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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of

the requirement for the degree of Doctor of Philosophy

MODIFIED BOXPLOT AND STAIRBOXPLOT FOR GENERALIZED
EXTREME VALUE DISTRIBUTION

By

BABANGIDA IBRAHIM BABURA

November 2017

Chair: Associate Professor Mohd Bakri Adam, PhD
Institute: Institute for Mathematical Research

A boxplot is an exploratory data analysis tool for a compact distributional summary of

a univariate dataset. It is designed to recognised all typical observations and displays

the location, spread, skewness and the tail of the data. When the dataset is skewed

such as extreme data, the precision of boxplot functionalities is less reliable and inac-

curate. Many observations from extreme data were erroneously marked as outliers by

the classical boxplot methods.

The Tukey’s classical and Hubert’s adjusted boxplots were utilize in the study based on

outside rate per sample and a propose measure of fence sensitivity ratio to observe the

suitability of the methods according to a simulation process from Generalized Extreme

Value distribution. The adjusted method improves the classical method in extreme

data capture but not sufficiently optimize to achieve the bench mark requirement in the

literature.

The modified boxplot has been proposed with a fence adjustment of the existing box-

plot method using the Bowley coefficient. The fence position was considered as a re-

sponse to skewness in the simulated extreme data from GEV distribution and then fitted

with resistance fit linear regression model. The propose fence adjustment enhance the

boxplot to detect all atypical observations without any parametric assumption about an

extreme data. The new boxplot displays some additional features other than the clas-

sical one such as a quantile region for the parameters of Generalized Extreme Value

distribution in fitting an extreme data.

The modification of the entire boxplot display is also proposed as stairboxplot with

combined features of boxplot, histogram and a dot plot. The stairboxplot divides the

data points of a sample into four portions according to the range of the data set, such
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that the individual points are inscribed in their respective range levels. However, stair-

boxplot displays each observation according to an introduce measure of outlyingness

of a point called stairboxplot outlyingness.

The main findings and contributions in both modified boxplot and stairboxplot can

generally be attributed to the enhancement of quality of a dataset by highlighting in-

consistent observations from GEV distribution’s modelling framework and diagnostic

visualisation of extreme data to gain immediate information such as skewness, quantile

estimate of GEV parameters region and data points display according to outlyingness.

ii



© C
OPYRIG

HT U
PM

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai

memenuhi keperluan untuk ijazah Doktor Falsafah

PLOT-KOTAK TERUBAHSUAI DAN PLOT-TANGGA-KOTAK BAGI
TABURAN NILAI EKSTRIM TERITLAK

Oleh

BABANGIDA IBRAHIM BABURA

November 2017

Pengerusi: Profesor Madya Mohd Bakri Adam, PhD
Institut: Institut Penyelidikan Matematik

Plot-kotak merupakan salah satu alat bagi analisis data terokaan untuk ringkasan tabu-

ran yang padat bagi set data univariat. Ianya direka untuk mengenalpasti kesemua jenis

cerapan serta menunjukkan lokasi, serakan, kepencongan dan kepuncakan sesebuah

data. Apabila data menunjukkan ciri pencongan seperti data ekstrim, ketepatan fungsi

plot-kotak adalah kurang dipercayai dan tidak tepat. Kebanyakan cerapan daripada data

ekstrim telah disalah tanda sebagai data terpencil oleh kaedah plot-kotak yang klasik.

Plotkotak yang klasik daripada Tukey dan yang diubahsuai oleh Hubert telah digunakan

dalam kajian ini berdasarkan kadar luaran per sampel serta ukuran nisbah kepekaan

pagar yang dicadangkan untuk melihat kesesuaian sesuatu kaedah berdasarkan proses

simulasi dari taburan nilai ekstrim teritlak. Kaedah yang diubahsuai didapati adalah

lebih baik dari kaedah klasik dalam mengenalpasti data ekstrim namun ianya tidak

cukup di optimumkan untuk mencapai tahap keperluan dalam kajian tinjauan.

Plotkotak yang diubahsuai telah dicadangkan dengan pelarasan terhadap pagar plot-

kotak yang sedia ada dengan menggunakan pekali Bowler. Kedudukan pagar telah

diandaikan sebagai tindak balas kepada kepencongan di dalam data simulasi ekstrim

daripada taburan nilai ekstrim teritlak dan kemudian dipadankan dengan model regresi

rintangan linear. Pengubahsuaian pagar yang dicadangkan telah meningkatkan kebole-

han plot-kotak dalam mengenalpasti semua jenis cerapan tanpa sebarang andaian pa-

rameter tentang data ektrim. Beberapa ciri tambahan telah ditunjukkan oleh plot-kotak

baharu berbanding plot-kotak klasik seperti rantau kuantil bagi parameter-parameter

taburan nilai ekstrem teritlak dalam mengesuaikan data ekstrim.

Pengubahsuaian terhadap keseluruhan paparan plot-kotak turut dicadangkan yang

dikenali sebagai plot-tangga-kotak dengan menggabungkan ciri plot-kotak, histogram
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dan plotdot. Plot-tangga-kotak membahagikan sampel data kepada empat baha-

gian berdasarkan julat set data supaya setiap cerapan ditempatkan di tahap julat

masing-masing. Walau bagaimanapun, plot-tangga-kotak memaparkan setiap cerapan

mengikut kepada ukuran keterpencilan titik yang diperkenalkan dan dikenali sebagai

keterpencilan plot-tangga-kotak.

Penemuan dan sumbangan utama dalam kedua-dua plot-kotak dan plot-tangga-kotak

yang diubahsuai boleh dikaitkan secara amnya untuk meningkatkan kualiti set data den-

gan menyoroti pemerhatian yang tidak konsisten daripada rangka model nilai ekstrim

teritlak dan visualisasi diagnostik daripada data ekstrim untuk mendapatkan maklumat

yang segera seperti kepencongan, anggaran quantil daripada rantau parameter nilai ek-

strim teritlak, paparan titik data mengikut kepada keterpencilannya.
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CHAPTER 1

INTRODUCTION

1.1 Background

The statistical field of exploratory data analysis (EDA) is endowed with simple but ro-

bust methods and techniques of understanding some immediate information about a

dataset that may otherwise go unnoticed. The EDA techniques are typically applied be-

fore formal modelling commences and can help inform the development of more com-

plex statistical models. The EDA practice was made popular by the work of John Tukey

over 40 years ago among which the promotion of the concept of box and whiskers plot,

see Tukey (1977). The popularity of boxplot which can be related with its philosophy

of simplicity makes it as one of the most useful tool for EDA practice on univariate

dataset (Hoaglin et al., 1983). The boxplots are particularly useful in detecting out-

liers and comparison between groups of dataset to visualized population difference or

similarity of distributional properties.

The boxplot is a compact distributional summary which displays fewer details than

other plots like histogram or kernel density but interestingly gives room to robust anal-

ysis and taking up less space. The robust summary statistics obtained from boxplot

are usually located at actual data points with less computation and require no tuning

parameters. The boxplot contains five conventional values of significance, namely; the

two fences, the upper and lower hinges (quartiles), and the median (Tukey, 1977).

Extreme data are referred to a record of events that are more extreme than any that have

already been observed within a particular block of time or over a determined threshold

level. In the recorded history, work on extreme value may be traced to as early as 1709

when Nicolas Bernouilli discussed the mean largest distance from the origin given n
points lying at random on a straight line of a fixed length l, a narration according to

Coles (2001). Such observation can either be low extreme as minima or high extreme

as maxima. The generalized extreme value (GEV) distribution is a limiting distribution

describe by Generalized Extreme Value Theory. The GEV distribution is statistically

useful in describing the likelihood of unusual behavior or rare events occurring. Its

application is widely used in the areas of hydrology or environmental studies such as;

flood frequency or associated rainfall intensity Rossi et al. (1984), Cooley et al. (2007)

and Katz et al. (2002) , sea level analysis such as Méndez et al. (2007) and Tawn (1992)

and other environmental trends Smith (1989), so also in finance/insurance as for; Jansen

and De Vries (1991), Longin (1996) and Loretan and Phillips (1994).

The family of generalized extreme value (GEV) distribution comprising of Gumbel,

1



© C
OPYRIG

HT U
PM

Freichet and Weibull distributions possessed the distributional properties of asymme-

try, heavy tail and skewness. These properties make it difficult for the standard boxplot

to generate a good fence estimate that capture all typical observations within the fence

markup area. We begin the research by studying the limitation of the existing boxplot

methods and extend the conventional functions of boxplot not only on proper detection

of outliers from an extreme dataset but to some additional functionalities. These modi-

fications include; adjustment of the fence position to account for skewness of extereme

dataset, additional display feature to the regular boxplot that display quantile region

for location and scale parameters estimate along with skewness estimate of the shape

parameter of the GEV distribution for fitting an extreme sample.

Furthermore, we proposed alternative boxplot called a stairboxplot. The plot has com-

bine features of boxplot, histogram and a dot plot. The stairboxplot display individual

points according to an introduce measure of outlyingness of a point. A simulated and

real-life data were used to justify the advantages of this research work over those found

in the literature.

1.2 Basic Configurations of Boxplot

1.2.1 Standard Boxplot

Turkey’s boxplot consist of five components, strategically selected for a robust sum-

mary statistics of an ordered dataset Xn = {x(1),x(2), · · · ,x(n)}. Figure 1.1 is the classi-

cal boxplot labeled with the five components and their descriptions as follows:

1. The median, denoted as Q2 which is represented as the line that divided the box

into two parts. It is located as the middle value when the dataset is arranged

(sorted) in ascending order. So, for Xn, the x( n+1
2

) observation is considered the

median if n is odd, while the mid-point

x(n
2

)+x(n
2
+1

)
2 is the median for even n.

2. The upper and lower hinges corresponding to the upper and lower edges of the

box with the edges passing through lower quartile (Q1) and upper quartile (Q3)

of the dataset. The lower quartile is usually obtained as the middle item from the

data points below the median, while the upper quartile is the middle item from

data points above the median.

3. The upper and lower fences corresponding to two mark-up data points, a distance

of h times the interquartile range (IQR = Q3−Q1); below Q1 for the lower fence

and above Q3 for the upper fence i.e fl = Q1 − hIQR for the lower fence and

fu = Q3+hIQR for the upper fence, where h is constant usually chosen to be 1.5

2
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Figure 1.1: Classical boxplot.

for inner fence or 3.0 for outer fence. The description on how different choices

of h are made is given in Chapter 3.

4. The two whiskers are straight lines which connect nearest data point above and

below the lower and upper fences respectively to the two hinges.

5. The outliers are data points that deviates quantitatively from the majority of the

data points, based on outlier-selection method above the upper fence or below

the lower fence and are marked as points in the boxplot.

3
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Figure 1.2: Notched boxplot.

1.2.2 Notched Boxplot

The notched boxplot is constructed in a similar way as the standard boxplot. The only

difference is that it goes one step further by displaying confidence intervals around

the medians, supporting the visual assessment of statistical significance. The length of

the confidence interval is obtained so that non-overlapping intervals indicate (approx-

imately) a difference at the 5% level, regardless of the underlying distribution. The

notches are marked as indicated in Figure 1.2 and determined from the confidence in-

terval around the median given by Q2 ± 1.58IQR (McGill et al., 1978). Notch is the

first visual enhancement made to boxplot classical display.

1.3 Other Variations in Boxplots

Boxplot has received a considerable interest from among variety of scholars. This

makes it experience variations with significant enhancement in both plots, values of in-

terest and applications. There are three early variants of boxplot as reported by Turkey

(1978). The first incorporate a visual display of a measure of group size; the second

features a highlight significance of differences between medians (or quantiles); and the

third mixed both features of the first two. Additional boxplot variants that existed in-

clude; midgap plot by Tufte (2001) Tufte, colorful boxplot by Carr (1994), Boxplot for

circular variables by Abuzaid et al. (2012). Wickham and Stryjewski (2012) categorise

other variants of boxplot according to richer displays of density such as vaseplot (Ben-

jamini, 1988), violinplot (Hintze and Nelson, 1998), beanplot Kampstra et al. (2008),

raindrop plot Barrowman and Myers (2003) and more superior display of density ac-

4
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cording to Cohen and Cohen (2006) with sectioned-densityplot.

Boxplot was extended encompass bivariate data and is referred to as rangefinder plot

(Becketti and Gould, 1987), the relplot (Goldberg and Iglewicz, 1992), quelplot (Gold-

berg and Iglewicz, 1992), bagplot (Rousseeuw et al., 1999), bivariate boxplot (Zani

et al., 1998)(Zani et al., 1998), rotational boxplot (Muth et al., 2000) (Muth et al.,

2000) and functional boxplot (Hyndman and Shang, 2010; Sun and Genton, 2011).

1.4 The Extreme Data

In this thesis we are interested in extreme (Maximum) observations in a dataset. These

observations can be modelled using parametric models such as Gumbel, Freichet,

Weibull distributions which all belong to the family of generalized extreme value distri-

bution. A typical example of extreme value data include annual flood discharge level,

insurance and financial data, teletraffic data in communication, minimum strength for

the quality of materials, and a lot more extreme events in different scientific field of

research.

Consider the following family of extreme value distributions for maxima x∈X where X
is the set of block maximum. The GEV family which are described based on different

shape parameters ξ is given by the theorem.

Theorem 1.1 (Coles, 2001) If there exists sequences of constants {an > 0} and {bn},
as n → ∞, such that Pr{(Mn − bn)/an ≤ x} → G(x) where Mn is a block maximum of
n observations and G is a non-degenerate distribution function, then G is a member of
the GEV family:

G(x) = exp
{
−
[
1+ξ

(x−μ
σ

)]−1/ξ}
defined on {x : 1+ξ

(
x−μ

σ

)
> 0}, where σ > 0 and μ,ξ ∈ ℜ.

The varying shape parameter ξ define the GEV family upon the tail behavior. That

is, if ξ = 0 the distribution is Gumbel distribution and decays exponentially. If ξ < 0,

the distribution is negative Weibull distribution with finite short upper endpoint. While

ξ > 0 the distribution is a Fréchet distribution with a heavy tail behavior to the right.
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1.5 Problem Statement

Boxplot is one of the most routinely used EDA toolkit for outliers detection. Its pop-

ularity can also be associated with rich display of data summary in one simple plot.

Tukey (1977) utilized the robust statistical techniques in constructing boxplot for uni-

variate data. Boxplot is widely used in diverse scholarly works which include but not

limited to Hoaglin et al. (1986), Kimber (1990), Davies and Gather (1993), Iglewicz

and Banerjee (2001) and Banerjee and Iglewicz (2007) with approach according to

the boxplot resistance rules. The existence of outliers are usually caused by the mea-

surement error while recording observations. It is difficult and impracticable to avoid

measurement errors. However existence or wrong measure in dataset can cause diffi-

culty and inaccurate statistical inferences and hence the need of detecting and removing

them. The present boxplot resistance rule doesn’t have a particular general rule for all

data type. We observe that dataset such as extreme data are particularly skewed in na-

ture (Katz et al., 2002) and thus did not conform with Tukey’s standard rule of thumb

in defining boxplot fences. This problem made those interested in modelling extreme

event avoid using boxplot for outlier detection (Spencer and McCuen, 1996).

However, the boxplot visualisation of extreme data reveals only descriptive statistical

details obtainable from the three quartile. In a Gaussian set-up, the second quartile

(median) can be utilized as a robust estimate of the location and interquartile range

that spans the width of the box in boxplot as robust estimate of scale parameter. But

in GEV distribution modelling framework, these three boxplot quartiles require such

substance illustrated in the Gaussian set-up. This prompt enhancement of the existing

boxplot set-up to account for the GEV distribution fitting parameters to enable a proper

diagnostic of extreme data.

This research will extensively review the existing literature on boxplot and it’s EDA di-

agnosing potentials in visualising extreme data by addressing the above listed problem

as described fully in the aims and objectives section of this thesis.

1.6 Research Aim and Objectives

The main aim of this research is to improve the existing boxplot display to reflect spe-

cific characteristics of extreme data based on the following objectives:

1. To identify the characters of the existing boxplot methods, especially in the out-

lier labeling rules in visualizing extreme data.

2. To propose a new boxplot fence definition that reflects the skewness and capture

all regular observations that align with the generalized extreme value distribution.
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3. To enhance the display of boxplot by reflecting some additional diagnostic fea-

tures of extreme data that account for the fitting parameters of GEV distribution.

4. To construct an alternative plot that maintains all the robust features of boxplot

and overcome some limitations of the existing boxplot in visualizing individual

observations and density of a dataset.

1.7 Limitation of the Study

We consider some limitations to the implementation of the objectives of our study.

The simulation and real life dataset in the study are according to the block maximum

extreme data modelling framework. Block maximum independent random variables

where assumed to follow the popular extreme modelling tool of GEV distribution.

We adopt the existing theory and philosophy behind the boxplot in both boxplot meth-

ods, performance assessment, fence rule modification and additional visual features.

However, we consider as necessary to stress that the newly incorporated features to

the boxplot are to remain for diagnostic purposes which is the guiding philosophy of

exploratory data analysis.

1.8 Structure of the Thesis

This thesis examine the application of boxplot as EDA diagnostic tool for extreme

event modelling. There are eight chapters of the thesis that can be categorise into three

phases. Chapter 1 to Chapter 3 are preliminaries on concept, literature review and

methodology. Chapter 4 to Chapter 7 are presentation of results. Chapter 8 is summary

of the entire research work.

In a more clear terms, Chapter 1 introduces the concept behind boxplot construction

with its advantages over other visual EDA tools, introduction of the concept of extreme

data and its statistical modelling tools. We also present in Chapter 1, a highlight on the

research problem statement along with aim and objectives of the research all together

with the limitation and structure of the thesis. An extensive review of literature in

constructing different types of boxplot and outliers labelling rules and extremal events

modelling are discussed in Chapter 2. In Chapter 3, we describe the methodology and

philosophy involved in constructing the existing and proposed boxplots methods with

other important statistical tools used in the entire research work.

The second phase begins with Chapter 4, it reviews the performance of the boxplots
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outlier rules and other boxplot characters in visualizing extreme samples based on sim-

ulation study. In Chapter 5, we propose a new fence definition for boxplot outlier rule

using Bowley skewness estimate. Chapter 6 gives a modification of boxplot with addi-

tional diagnostic features of GEV modelling fit, with discussion of the new method on

some real life extreme dataset. Finally, we propose an alternative plot called rangeplot

and discuss its advantages over boxplot in Chapter 7.

The concluding part of the thesis is presented in Chapter 8, that gives summary, con-

clusion and recommendations for future research.
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Dietrich, D. and Hüsler, J. (1996). Minimum distance estimators in extreme value

distributions. Communications in Statistics-Theory and Methods, 25(4):695–703.

Dodd, E. L. (1923). The greatest and the least variate under general laws of error.

Transactions of the American Mathematical Society, 25(4):525–539.

Dupuis, D. and Field, C. (1998). A comparison of confidence intervals for gener-

alized extreme-value distributions. Journal of Statistical Computation Simulation,

61(4):341–360.

Efron, B. and Tibshirani, R. (1986). Bootstrap Methods for Standard Errors, Con-

fidence Intervals, and Other Measures of Statistical Accuracy. Statistical Science,

1(1):54–75.

91



© C
OPYRIG

HT U
PM

Fisher, R. A. and Tippett, L. H. C. (1928). Limiting forms of the frequency distribution

of the largest or smallest member of a sample. In Mathematical Proceedings of the
Cambridge Philosophical Society, volume 24, pages 180–190. Cambridge University

Press.

Frigge, M., Hoaglin, D. C., and Iglewicz, B. (1989). Some implementations of the

boxplot. The American Statistician, 43(1):50–54.

Goldberg, K. M. and Iglewicz, B. (1992). Bivariate extensions of the boxplot. Techno-
metrics, 34(3):307–320.

Groeneveld, R. A. and Meeden, G. (1984). Measuring skewness and kurtosis. The
Statistician, pages 391–399.

Hertz, S. (2001). Ladislaus von Bortkiewicz: Statisticians of the Centuries, pages 273–

277. Springer New York, New York, NY.

Hill, B. M. et al. (1975). A simple general approach to inference about the tail of a

distribution. The annals of statistics, 3(5):1163–1174.

Hintze, J. L. and Nelson, R. D. (1998). Violin plots: a box plot-density trace synergism.

The American Statistician, 52(2):181–184.

Hoaglin, D., Mosteller, F., and Tukey, J. (1983). Understanding Robust and Ex-
ploratory Data Analysis. Wiley series in probability and mathematical statistics:

Applied probability and statistics. Wiley, New York.

Hoaglin, D. C., Iglewicz, B., and Tukey, J. W. (1986). Performance of some re-

sistant rules for outlier labeling. Journal of the American Statistical Association,

81(396):991–999.

Hosking, J. R., Wallis, J. R., and Wood, E. F. (1985). Estimation of the generalized

extreme-value distribution by the method of probability-weighted moments. Tech-
nometrics, 27(3):251–261.
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