on polythionine/gold nanoparticles for the determination of aflatoxin B₁. Sensors, 8(12), 8262–8274.
- Paniel, N., Radoi, A., and Marty, J. L. (2010). Development of an electrochemical biosensor for the detection of aflatoxin M_1 in milk. *Sensors (Switzerland)*, 10(10), 9439–9448.
- Parkash, O., Yean, C. Y., and Shueb, R. H. (2014). Screen printed carbon electrode based electrochemical immunosensor for the detection of dengue NS1 antigen. *Diagnostics*, 4(4), 165–180.
- Peiwu, L., Qi, Z., Daohong, Z., Di, G., Xiaoxia, Ding, X. L., Sufang, F., Xiupin, W. and Wen, Z. (2011). Aflatoxin Measurement and Analysis. In I. Torres-Pacheco (Ed.), Aflatoxins Detection, measurement and control (pp. 183–203). China: InTech.
- Pemberton, R. M., Pittson, R., Biddle, N., Drago, G. A, and Hart, J. P. (2006). Studies towards the development of a screen-printed carbon electrochemical immunosensor array for mycotoxins: a sensor for aflatoxin B₁. *Analytical Letters*, 39(8), 1573–1586.
- Peng, Q. and Qin, Y. (2011). ZnO nanowires and their application for solar cells. In A. Hashim (Ed.), *Nanowires - Implementations and Applications*, (pp. 157-178). Shanghai: InTech.
- Piermarini, S., Micheli, L., Ammida, N. H. S., Palleschi, G., and Moscone, D. (2007). Electrochemical immunosensor array using a 96-well screen-printed microplate for aflatoxin B₁ detection. *Biosensors and Bioelectronics*, 22(7), 1434–1440.
- Pimenta-Martins, M. G. R., Furtado, R. F., Heneine, L. G. D., Dias, R. S., Borges, M. D. F., and Alves, C. R. (2012). Development of an amperometric immunosensor for detection of staphylococcal enterotoxin type A in cheese. *Journal of Microbiological Methods*, 91(1) 138–143.
- Pittet, A. (2005). Modern methods and trends in mycotoxin analysis. *Mitteilungen aus Lebensmitteluntersuchung und Hygiene*, 96, 424–444.
- Rai, M. K., Bonde, S. R., Ingle, A. P., and Gade, A. K. (2012). Mycotoxin: rapid detection, differentiation and safety. *Indian Journal of Pharmaceutical Education and Research*, 3(1), 22–34.
- Ramakrishna, N., and Mehan, V. K. (1993). Direct and indirect competitive monoclonal antibody-based ELISA of Aflatoxin B_1 in groundnut. *Mycotoxin Research*, 9(1), 53–63.

- Rivas, G. A., Rubianes, M. D., Rodriguez, M. C., Ferreyra, N. F., Luque, G. L., Pedano, M. L., and Parrado, C. (2007). Carbon nanotubes for electrochemical biosensing. *Talanta*, 74(3), 291–307.
- Ryan, T. A, and Joiner, B. L. (1976). Normal probability plots and tests for normality. *Test*, 10, 1668–1675.
- Salam, F. (2010). Development of Immunosensor for Salmonella typhimurium. *PhD Thesis. Cranfield University.*
- Salam, F. and Tothill, I. E. (2009). Detection of *Salmonella typhimurium* using an electrochemical immunosensor. *Biosensors and Bioelectronics*, 24, 2630–2636.
- Sam, S., Touahir, L., Salvador Andresa, J., Allongue, P., Chazalviel, J. N., Gouget-Laemmel, A. C., and Djebbar, S. (2010). Semiquantitative study of the EDC/NHS activation of acid terminal groups at modified porous silicon surfaces. *Langmuir*, 26(2), 809–814.
- Sapsford, K. E., Taitt, C. R., Fertig, S., Moore, M. H., Lassman, M. E., Maragos, C. M., and Shriver-Lake, L. C. (2006). Indirect competitive immunoassay for detection of aflatoxin B₁ in corn and nut products using the array biosensor. *Biosensors and Bioelectronics*, 21(12), 2298–2305.
- Sebaugh, J. L. (2011). Guidelines for accurate EC50/IC50 estimation. *Pharmaceutical Statistics*, 10(2), 128–134.
- Serna-cock, L., and Perenguez-verdugo, J. G. (2011). Biosensors applications in agrifood industry. In V. Somerset (Ed.), *Environmental Biosensors* (pp. 43–64). Shanghai: InTech.
- Shan, C., Yang, H., Han, D., Zhang, Q., Ivaska, A., and Niu, L. (2010). Graphene/AuNPs/chitosan nanocomposites film for glucose biosensing. *Biosensors and Bioelectronics*, 25(5), 1070–1074.
- Sinha, N., Ma, J., and Yeow, J. T. W. (2006). Carbon nanotube-based sensors. Journal of Nanoscience and Nanotechnology, 6(3): 573–590.
- Sonawane, S. K., Arya, S. S., Leblanc, J. G., and Jha, N. (2014). Use of nanomaterials in the detection of food contaminants. *European Journal of Nutrition and Food Safety*, 4(4), 301–317.
- Sukor, R. (2013). Development of immunoassays for the detection of 2methylisoborneol and monensin in water samples. *PhD Thesis. The University* of Guelph.
- Sun, A. L., Qi, Q. A., Dong, Z. L., and Liang, K. Z. (2008). An electrochemical enzyme immunoassay for aflatoxin B₁ based on bio-electrocatalytic reaction with room-temperature ionic liquid and nanoparticle-modified electrodes. *Sensing and Instrumentation for Food Quality and Safety*, 2(1), 43–50.

- Tan, Y., Chu, X., Shen, G. L., and Yu, R. Q. (2009). A signal-amplified electrochemical immunosensor for aflatoxin B₁ determination in rice. *Analytical Biochemistry*, 387(1), 82–86.
- Tang, D., and Ren, J. (2005). Direct and rapid detection of diphtherotoxin via potentiometric immunosensor based on nanoparticles mixture and polyvinyl butyral as matrixes. *Electroanalysis*, *17*(24), 2208–2216.
- Tarawneh, M. A. and Ahmad, S. (2013). Characterization and morphology of modified multi-walled carbon nanotubes filled thermoplastic natural rubber (TPNR) composite. In S. Suzuki (Ed.), Syntheses and applications of carbon nanotubes and their composites. Shanghai: InTech.
- Tkac, J., and Ruzgas, T. (2006). Dispersion of single walled carbon nanotubes. Comparison of different dispersing strategies for preparation of modified electrodes toward hydrogen peroxide detection. *Electrochemistry Communications*, 8(5), 899–903.
- Trykowski, G., Biniak, S., Stobinski, L., and Lesiak, B. (2010). Preliminary investigations into the purification and functionalization of multiwall carbon nanotubes. *Acta Physica Polonica A*, *118*(3), 515–518.
- Tudorache, M., and Bala, C. (2008). Sensitive aflatoxin B₁ determination using a magnetic particles-based enzyme-linked immunosorbent assay. *Sensors*, 8(12), 7571–7580.
- Unnikrishnan, B., Yang, Y., and Chen, S. (2011). Amperometric determination of folic acid at multi-walled carbon nanotube-polyvinyl sulfonic acid composite film modified glassy carbon electrode. *International Journal of Electrochemical Science*, 6, 3224–3237.
- Valdes, M. G., Gonzalez, A. C. V., Calzon, J. A. G., and Diaz-Garcia, M. E. (2009). Analytical nanotechnology for food analysis. *Microchimica Acta*, 166(1-2), 1–19.
- Van den Rul, H., Mondelaers, D., Van Bael, M. K., and Mullens, J. (2006). Waterbased wet chemical synthesis of (doped) ZnO nanostructures. *Journal of Sol-Gel Science and Technology*, 39(1), 41–47.
- Van der Gaag, B., Spath, S., Dietrich, H., Stigter, E., Boonzaaijer, G., van Osenbruggen, T., and Koopal, K. (2003). Biosensors and multiple mycotoxin analysis. *Food Control*, 14(4), 251–254.
- Veetil, J. V, and Ye, K. (2007). Review Development of immunosensors using carbon nanotubes. *Biotechnology Progress*, 23(3), 517–531.
- Velasco-Santos, C., Martinez-Hernandez, A. L., Fisher, F. T., Ruoff, R., and Castano, V. M. (2003). Improvement of thermal and mechanical properties of carbon nanotube composites through chemical functionalization. *Chemistry of Materials*, 15(23), 4470–4475.

- Villamizar, R., Maroto, A., Xavier, R. F., Inza, I. and Figueras, M. (2008). Fast detection of *Salmonella infantis* with carbon nanotube field effect transistors. *Biosensors and Bioelectronics*, *24*, 279–283.
- Wang, J. (2001). Analytical Electrochemistry (Second Edition). Third Avenue, New York: John Wiley and Sons.
- Wang, J. (2006). Analytical Electrochemistry (Third Edition). Third Avenue, New York: John Wiley and Sons.
- Wang, N., Zhang, N., and Wang, M. (2006). Wireless sensors in agriculture and food industry - Recent development and future perspective. *Computers and Electronics in Agriculture*, 50(1), 1–14.
- Wu, Z., Feng, W., Feng, Y., Liu, Q., Xu, X., Sekino, T., and Ozaki, M. (2007). Preparation and characterization of chitosan-grafted multiwalled carbon nanotubes and their electrochemical properties. *Carbon*, 45(6), 1212–1218.
- Xu, X., Liu, X., Li, Y., and Ying, Y. (2013). A simple and rapid optical biosensor for detection of aflatoxin B₁ based on competitive dispersion of gold nanorods. *Biosensors and Bioelectronics*, 47, 361–7.
- Yaacob, M. H., and Ahamad, R. (2008). Square wave cathodic stripping voltammetric technique for determination of aflatoxin B₁ in ground nut sample. *The Malaysian Journal of Analytical Sciences*, *12*(1), 132–141.
- Yao, D. S., Cao, H., Wen, S., Liu, D. L., Bai, Y., and Zheng, W. J. (2006). A novel biosensor for sterigmatocystin constructed by multi-walled carbon nanotubes (MWNT) modified with aflatoxin-detoxifizyme (ADTZ). *Bioelectrochemistry*, 68(2), 126–133.
- Yeh, P. H., Li, Z., and Wang, Z. L. (2009). Schottky-gated probe-free ZnO nanowire biosensor. Advanced Materials, 21(48), 4975–4978.
- Yoon, M. (2011). Immobilization of antibodies on the self-assembled monolayer by antigen-binding site protection and immobilization kinetic control. *Journal of Biomedical Science and Engineering*, 4(4), 242–247.
- Yotova, L., Trifonova, N., and Vrabcheva, T. (2010). Investigation of the properties of covalent immobilized anti-aflatoxin B₁ antibody on membranes from copolymer of polyacrylamide-polyacrylonitrile. *Cancer*, *14*(3), 187–196.
- Yudianti, R., Onggo, H., Saito, Y., Iwata, T., Azuma, J., and Access, O. (2011). Analysis of functional group sited on multi-wall carbon nanotube surface. *The Open Materials Science Journal*, 5, 242–247.
- Yun, Y. H., Bange, A., Heineman, W. R., Halsall, H. B., Shanov, V. N., Dong, Z., and Tu, Y. (2007). A nanotube array immunosensor for direct electrochemical detection of antigen-antibody binding. *Sensors And Actuators B-Chemical*, 123(1), 177–182.

- Zaijun, L., Zhongyun, W., Xiulan, S., Yinjun, F., and Peipei, C. (2010). A sensitive and highly stable electrochemical impedance immunosensor based on the formation of silica gel-ionic liquid biocompatible film on the glassy carbon electrode for the determination of aflatoxin B_1 in bee pollen. *Talanta*, 80(5), 1632–1637.
- Zhang, X., Guo, Q., and Cui, D. (2009). Recent advances in nanotechnology applied to biosensors. *Sensors*, *9*(2), 1033–1053.
- Zhang, Y. X., Li, G. H., Jin, Y. X., Zhang, Y., Zhang, J., and Zhang, L. D. (2002). Hydrothermal synthesis and photoluminescence of TiO₂ nanowires. *Chemical Physics Letters*, 365(3-4), 300–304.
- Zhang, W., Tang, H., Geng, P., Wang, Q., Jin, L. and Wu, Z. (2007). Amperometric method for rapid detection of Escherichia coli by flow injection analysis using a bismuth nano-film modified glassy carbon electrode. *Electrochemistry Communications*, 9, 833–838.
- Zhao, Z., Lei, W., Zhang, X., Wang, B., and Jiang, H. (2010). ZnO-based amperometric enzyme biosensors. *Sensors*, 10(2), 1216–1231.
- Zhao, G., Xing, F. and Deng, S. (2007). A disposable amperometric enzyme immunosensor for rapid detection of *Vibrio parahaemolyticus* in food based on agarose/nano-Au membrane and screen-printed electrode. *Electrochemistry Communications*, 9, 1263–1268.
- Zheng, M. Z., Richard, J. L., and Binder, J. (2006). A review of rapid methods for the analysis of mycotoxins. *Mycopathologia*, 161(5), 261–273.