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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment
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By
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January 2018

Chairman : Zanariah Abdul Majid, PhD
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The first part of the thesis focuses on solving Volterra integro-differential equation

(VIDE) of the second kind with the multistep block method. The two points

diagonally implicit multistep block (2PDIB) method is formulated for the numerical

solution of the second kind of VIDE. The derivation of the 2PDIB method can

be obtained using Lagrange interpolating polynomial. The numerical solution of

the second kind of VIDE computed at two points simultaneously in block form

using the proposed method using constant step size. These numerical solutions are

executed in the predictor-corrector mode.

Since an integral part of VIDE cannot be solved explicitly and analytically,

the idea to approximate the solution of the integral part is discussed and the

appropriate order of numerical integration formulae is chosen to approximate the

solution of the integral part of VIDE which include trapezoidal rule, Simpson’s

rule and Boole’s rule. Regarding the general form of VIDE, there are two cases

of the kernel which are K(x,s) = 1 and K(x,s) �= 1. Two different procedures are

developed to obtain the solution for these cases. The stability region is discussed

based on the stability polynomial of the 2PDIB method paired with the appropriate

quadrature rule.

Linear and nonlinear problems of VIDE have been solved numerically using

the 2PDIB method. Six tested problems are presented in order to study the
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performance and efficiency of the 2PDIB method in terms of maximum error, total

function calls, total steps taken and the execution time taken. Numerical results

showed that the efficiency of 2PDIB method when solving VIDE compared to the

existing methods.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai

memenuhi keperluan untuk ijazah Master Sains

KAEDAH BLOK MULTILANGKAH DUA TITIK TERSIRAT
PEPENJURU DIGUNAKAN UNTUK MENYELESAIKAN JENIS

KEDUA BAGI PERSAMAAN PEMBEZAAN-KAMIRAN VOLTERRA

Oleh

NUR AUNI BINTI BAHARUM

Januari 2018

Pengerusi : Zanariah Abdul Majid, PhD
Fakulti : Institut Penyelidikan Matematik

Pada bahagian pertama tesis ini adalah untuk memfokuskan penyelesaian terhadap

persamaan pembezaan kamilan Volterra (PPKV) dengan menggunakan kaedah blok

multilangkah. Kaedah blok multilangkah dua titik tersirat pepenjuru (BM2TTP)

telah dirumuskan untuk penyelesaian berangka terhadap jenis kedua PPKV. Terbitan

kaedah BM2TTP boleh diperolehi dengan menggunakan polinomial interpolasi

Lagrange. Penyelesaian berangka untuk PPKV dihitung pada dua titik secara

serentak dalam bentuk blok dengan menggunakan kaedah yang telah dicadangkan

pada ukuran langkah yang tetap. Penyelesaian berangka ini dilaksanakan dengan

cara peramal-pembetul.

Disebabkan bahagian kamilan PPKV tidak dapat diselesaikan secara jelas dan

analitikal, satu idea untuk menyelesaikan bahagian kamilan PPKV telah dib-

incangkan dan formula kamilan berangka yang mempunyai urutan yang sesuai

telah dipilih untuk mencari penyelesaian untuk bahagian kamilan PPKV yang

merangkumi petua trapezium, petua Simpson dan petua Boole. Daripada bentuk

PPKV yang umum, terdapat dua jenis kes inti yang merangkumi K(x,s) = 1

dan K(x,s) �= 1. Dua jenis prosedur telah dibentuk untuk menyelesaikan kes-kes

tersebut. Rantau kestabilan telah dibincangkan berdasarkan kestabilan polinomial

untuk kaedah BM2TTP yang telah dipasangkan dengan petua kuadratur yang sesuai.

Masalah linear dan tak linear bagi PPKV telah diselesaikan secara berangka
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menggunakan kaedah BM2TTP. Enam masalah telah diuji untuk mengkaji prestasi

dan kecekapan kaedah BM2TTP dari segi ralat maksimum, jumlah panggilan fungsi,

jumlah langkah yang diambil dan masa pelaksanaan yang diambil. Hasil kajian

menunjukkan kecekapan kaedah BM2TTP semasa menyelesaikan masalah PPKV

berbanding kaedah sedia ada.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Integro-differential equation plays major roles in mathematical modeling of real

life phenomena with in such as biology, physics, engineering and natural sciences.

Integro-differential equation happen when any equation consists of both integrals and

derivatives of the unknown function y(x). The general form of integro-differential

equation is given as

y(n)(x) = f (x)+λ
∫ h(x)

g(x)
K(x,s)y(s)ds, y(n)(x) =

dny
dxn (1.1)

where the limits of integration are g(x) and h(x), λ is the variable parameter, and

K(x,s) is known function which is called as the kernel or the nucleus of an integral

equation. Kernel consists of two variables x and s, (Wazwaz, 2015).

Integro-differential equation occur in several forms. Two distinct ways that

depend on the limit of integration are used to characterize integro equations.

Fredholm integro-differential equation consist fixed of limits of integration in the

form,

y(n)(x) = f (x)+λ
∫ b

a
K(x,s)y(s)ds, (1.2)

where a and b are constants. While, Volterra integro-differential equation (VIDE)

has at least one variable in the integral limit in the form,

y(n)(x) = f (x)+λ
∫ x

a
K(x,s)y(s)ds, (1.3)

where y(n)(x) indicates the nth derivative of y(x). The derivatives of the unknown

function y(x) may appear in any order of functions depending on the problem

studied. There are two types of integro-differential equation and can be referred to

as the first kind and second kind.

However, Volterra integro-differential equation of the second kind will be in-

vestigated in this study because the Volterra integro-differential equation of first

kind is more complicated to solve compared to the Volterra integro-differential

equation of second kind. In most real life situations, the numerical technique was

chosen to solve the integral equations since the problem is complicated and cannot

be solved analytically. Several numerical methods are required to acquire the

accurate approximate solution. The multistep block method will be applied in order

to determine the solution for the Volterra integro-differential equation of the second

1
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kind.

1.2 Volterra Integro-Differential Equation

Since 1844, Volterra has started the research on integral equation and to take the

study on integral equation seriously in 1896, (Wazwaz, 2011). Volterra developed a

new type of equations when Volterra conducted a survey of population growth and

focused on the hereditary influences. According to his research work, the general

form of Volterra integro-differential equation was developed and given in the form,

y′(x) = F(x,y(x),z(x)), (1.4)

where

z(x) =
∫ x

0
K(x,s,y(s))ds. (1.5)

VIDE can be classified into two types, they are the first kind and the second kind.

VIDE of the second kind were involved with two cases of the kernel.

1. VIDE of the first kind∫ x

0
K1(x,s)y(s)ds+

∫ x

0
K2(x,s)y

′(s)ds = f (x), K2(x, t) �= 0. (1.6)

2. VIDE of the second kind

• Case I: K(x, t) = 1

y′(x) = f (x)+
∫ x

0
y(s)ds. (1.7)

• Case II: K(x, t) �= 1

y′(x) = f (x)+
∫ x

0
K(x,s)y(s)ds. (1.8)

VIDE fall into two other types of classifications according to homogeneity and

linearity concepts. Homogeneity and linearity concepts employ major role in the

structures of the solutions. If the function f (x) in VIDE of the second kind is

identically zero, the equations are called homogeneous or otherwise it is called as

inhomogeneous.

VIDE is classified as linear when the power of y(s) inside the integral part is

one, but a nonlinear function of VIDE occurs when the power of unknown function

y(s) in the integral part is more than one or it consists nonlinear function of y(s)
such as e(y), sin(y), cosh(y) and ln(1+ y), (Wazwaz, 2015).

2



© C
OPYRIG

HT U
PM

1.3 Research Problem

Many of Volterra integro-differential equation cannot be solve analytically, then the

numerical method are proposed to solve Volterra integro-differential equation. Most

numerical methods for solving Volterra integro-differential equation produce only

one new approximation value at each step such as Runge-Kutta method, Adam-

Bashforth-Moulton method and Simpson’s rule. There are only a small number of

researcher who solve Volterra integro-differential equation using block method such

as Mohamed and Majid (2015) and Mohamed and Majid (2016).

1.4 Motivation

The motivation of this research is to improve the block method and to enhance the

efficiency of the block method in solving Volterra integro-differential equation of

second kind in terms of total function calls and the execution times taken.

1.5 Objectives of the thesis

The main objective of this thesis is to develop the two-point diagonally implicit

multistep block (2PDIB) method and the method will be implemented for solving

Volterra integro-differential equation of the second kind. The objectives can be de-

termined by

(i) Deriving the two points diagonally implicit multistep block method for solving

VIDE of the second kind.

(ii) Determining the order of the proposed diagonally implicit multistep block

methods for solving VIDE of the second kind.

(iii) Investigating the stability analysis of diagonally implicit multistep block

method combined with the quadrature rule for solving VIDE of the second

kind.

(iv) Developing the algorithms of diagonally implicit multistep block method com-

bined with a quadrature rule using constant step size for solving VIDE of the

second kind.

1.6 Scope of the Study

The scope of the research will be focused on solving the linear and nonlinear prob-

lem of the Volterra integro-differential equation of the second kind. The two-point

diagonally implicit multistep block method of third, fourth and fifth order are pro-

posed to evaluate the approximate solution of the VIDE using constant step size.

3
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Since the integral part in VIDE cannot be solved explicitly, the Newton-Cotes rule

will be adapted for solving the integral part. There are two cases of the kernel in

VIDE which are K(x, t) = 1 and K(x, t) �= 1. The quadrature rule is applied to solve

the kernel function of VIDE. Simpson’s rule and composite Simpson’s rule are ap-

plied for solving the kernel function of VIDE for the 2PDIB method of order three

and four. While Boole’s rule and composite Boole’s rule are adapted to the 2PDIB

method of order five for solving the integral part of VIDE.

1.7 Outline of the thesis

This thesis is divided into six chapters. In Chapter 1, a brief introduction of Volterra

integro-differential equation is given. This chapter covers the objectives of the

thesis, the scope of the study and the outline of the thesis.

Chapter 2 presents the review of previous works which is related to VIDE.

Moreover, the basis definitions and properties of Lagrange interpolation polynomial,

and linear multistep method are discussed. Chapter 2 also included the relevant

mathematical concepts of VIDE.

The derivation of two points diagonally implicit multistep block method of

the third order (2PDIBM3) is discussed in Chapter 3 and their stability regions are

plotted. The error constant and zero stable of the methods are determined to show

that the two-point of diagonally implicit multistep block method is stable. Hence,

the implementation of the method with two approaches is given. Some examples

of linear and nonlinear VIDE problem are tested and the numerical results are

determined.

Chapter 4 deals with the derivation of fourth order of two points diagonally

implicit multistep block method (2PDIBM4). The quadrature rule approach is

used for the implementation of the proposed methods for obtaining the accurate

approximate solution. The stability region of the proposed method is determined.

Numerical results are presented and comparisons of the performance of the methods

with the existing block methods are made.

Chapter 5 focused on the derivation of the fifth order method of two points

diagonally implicit multistep block method (2PDIBM5) for solving VIDE of the

second kind. The algorithms which would solve the VIDE of the second kind

are developed. The error constant and zero stable of the method are determined.

Chapter 5 end with the presentation and discussion of the numerical results. Lastly,

the conclusion of the thesis was presented in Chapter 6 and suggestion for potential

future research is also provided in this chapter.
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