UNIVERSITI PUTRA MALAYSIA

ANTIBACTERIAL ACTIVITIES OF Carica papaya L. SEED AS FOOD PRESERVATIVE

MUHAMAD SHIRWAN BIN ABDULLAH SANI

IPPH 2018 1
ANTIBACTERIAL ACTIVITIES OF *Carica papaya* L. SEED AS FOOD PRESERVATIVE

By

MUHAMAD SHIRWAN BIN ABDULLAH SANI

The Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Doctor of Philosophy

January 2018
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

ANTIBACTERIAL ACTIVITIES OF Carica papaya L. SEED AS FOOD PRESERVATIVE

By

MUHAMAD SHIRWAN BIN ABDULLAH SANI

January 2018

Chairman : Professor Jamilah Bakar, PhD
Institute : Halal Products Research Institute

Presently, no known commercial application of Carica papaya seeds has been recorded. It is mainly discarded; therefore, the aim of this study is to evaluate the potential of these seeds as a source of antibacterial compounds for possible application as food preservatives. The phytochemical components and extraction efficiency were first carried out using ten different solvents based on different polarities. The best solvent extraction was further carried out and improved by evaluating the effect of sonication (SAE), contact time (CT) and solvent-to-solid ratio (SSR). The effective of the initial extraction and the improved method were evaluated by determining the total phenolic and flavonoid contents and antibacterial activity against Salmonella enteritidis, Bacillus cereus, Vibrio vulnificus and Proteus mirabilis as indicator microorganisms. The composition of the Carica papaya seed crude extract, hexane: ethyl acetate (1:1) fraction and sub-fraction C were identified using gas chromatography mass spectrometer (GC/MS). The antibacterial activity and toxicity of these extracts were also studied. The most potent with least toxic extract was evaluated for antibacterial activity and stability as antibacterial agent in food model systems and finally as an antibacterial agent in yellow noodle. Based on disk diffusion (DDT) and minimum inhibitory concentration (MIC) tests, the hierarchy of extract potency can be ranked as methanol > acetone > acetonitrile > chloroform > hexane > diethyl ether = petroleum ether > ethanol > dichloromethane. The S. enteritidis, V. vulnificus, P. mirabilis and B. cereus were selected as indicator microorganisms in this study due to the lowest MIC (5.63 mg/mL). Improved extraction of Carica papaya seed antibacterial compounds was best performed without SAE at 8 h CT with 10:1 SSR. These SAE, CT and SSR extraction treatments produced the yield of 21.59 - 81.15 mg/g, 20.10 - 62.78 mg GAE/g DW of TPCs, the lowest MIC (5.63 mg/mL), MIC₅₀ (1.87 - 3.67 mg/mL) and the lowest MIC₀ (< 0.02 mg/mL). The antibacterial activity of crude and partially purified Carica papaya seed extracted on S. enteritidis, V. vulnificus, B. cereus and P. mirabilis were evaluated using bioautography of thin layer chromatography (TLC) and MIC test which had found that
hexane: ethyl acetate (1:1) fraction and sub-fraction C (Rf = 0.94 ± 0.03) showed highest bioautographic potency against tested microorganisms; however, having equal MIC (5.63 mg/mL) but higher toxicity (LC50 = 1.797 mg/mL and 0.332 mg/mL, respectively) as compared to crude extract (LC50 = 5.505 mg/mL). Thus, indicating the latter was adopted for further antibacterial application study. Twenty-one groups of components were identified in derivatized and non-derivatized crude extracts using GC/MS where fatty acids and fatty acid methyl esters (80.23%) were the major components. Cis-vaccenic acid, which was the dominant component in sub-fraction C, in pure form had demonstrated the lowest MIC against *B. cereus* (1.41 mg/mL), *P. mirabilis* (1.41 mg/mL) and *S. enteritidis* (0.70 mg/mL); thus, signifying its potency as antibacterial component in the extract. The extract had shown potency in acidic condition (pH 4), water activity > 0.909 and temperature < 80°C at 5.63 mg/mL (MIC). The extract was capable of inhibiting the tested microorganisms in 5%, 10%, 20% and 30% of carbohydrate and 2%, 5%, 10% and 15% oil media and 5% protein medium. The shelf life of yellow noodle treated with *Carica papaya* seed extract was extended from 3 d - 12 d for 1.41, 5.63, 11.25 and 22.5 mg/g extracts and from 3 d - 10 d for 0.70 mg/g extract. The principle component (PCA), cluster (CA) and discriminant (DA) analyses had indicated the effective time of antibacterial activity of *Carica papaya* seed and the safe consumption of the treated yellow noodle was to be at least by day sixth of storage. In conclusion, *Carica papaya* seed extract is a potential antibacterial extract that able to act as a food preservative.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah.

AKTIVITI-AKTIVITI ANTIBAKTERIA BIJI Carica papaya L. SEBAGAI PENGAWET MAKANAN

Oleh

MUHAMAD SHIRWAN ABDULLAH SANI

Januari 2018

Pengerusi : Profesor Jamilah Bakar, PhD
Institut : Institut Penyelidikan Produk Halal

Pada masa kini, tiada aplikasi komersil biji Carica papaya telah direkodkan. Biji betik pada kebiasaannya dibuang. Oleh sebab itu, tujuan kajian ini dijalankan adalah untuk menilai potensi biji ini sebagai sumber agen antibakteria bagi potensi aplikasi sebagai pengawet makanan. Komponen fitokimia dan kecekapan pengekstrakan pada mulanya dijalankan menggunakan sepuluh pelarut yang berbeza berdasarkan kepolaran yang berbeza. Kaedah pengekstrakan terbaik dijalankan dan dipertingkatkan dengan menilai kesan sonikasi (SAE), masa pengekstrakan (CT) dan nisbah pelarut kepada pepejal (SSR). Pengekstrakan permulaan yang berkesan dan kaedah pengekstrakan yang telah dipertingkatkan telah dinilai dengan menentukan jumlah kandungan fenol dan flavonoid dan aktiviti antibakteria terhadap Salmonella enteritidis, Bacillus cereus, Vibrio vulnificus dan Proteus mirabilis sebagai penanda mikroorganisma. Komposisi ekstrak Carica papaya mentah, fraksi heksana: etil asetat (1: 1) dan subfraksi C telah dikenalpasti menggunakan kromatografi gas spektrometer jisim (GC/MS). Aktiviti antibakteria dan ketoksikan ekstrak ini juga telah dikaji. Ekstrak yang paling poten dan berketoksikan terendah dinilai bagi aktiviti antibakteria dan kestabilannya sebagai agen antibakteria dalam sistem model makanan dan akhirnya sebagai agen antibakteria di dalam mee kuning. Berdasarkan ujian penyebaran cakera (DDT) dan ujian perencatan kepekatan minimum (MIC), hierarki keupayaan ekstrak dapat disenaraikan sebagai metanol > aseton > asetonitril > kloroform > heksana > dietil eter = petroleum eter > etanol > diklorometana. S. enteritidis, V. vulnificus, P. mirabilis dan B. cereus dipilih sebagai mikroorganisma-mikroorganisma penanda dalam kajian ini kerana mempunyai MIC terendah (5.63 mg/mL). Pengekstrakan biji Carica papaya yang terbaik dilakukan tanpa SAE pada 8 h CT dengan 10: 1 SSR. Pengekstrakan SAE, CT dan SSR memberikan hasil antara 21.59 - 81.15 mg/g, 20.10 - 62.78 mg GAE/g DW total kandungan fenol, MIC terendah (5.63 mg/mL), MIC50 (1.87 - 3.67 mg/mL) dan MIC0 terendah (< 0.02 mg/mL). Aktiviti antibakteria biji Carica papaya mentah dan separa penulenan terhadap S. enteritidis, V. vulnificus, B. cereus dan P. mirabilis telah dinilai
menggunakan bioautografi kromatografi lapisan nipis (TLC) dan ujian MIC yang telah
mendapati bahawa fraksi heksana: etil asetat (1: 1) dan subfraksi C ($R_f = 0.94 \pm 0.03$)
menunjukkan potensi bioautografi tertinggi terhadap mikroorganisma-mikroorganisma
yang diuji dengan memberikan MIC (5.63 mg/mL) yang sama tetapi berketoksikan yang
lebih tinggi (LC$_{50}$ = 1.797 mg/mL dan 0.332 mg/mL) berbanding ekstrak mentah (LC$_{50}$
= 5.505 mg/mL). Oleh sebab itu, ekstrak biji Carica papaya mentah digunakan untuk
kajian antibakteria lanjut. Dua puluh satu kumpulan komponen telah dikenalpasti dalam
ekstrak mentah melalui kaedah terbitan dan bukan terbitan menggunakan GC/MS di
mana asid lemak dan asid lemak metil ester (80.23%) menjadi komponen utama. Asid
cis-vasenik, yang merupakan komponen utama di dalam subfraksi C, di dalam keadaan
tulen telah menunjukkan MIC terendah terhadap B. cereus (1.41 mg/mL), P. mirabilis
(1.41 mg/mL) dan S. enteritidis (0.70 mg/mL) lalu menunjukkan ia sebagai komponen
antibakteria yang poten di dalam ekstrak mentah. Ekstrak mentah juga telah
menunjukkan potensi dalam keadaan berasid (pH 4), aktiviti air >0.909 dan suhu $<80^\circ$C
pada kepekatan 5.63 mg/mL (MIC). Ekstrak ini mampu merencatkan pertumbuhan
mikroorganisma yang diuji dalam kepekatan 5%, 10%, 20% dan 30% media karbohidrat
dan minyak dan 5% medium protein. Jangka hayat mee kuning yang dirawat dengan
ekstrak biji Carica papaya boleh dilanjutkan dari 3 hari hingga 12 hari dengan
menggunakan kepekatan ekstrak 1.41, 5.63, 11.25 dan 22.5 mg/g, dan 10 hari
menggunakan kepekatan ekstrak 0.70 mg/g. Analisis komponen asas (PCA), analisis
kluster (CA) dan analisis diskriminasi (DA) telah menentukan masa berkesan bagi biji
Carica papaya menunjukkan aktiviti antibakterianya dan penggunaan selamat mee yang
dirawat adalah sekitar-kurangnya sehingga hari keenam penyimpanan. Sebagai
kesimpulan, ekstrak biji adalah berpotensi untuk menjadi eksstrak antibakteria yang
mampu bertindak sebagai pengawet makanan.
ACKNOWLEDGEMENTS

All praises to Allah the Most Gracious and Merciful. Peace be upon His messenger, the Prophet Muhammad. My deepest appreciation goes to my supervisor, Prof. Dr. Jamilah Bakar for her countless patience, motivation, encouragement and guidance throughout my study. I am also indebted to Prof. Dr. Russly Abdul Rahman and Associate Prof. Dr. Faridah Abas for their insightful comments and discussion for the best of my progress.

I would like to acknowledge Universiti Putra Malaysia and the funder of this project: Ministry of Higher Education, Malaysia as well as the scholarship provider, International Islamic University Malaysia.

Thank you also to Laboratory of Halal Science Research at Halal Products Research Institute for facilitating my research.

My heartiest appreciation goes to my mother uncle, Abdul Ghaffar Agus, my mother Rosnane Agus and my family members whom always bear with me along this journey. I pray to Allah to repay all of them with His jannah.

Finally, Thank you Allah for this priceless journey.
I certify that a Thesis Examination Committee has met on 26 January 2018 to conduct the final examination of Muhamad Shirwan bin Abdullah Sani on his thesis entitled "Antibacterial Activities of Carica papaya L. Seed as Food Preservative" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Mohd Nasir bin Mohd Desa, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Amin bin Ismail, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Nazamid bin Saari, PhD
Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Internal Examiner)

Lacroix Monique, PhD
Professor
INRS-Institut Armand-Frappier
Canada
(External Examiner)

NOR AINI AB. SHUKOR, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 26 April 2018
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee are as follows:

Jamilah Bakar, PhD
Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Chairman)

Russly Abdul Rahman, PhD
Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
<Member>

Faridah Abas, PhD
Associate Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
<Member>

ROBIAH BINTI YUNUS, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- This thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: _______________________ Date: ______________________

Name and Matric No.: Muhamad Shirwan Bin Abdullah Sani, GS35843
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted, and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: __
Name of Chairman of Supervisory Committee: Professor Dr. Jamilah Bakar

Signature: __
Name of Member of Supervisory Committee: Professor Dr. Russly Abdul Rahman

Signature: __
Name of Member of Supervisory Committee: Associate Professor Dr. Faridah Abas
TABLES OF CONTENTS

ABSTRACT i
ABSTRAK iii
ACKNOWLEDGEMENTS v
APPROVAL vi
DECLARATION viii
LIST OF TABLES xvi
LIST OF FIGURES xviii
LIST OF ABBREVIATIONS xxi

CHAPTER

1 INTRODUCTION 1
1.1 Background 1
1.2 Problem statements 1
1.3 Significance of the study 2
1.4 Objectives 2
1.5 Expected outcomes 2

2 LITERATURE REVIEW 4
2.1 Carica papaya by-products as antibacterial agent 4
2.2 Food antimicrobials 5
2.2.1 Chemical antimicrobials 6
2.2.2 Natural antimicrobials 7
2.3 Antimicrobial mechanism of plant extract 9
2.4 Application on food systems 10
2.5 Antibacterial stability 11
2.6 General method for extraction 11
2.6.1 Maceration extraction 11
2.6.2 Factors affecting extraction efficiency 12
2.6.2.1 Solvent selection 12
2.6.2.2 Sonication-assisted extraction 12
2.6.2.3 Contact time 12
2.6.2.4 Solvent-to-solid ratio 13
2.6.3 Consideration for extraction method 13
2.7 Antimicrobial test 14
2.7.1 Sample preparation for antibacterial assay 14
2.7.1.1 Preparation of inoculum 16
2.7.2 Endpoint Method
2.7.2.1 Diffusion test (DT) 17
2.7.2.2 Minimum inhibition concentration (MIC) and Minimal Bactericidal Concentration (MBC) test 18
2.7.2.3 Percentage of inhibition 19
2.7.3 Descriptive method
2.7.3.1 Inhibition Curve 21
2.7.3.2 Growth rate 22
2.8 Gram-positive and Gram-negative bacteria
2.8.1 S. enteritidis 23
2.8.2 B. cereus 23
2.8.3 V. vulnificus 24
2.8.4 P. mirabilis 25
2.9 Identification of plant metabolites
2.9.1 Identification of antibacterial compound by spectrophotometric method 25
2.9.1.1 Total phenolic content (TPC) 26
2.9.1.2 Total flavonoid content (TFC) 26
2.9.2 Identification of plant metabolites by separation method 27
2.9.2.1 Thin layer chromatography (TLC), bioautography and preparative column chromatography (PCC) 27
2.9.2.2 Gas chromatography mass spectrometry (GC/MS) analysis 28
2.10 Toxicity test 29
2.11 Residual methanol identification 31

3 ANTIBACTERIAL ACTIVITIES AND COMPOSITION OF Carica papaya CV. SEKAKI/HONG KONG SEED EXTRACTS 32
3.1 Introduction 32
3.2 Materials and methods 33
3.2.1 Experimental design 33
3.2.2 Plant material 35
3.2.3 Extraction of phytochemicals 35
3.2.4 Disk diffusion test (DDT) 35
3.2.5 Minimum inhibitory concentration identification (MIC) 36
3.2.6 Yield 36
3.2.7 Quantitation of total phenolic content (TPC) 36
3.2.8 Quantitation of total flavonoid content (TFC) 37
3.2.9 Gas chromatography mass spectrometry analysis (GC/MS) 37
3.2.10 Statistical analysis 38
3.3 Results and Discussion
 3.3.1 Antibacterial screening by disk diffusion test 38
 3.3.2 Minimum inhibitory concentration identification (MIC) 42
 3.3.3 Extraction yield, total phenolic contents (TPC) and total flavonoid contents (TFC) 44
 3.3.4 GC/MS analysis of the methanol extract from Carica papaya seed 46

3.4 Conclusion 48

4 EFFECT OF SONICATION-ASSISTED EXTRACTION, CONTACT TIME AND SOLVENT-TO-SOLID RATIO ON THE ANTIBACTERIAL ACTIVITIES OF Carica papaya SEED AGAINST S. enteritidis, B. cereus, V. vulnificus AND P. mirabilis.

4.1 Introduction 50
4.2 Materials and methods
 4.2.1 Experimental design 51
 4.2.2 Plant material 53
 4.2.3 Extraction of phytochemicals 53
 4.2.4 Quantitation of total phenolic content (TPC) 53
 4.2.5 Quantitation of total flavonoid content (TFC) 53
 4.2.6 Percentage inhibition, minimum inhibitory concentration (MIC), MIC50 and MIC0 54
 4.2.7 Growth rate 54
 4.2.8 Statistical analysis 54

4.3 Results and Discussion
 4.3.1 Effect of sonication-assisted extraction 55
 4.3.1.1 Yield, TPC and TFC 55
 4.3.1.2 Percentage of inhibition, MIC, MIC50 and MIC0 58
 4.3.1.3 Growth rate 62
 4.3.2 Effect of contact time 64
 4.3.2.1 Yield, TPC and TFC 64
 4.3.2.2 Percentage of inhibition, MIC, MIC50 and MIC0 66
 4.3.2.3 Growth rate 70
 4.3.3 Effect of solvent-to-solid ratio 72
 4.3.3.1 Yield, TPC and TFC 72
 4.3.3.2 Percentage of inhibition, MIC, MIC50 and MIC0 74
 4.3.3.3 Growth rate 78
 4.3.4 Correlation test 80
 4.3.4.1 Correlation of treatments against S. enteritidis growth 80
 4.3.4.2 Correlation of treatments against B. cereus growth 82
 4.3.4.3 Correlation of treatments against V. vulnificus growth 84
4.3.4.4 Correlation of treatments against *P. mirabilis* growth

4.4 Conclusion

5 CHARACTERISTIC AND STABILITY OF *Carica papaya* SEED EXTRACT

5.1 Introduction

5.2 Materials and methods

5.2.1 Experimental design

5.2.2 Plant material

5.2.3 Extraction of phytochemicals

5.2.4 Bioautography on thin layer chromatography plates

5.2.5 Fractionation of crude *Carica papaya* seed extract by column chromatography

5.2.6 Minimum inhibitory concentration (MIC)

5.2.7 Toxicity assay

5.2.8 Stability of *Carica papaya* seed extract

5.2.8.1 Effect of pH

5.2.8.2 Effect of water activity

5.2.8.3 Effect of temperature on extract

5.2.8.4 Percentage of growth inhibition

5.2.8.5 Effect of temperature on fatty acid profile in *Carica papaya* seed extract

5.2.9 Preparation of sample for GC/MS analysis

5.2.9.1 Preparation of derivatized and non-derivatized samples

5.2.9.2 Preparation for determination of methanol content

5.2.9.3 Profiling of fatty acids in *Carica papaya* seed extract as affected by temperature

5.2.10 GC/MS analysis

5.2.10.1 GC/MS analysis for *Carica papaya* seed extract

5.2.10.2 GC/MS analysis for residual methanol content

5.2.10.3 GC/MS analysis for quantification of fatty acids methyl esters

5.2.11 Statistical analysis

5.2.11.1 ANOVA

5.2.11.2 Principle component analysis (PCA)

5.3 Results and Discussion

5.3.1 Bioautography on TLC plates

5.3.2 Fractionation of *Carica papaya* crude extract by column chromatography

5.3.3 Minimum inhibitory concentration and toxicity assay

5.3.4 GC/MS analysis of *Carica papaya* seed

xiii
5.3.4.1 Composition of derivatized and non-derivatized *Carica papaya* seed compositions by non-linear-temperature programming (NLTP) and linear-temperature programming (LTP).

5.3.4.2 Composition of sub-fractions A, B and C of crude *Carica papaya* seed extract

5.3.5 Residual methanol content

5.3.6 Effect of pH and water activity on antibacterial activity of *Carica papaya* extract

5.3.7 Effect of temperature on antibacterial activity and fatty acids profile of *Carica papaya* extract

5.3.7.1 Principle component analysis for effect of temperature on fatty acids and antibacterial activity of *Carica papaya* seed extract

5.3.7.2 Cis and trans fatty acids profile as affected by temperature

5.4 Conclusion

6 ANTIBACTERIAL ACTIVITY OF CRUDE *Carica papaya* SEED EXTRACT IN SELECTED FOOD MODEL SYSTEMS AND YELLOW NOODLE

6.1 Introduction

6.2 Materials and methods

6.2.1 Plant material

6.2.2 Extraction of phytochemicals

6.2.3 Antimicrobial effect of *Carica papaya* extract on carbohydrate, protein and oil model media

6.2.4 Effect of incorporation of crude *Carica papaya* seed extract in yellow noodle stability

6.2.5 Statistical analysis

6.2.5.1 Correlation test

6.2.5.2 Principle component analysis

6.2.5.3 Cluster analysis

6.2.5.4 Discriminant analysis

6.3 Results and Discussion

6.3.1 Antimicrobial effect of *Carica papaya* extract on carbohydrate, protein and oil model media

6.3.2 Efficacy study in yellow noodle

6.3.2.1 Antimicrobial activity of treated yellow noodle as affected by storage period

6.3.2.2 Effect of *Carica papaya* seed extract on pH of yellow noodle

6.3.2.3 Effect of *Carica papaya* seed extract on water activity of yellow noodle
6.3.2.4 Correlation test and principle component analysis 164
6.3.2.5 Cluster analysis 167
6.3.2.6 Discriminant analysis 169
6.4 Conclusion 172

7 SUMMARY, CONCLUSION, LIMITATION AND RECOMMENDATIONS 173
7.1 Summary 173
7.2 Conclusion 174
7.3 Limitation of study and recommendation 175

REFERENCES 176
APPENDICES 200
BIODATA OF STUDENT 207
LIST OF PUBLICATIONS 208
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Inhibition zone of 100% solvent on gram-positive food microorganisms</td>
</tr>
<tr>
<td>3.1</td>
<td>Inhibition zone of Carica papaya seed extracts on gram-negative food microorganisms by different solvent extracts</td>
</tr>
<tr>
<td>3.2</td>
<td>Inhibition zone of Carica papaya seed extracts on gram-positive food microorganisms</td>
</tr>
<tr>
<td>3.3</td>
<td>Minimum inhibitory concentration (MIC) of Carica papaya seed extracts on selected microorganisms by different solvents</td>
</tr>
<tr>
<td>3.4</td>
<td>Extract yield, total phenolic and total flavonoid contents of Carica papaya seed extracts of different solvents</td>
</tr>
<tr>
<td>3.5</td>
<td>Chemical composition of the methanolic extract from Carica papaya seed</td>
</tr>
<tr>
<td>4.1</td>
<td>Extraction yield, total phenolic and total flavonoid contents of Carica papaya seed extracts as affected by sonication-assisted extraction</td>
</tr>
<tr>
<td>4.2</td>
<td>MIC, MIC<sub>50</sub> and MIC<sub>0</sub> of Carica papaya methanolic seed extracts against S. enteritidis, B. cereus, V. vulnificus and P. mirabilis</td>
</tr>
<tr>
<td>4.3</td>
<td>Extraction yield, total phenolic and total flavonoid contents of Carica papaya seed extracts as affected by contact time</td>
</tr>
<tr>
<td>4.4</td>
<td>MIC, MIC<sub>50</sub> and MIC<sub>0</sub> of Carica papaya methanolic seed extracts against S. enteritidis, B. cereus, V. vulnificus and P. mirabilis</td>
</tr>
<tr>
<td>4.5</td>
<td>Extraction yield, total phenolic and total flavonoid contents of Carica papaya seed extracts as affected by solvent-to-solid ratio</td>
</tr>
<tr>
<td>4.6</td>
<td>MIC, MIC<sub>50</sub> and MIC<sub>0</sub> of Carica papaya methanolic seed extracts against S. enteritidis, B. cereus, V. vulnificus and P. mirabilis</td>
</tr>
<tr>
<td>4.7</td>
<td>Correlation coefficient (R)<sup>1,2</sup> matrix of treatments<sup>3</sup> for S. enteritidis</td>
</tr>
<tr>
<td>4.8</td>
<td>Correlation coefficient (R)<sup>1,2</sup> matrix of treatments<sup>3</sup> for B. cereus</td>
</tr>
<tr>
<td>4.9</td>
<td>Correlation coefficient (R)<sup>1,2</sup> matrix of treatments<sup>3</sup> for V. vulnificus</td>
</tr>
</tbody>
</table>
4.10 Correlation coefficient (R)\(^2\) matrix of treatments\(^3\) for \textit{P. mirabilis}\quad 87

5.1 Retention factor (R\(_f\)) of crude \textit{Carica papaya} seed extract separated by different eluents using TLC plates\quad 101

5.2 Bioautography of \textit{V. vulnificus} on TLC plates fractionated by hexane:ethyl acetate (1:1) and 0.1\% formic acid in acetonitrile\quad 103

5.3 Minimum inhibitory concentration (MIC) and toxicity of crude \textit{Carica papaya} seed extract, hexane: ethyl acetate (1:1) fraction, sub-fraction C and pure standard solutions\quad 106

5.4 Derivatized and non-derivatized \textit{Carica papaya} seed compositions by HP-5MS column separation\(^1\)\quad 112

5.5 Composition of sub-fraction A, B and C of crude \textit{Carica papaya} seed extract as obtained from thin layer chromatography (TLC)\quad 124

5.6 Ranking of percentage inhibition of \textit{Carica papaya} seed extract against selected microorganisms as affected by pH, water activity and temperature\quad 133

5.7 Calibration curve information of fatty acids\quad 137

5.8 Factor loadings of fatty acids and PI\(^1\) of tested microorganisms as affected by temperature\quad 142

6.1 Ranking of percentage inhibition of \textit{Carica papaya} seed extract against selected microorganisms in starch, beef extract and oil media\quad 155

6.2 Correlation matrix of and factor loadings of treated yellow noodle with \textit{Carica papaya} seed extract\quad 165

6.3 Classification matrix of DA on treatment class for yellow noodle\quad 171
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Example of (a) capric acid (C10:0) and (b) myristoleic acid (C14:1)</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>Effect of solvent-to-solid ratio on percentage inhibition of S. enteritidis as adapted from Al-Habsi et al. (2012)</td>
<td>20</td>
</tr>
<tr>
<td>2.3</td>
<td>Correlation between Artemia salina bioassay and in vivo test using mice as adapted from Parra et al., (2001)</td>
<td>30</td>
</tr>
<tr>
<td>3.1</td>
<td>Experimental design of of Chapter 3</td>
<td>34</td>
</tr>
<tr>
<td>3.2</td>
<td>GC/MS chromatogram of Carica papaya methanolic seed extract</td>
<td>48</td>
</tr>
<tr>
<td>4.1</td>
<td>Experimental design of Chapter 4</td>
<td>52</td>
</tr>
<tr>
<td>4.2</td>
<td>Effect of sonication-assisted extraction on percentage inhibition of (a) S. enteritidis, (b) B. cereus, (c) V. vulnificus and (d) P. mirabilis</td>
<td>60</td>
</tr>
<tr>
<td>4.3</td>
<td>Growth rate (h⁻¹) of S. enteritidis, B. cereus, V. vulnificus and P. mirabilis as affected by sonication-assisted extraction</td>
<td>63</td>
</tr>
<tr>
<td>4.4</td>
<td>Effect of contact time on percentage inhibition of (a) S. enteritidis, (b) B. cereus, (c) V. vulnificus and (d) P. mirabilis</td>
<td>68</td>
</tr>
<tr>
<td>4.5</td>
<td>Growth rate (h⁻¹) of S. enteritidis, B. cereus, V. vulnificus and P. mirabilis as affected by contact time</td>
<td>71</td>
</tr>
<tr>
<td>4.6</td>
<td>Effect of solvent-to-solid ratio on percentage inhibition of (a) S. enteritidis, (b) B. cereus, (c) V. vulnificus and (d) P. mirabilis</td>
<td>76</td>
</tr>
<tr>
<td>4.7</td>
<td>Growth rate (h⁻¹) of S. enteritidis, B. cereus, V. vulnificus and P. mirabilis as affected by solvent-to-solid ratio</td>
<td>79</td>
</tr>
<tr>
<td>5.1</td>
<td>Experimental design of Chapter 5</td>
<td>91</td>
</tr>
<tr>
<td>5.2</td>
<td>Calibration curve of Artemia salina percentage mortality for (a) Crude extract (b) hexane: ethyl acetate (1:1) fraction, (c) sub-fraction C and (d) vincristine sulfate (positive control)</td>
<td>110</td>
</tr>
<tr>
<td>5.3</td>
<td>Chromatogram of non-derivatized Carica papaya seed extract by a) NLTP and b) LTP using HP-SMS column</td>
<td>119</td>
</tr>
</tbody>
</table>

xviii
5.4 Correlation of carbon number against alkane retention time for a) NLTP and b) LTP of Carica papaya seed extracts 121

5.5 Chromatograms of a) non-derivatized and b) derivatized Carica papaya seed extract by HP-5MS column using LTP 122

5.6 Chromatogram of a) sub-fraction A, b) sub-fraction B and c) sub-fraction C of crude Carica papaya seed extract 126

5.7 Calibration curve of residual methanol content 128

5.8 Chromatogram of residual (a) methanol and (b) isopropanol (internal standard) 128

5.9 Effect of pH adjustment on antibacterial activity of Carica papaya seed extract against (a) S. enteritidis, (b) B. cereus, (c) V. vulnificus and (d) P. mirabilis growths 131

5.10 Effect of water activity adjustment on antibacterial activity of Carica papaya seed extract against (a) S. enteritidis, (b) B. cereus, (c) V. vulnificus and (d) P. mirabilis growths 132

5.11 Effect of heating temperature on antibacterial activity of Carica papaya seed extract against (a) S. enteritidis, (b) B. cereus, (c) V. vulnificus and (d) P. mirabilis growths 135

5.12 Chromatogram of fatty acid methyl esters in Carica papaya seed extract separated by using HP88 column 139

5.13 Observation plot of (a) PC1 and PC2 and (b) PC1 and PC3 of extract distribution as affected by temperature 143

5.14 Variable plot resulting from (a) PC1 against PC2 and (b) PC1 against PC3 of fatty acids and PI of tested microorganisms present in extract as affected by temperature 144

5.15 Cis and trans fatty acids profile; (a) C18:1n9t, (b) C18:1n9c, (c) C18:1n11c, (d) C18:2n6t, (d) C18:2n6c 146

6.1 Antibacterial activity of Carica papaya seed extract against S. enteritidis, B. cereus, V. vulnificus and P. mirabilis in potato starch media 154

6.2 Antibacterial activity of Carica papaya seed extract against S. enteritidis, B. cereus, V. vulnificus and P. mirabilis in beef extract media 157
6.3 Antibacterial activity of *Carica papaya* seed extract against *S. enteritidis, B. cereus, V. vulnificus* and *P. mirabilis* in palm oil media 158
6.4 Total bacteria count in yellow noodle as affected by storage period 160
6.5 pH profile of treated yellow noodle as affected by storage period 162
6.6 Water activity (a_w) profile of treated yellow noodle as affected by storage period 163
6.7 Variable plot of PC1 against PC2 and observation plot of PC1 against PC2 of treated yellow noodle with *Carica papaya* seed extract 166
6.8 Dendogram of treated yellow noodle with *Carica papaya* seed extract 168
6.9 Discriminant functions plot of prior and post DA on three classes of treated yellow noodle 170
LIST OF ABBREVIATIONS

PE Petroleum ether
DE Diethyl ether
CHCL3 Chloroform
DCM Dichloromethane
EtOH Ethanol
MeOH Methanol
ACN Acetonitrile
GAE Gallic acid equivalent
QE Quercetin equivalent
Rt Retention time
SAE Sonication-assisted extraction
CT Contact time
SSR Solvent-to-solid ratio
TPC Total phenolic content
TFC Total flavonoid content
MIC Minimum inhibitory concentration
Rf Retention factor
TLC Thin layer chromatography
UV-VIS Ultraviolet-visible light
NIST National Institute of Standard and Technology
LTP Linear-temperature programming
NLTP Non-linear-temperature programming
TMS Trimethylsilyl derivatives
TMCS Trimethylchlorosilane
BSTFA N, O-bis-trimethylsilyl-trifluoroacetamide
GC/MS Gas chromatography mass spectrometer
RI Retention index
LRI Linear retention index
SIM Selected ion monitoring
R² Coefficient determination
PI Percentage inhibition
FL Factor loading
PCA Principle component analysis
CA Cluster analysis
DA Discriminant analysis
CHAPTER 1

INTRODUCTION

1.1 Background

One of the most significant attempts to curb the foodborne illness is by introducing synthetic chemicals such as antibacterial agents or preservatives during food processing and preservation. Despite its efficacy, synthetic antimicrobial agents have several major drawbacks such as hypersensitivity, allergic reaction, immunity suppression, and toxicity to humans, which has become an immense anxiety to consumers. The emergence of antibiotic resistance microorganisms such as methicillin-resistant Staphylococcus aureus indicates the developing microorganism’s resistance towards these chemicals, thus the need to use natural antibacterial agents as a healthier alternative.

Natural sources of antibacterial agents originated from plants including discarded plant parts such as peel, seed, leaves, and bark. Papaya (Carica papaya) is one of the most widely grown plants which has plenty of discarded parts during the processing. Papaya is popularly consumed as a dessert fruit all over the world because it is delicious, has abundant nutrition, and high economic value. Papaya is known differently in different parts of the world, for example, ‘pawpaw’ in Sri Lanka, ‘betik’ in Malaysia, ‘papali’ in India, and ‘lechosa’ in Venezuela. Furthermore, papaya consists of different varieties such as Maradol (Southern America), Coorg Honey (India), Mexican Yellow, and Mexican Red (Mexico), Solo (Hawaii), and Sekaki (Malaysia).

In 2014, India and Brazil were the major producers of 5.6 and 1.6 million metric tonnes of papaya, respectively. Malaysia also produced 55000 metric tonnes of papaya during the same period. The fruits are normally eaten ripe or unripe or are processed into jam and pickles; however, the seeds which are accounted for 16% of the whole papaya fruit are frequently discarded. This discarding of papaya seeds takes an approximate 2.1 million metric tonnes that goes to waste. The seeds have been reported to be used as a salad dressing due to its spicy taste. It is also reported as an adulterant to black pepper. To date, the study on papaya seeds as antibacterial agents is very scanty.

1.2 Problem statements

The processing of papaya involves separating the valuable fruit part from its by-products such as seeds and peels. Disposal of these by-products poses an environmental use and loss of potential revenue if the seeds and peels contain valuable components for food processing or other industrial applications. In most cases, the discarded by-products can present similar or even higher contents of bioactive compounds than the final produce.
does. Even though the protein precipitated from papaya seeds has been reported to give significant antibacterial activity, the antibacterial study of papaya seed from selected variety, extraction method and quantification of potent concentration are still very scanty. Moreover, the exhaustive investigation of papaya seed composition and further application of antibacterial agent from papaya seed on food has never been recorded.

1.3 Significance of the study

To date, there is negligible information of the antibacterial activity of papaya seed. Through the finding from this study, the papaya seed usage can contribute to the utilization of renewable resources as antibacterial agents not only in food, but other applications as well such as cosmetics, pharmaceuticals etc. In addition, since the papaya seed are discarded during papaya processing, the finding in this study also can generate income for the papaya producers. Furthermore, by utilizing the seed, the papaya producers can reduce the amount agriculture-based waste and thus mitigate environmental issues related to the disposal of discarded or underutilized papaya by-products. Moreover, the papaya seed as antibacterial agent can fulfil the requirement of making Halal and toyyiban product since it is plant origin and can be used as an alternative to replace toxic antibacterial agent such as boric acid in the market.

1.4 Objectives

The main objective of this study was to investigate the antibacterial properties of papaya seed extract as food preservative, where the study covered specific objectives as follows:

a) To determine antibacterial properties and phytochemicals from papaya seed crude extract obtained from potential effective solvents.

b) To identify the effect of solvent mixture, contact time, solvent to solid ratio on antibacterial capacities.

c) To determine the composition, antibacterial activities, stability of crude and partially purified Carica papaya seed extracts and their effective range in food model systems.

d) To determine the antibacterial efficiency in extending the shelf life of fresh yellow noodle.

1.5 Expected outcomes

The expected outcomes from this study were:

a) Objective 1: The antibacterial capacity of papaya seed, the best extracts solvents for the most sensitive microorganisms against the extracts.

b) Objective 2: The optimum extraction procedure can be achieved which possessed antibacterial properties
c) Objective 3: Identification of papaya seed composition, the stability and the antibacterial capability of crude and partially purified extract

d) Objective 4: Validation of the antibacterial efficacy of the extract in actual food system.
REFERENCES

Alothman, M., Bhat, R., & Karim, A. A. (2009). Antioxidant capacity and phenolic content of selected tropical fruits from Malaysia, extracted with different solvents.

Engineering, 11 (2), 221–227.

Rabe, T., Mullholland, D., & Van Staden, J. (2002). Isolation and identification of
antibacterial compounds from *Vernonia colorata* leaves. *Journal of Ethnopharmacology, 80* (1), 91–94.

