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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment

of the requirement for the degree of Master of Science

TRIGONOMETRICALLY FITTED MULTISTEP METHODS FOR
SOLVING OSCILLATORY PROBLEMS

By

AINI FADHLINA BINTI MANSOR

December 2017

Chairman : Fudziah binti Ismail, PhD
Faculty : Institute for Mathematical Research

At the beginning of the thesis, we trigonometrically fitted the first point of the

existing block multistep method which was purposely derived for solving special

second order ordinary differential equations (ODEs). Based on the original multistep

method, we construct both explicit and implicit trigonometrically fitted multistep

methods of step number k=4 and develop code using both constant and variable

step size. The trigonometrically fitting technique has been applied to the original

method in order to construct the new methods. The numerical results show that the

trigonometrically fitted multistep method is more efficient compared to the existing

methods in solving special second order ordinary differential equations (ODEs)

which are oscillatory in nature.

Then, the 2-point explicit and implicit block multistep methods of step number k=3

and k=5 for solving special second order ODEs are derived using integration formula

based on Newton-Gregory backward interpolation polynomial. The methods are

implemented for constant step size by using the predictor-corrector technique,

followed by the implementation using variable step size. The numerical results are

given to show the efficiency of the new methods as compared to the existing methods.

The 2-point explicit and implicit block multistep methods of step number k=3 and

k=5 are then trigonometrically fitted so that they are suitable for solving special

second order ordinary differential equations, which are highly oscillatory in nature.

We developed codes based on the trigonometrically fitted methods using constant

step size in predictor-corrector mode. The numerical results obtained show that

trigonometrically fitted the methods give more accurate solutions than the existing
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methods.

In conclusion, trigonometrically fitted block and non-block multistep methods have

been derived in this thesis for solving oscillatory problems. The illustrative examples

are given in the form of both tables and graphs which clearly shown the advantage

of the methods.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai

memenuhi keperluan untuk ijazah Master Sains

KAEDAH MULTILANGKAH SUAI SECARA TRIGONOMETRI UNTUK
MENYELESAIKAN MASALAH BERAYUN

Oleh

AINI FADHLINA BINTI MANSOR

Disember 2017

Pengerusi : Fudziah binti Ismail, PhD
Fakulti : Institut Penyelidikan Matematik

Pada permulaan tesis, kami suai secara trigonometri titik pertama kaedah mul-

tilangkah blok sedia ada yang diterbitkan dengan tujuan untuk menyelesaikan

persamaan pembezaan biasa (PPB) peringkat kedua khas. Berdasarkan kepada

kaedah multilangkah asal, kami membina kedua-dua kaedah multilangkah suai

secara trigonometri secara tak tersirat dan tersirat bagi nombor langkah k=4 dan

membangunkan kod menggunakan kedua-dua saiz langkah tetap dan boleh ubah.

Kaedah suai secara trigonometri telah digunakan ke atas kaedah asal bagi membina

kaedah baru tersebut. Keputusan berangka menunjukkan bahawa kaedah multi-

langkah suai secara trigonometri adalah lebih berkesan berbanding dengan kaedah

sedia ada dalam menyelesaikan persamaan pembezaan biasa (PPB) peringkat kedua

khas yang mana berayun secara semula jadi.

Kemudian, 2-titik kaedah multilangkah blok secara tak tersirat dan tersirat bagi

nombor langkah k=3 dan k=5 untuk menyelesaikan PPB peringkat kedua khas telah

diterbitkan menggunakan formula kamiran berdasarkan kepada Newton-Gregory
backward interpolation polynomial. Kaedah tersebut dilaksanakan untuk saiz

langkah tetap dengan menggunakan teknik peramal-pembetul, diikuti dengan

perlaksanaan menggunakan saiz langkah boleh ubah. Keputusan berangka diberikan

untuk menunjukkan keberkesanan kaedah baru tersebut berbanding dengan kaedah

sedia ada.

2-titik kaedah multilangkah blok secara tak tersirat dan tersirat bagi nombor langkah

k=3 dan k=5 kemudiannya disuaikan secara trigonometri supaya ianya sesuai

untuk menyelesaikan persamaan pembezaan biasa peringkat kedua khas, yang
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mana sangat berayun secara semula jadi. Kami membangunkan kod berdasarkan

kepada kaedah suai secara trigonometri menggunakan saiz langkah tetap dalam mod

peramal-pembetul. Keputusan berangka yang diperolehi menunjukkan bahawa suai

secara trigonometri kaedah tersebut memberikan lebih banyak penyelesaian yang

tepat daripada kaedah sedia ada.

Kesimpulannya, kaedah multilangkah blok dan bukan blok suai secara trigonometri

telah diterbitkan di dalam tesis ini untuk menyelesaikan masalah berayun. Contoh-

contoh illustrasi diberikan di dalam kedua-dua bentuk jadual dan graf yang dengan

jelas menunjukkan kelebihan kaedah-kaedah tersebut.
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CHAPTER 1

INTRODUCTION

1.1 Differential Equations

A differential equation is a mathematical equation that relates some function with

its derivatives. In applications, the functions usually represent physical quantities,

the derivatives represent their rates of change and the equation defines a relationship

between the two. Differential equations play a prominent role in many disciplines

including engineering, physics, economics and biology. In mathematics, differen-

tial equations are studied from several different perspectives but mostly concerned

with their solutions. Ordinary differential equation (ODE) is a differential equation

contains only derivatives of one or more unknown functions with respect to a single

independent variable.

1.2 The Initial Value Problem

Differential equation together with its initial value is called initial value problem

(IVP). The initial value problem for a special second order ordinary differential equa-

tion is defined in the form of

y′′ = f (x,y), y(a) = η , y′(a) = η ′, (1.2.1)

where the first derivative does not appear explicitly.

Theorem 1.1 (Existence and Uniqueness)
Let f(x,y) be defined and continuous for all points (x,y) in the region D defined by
a ≤ x ≤ b, −∞ < y < ∞, where a and b finite, and let there exist a constant L such
that for any x ∈ [a,b] and any two numbers y and y*,

| f (x,y)− f (x,y∗)| ≤ L|y− y∗ |. (1.2.2)

Then, if η is any given number, there exists a unique solution y(x) of the initial value
problem (1.2.1), where y(x) is continuous and differentiable for all (x,y) in D.

The condition (1.2.2) is known as a Lipschitz condition, and the constant L as a

Lipschitz constant. For proof, see (Henrici (1962)). In this work, we shall assume

the theorem establishes the existence of a unique solution of (1.2.1).

Such problems often arise in many scientific areas of engineering and applied sci-

ence such as celestial mechanics, molecular dynamics and quantum mechanics. The

solution of (1.2.1) also often exhibits a pronounced oscillatory character. It is well
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known that it is rather difficult to get the accurate numerical results if the initial value

problems are oscillatory in nature. A lot of research has been focused on developing

methods to address the problem.

1.3 Numerical Methods for Ordinary Differential Equations

Numerical analysis involves the study of methods of computing numerical data.

In many problems this implies producing a sequence of approximations by re-

peating the procedure again and again. Many differential equations cannot be

solved analytically. For practical purposes, however, such as in engineering, a

numeric approximation to the solution is often sufficient. Numerical methods

for ODEs are methods used to find numerical approximations to the solutions

of ODEs where this tecnique usually used by scientists and engineers to solve

their problems. The implementation of a numerical method with an appropriate

convergence check in a C Programming Language is called as a numerical algorithm.

Conceptually, a numerical method starts from an initial point and then takes a short

step forward in time to find the next solution point. Generally, numerical methods

often fall into one of two large categories that are single step and multistep methods.

The methods also can be divided into explicit and implicit methods.

1.4 Single Step and Multistep Methods

Single step methods refer to only one previous point and its derivative to determine

the current value. There are several well-known single step methods such as Euler

method and Runge-Kutta method. Methods such as Runge-Kutta methods take

some intermediate steps to obtain a higher order method and discard all the previous

information before taking a second step.

Methods that require more than one previous point to compute the approximation

solution at the next point we called them as linear multistep methods (LMMs). Based

on Lambert (1973), linear multistep method for special second order ODEs is defined

by,

k

∑
j=0

α jyn+ j = h2
k

∑
j=0

β j fn+ j, (1.4.1)

where α j and β j are constant and assume αk = 1. Linear multistep method (1.4.1)

is said to be explicit if βk = 0 and implicit if βk �= 0. In this research, we are going

to focus on the linear multistep method in the form of equation (1.4.1). Both Adams

Bashforth and Adams Moulton methods are well-known explicit and implicit LMMs

2
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respectively.

Definition 1.1 [Lambert (1973)]
The linear multistep method (1.4.1) is said to be convergent if, for all initial value
problems (1.2.1) subject to the hypothesis of the Theorem 1.1, we have that

lim
h→0

nh=x−a

yn = y(x) (1.4.2)

holds for all x ∈ [a,b], and for all solutions yn of the difference equation (1.4.1) satis-
fying starting conditions yμ = ημ(h) for which lim

h→0
ημ(h) = η ,μ = 0,1,2, . . . ,k−1.

1.5 Block Method

Block method is the approximation of solution for initial value problems at r points

simultaneously. There are two types of block methods called as one-step block and

multi-block. In one-step block method, the new block yn+1,yn+2, . . . ,yn+r is com-

puted from the value yn meanwhile in multi-block method, the new block is com-

puted using the information from one or more previous blocks. Block method is

an efficient method compared to the non-block method in terms of accuracy, total

number of steps and execution times since it computes more than one value of the

solutions at one time. Thus, the time period used and cost in solving the problems

can be reduced.

Figure 1.1: 2-point block multistep method.

In Figure (1.1), the approximation solutions of yn+1 and yn+2 are simultaneously

computed at the points xn+1 and xn+2 where xn becomes the starting point and xn+2

is the last point in the block that has the step size 2h. The final values of yn+2 at the

point xn+2 will then be taken as the initial values for the next iteration. The interval

[a,b] is divided into a series of blocks that contained two points at each block.

1.6 Trigonometrically Fitted Method

In order to find efficient methods for solving oscillatory problems, a lot of research

has been focused on developing methods with reduced phase-lag and amplifica-

3
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tion error. Phase-lag or dispersion error is the angle between the true and the

approximated solution while dissipation (amplification) error is the distance of the

computed solution from the cyclic solution. The performance of numerical methods

for solving oscillatory problems can be enhanced by phase fitting the method.

Trigonometrically fitting the method means we assumed that the true solution is

in the form of trigonometric functions and the methods are derived based on this

assumption.

Using the ideas of trigonometrically fitting as in Fang and Wu (2008), the linear

multistep method (1.4.1) is required to integrate exactly the linear combination of

the functions
{

e−iωt ,eiωt} or equivalently with {sin(ωt),cos(ωt)} for ω ∈ R and

consider the test equation y′′ = −ω2y with ω > 0. Let yn = eiωt , we have yn+1 =

eiω(t+h) and by substituting eiH = cos(H)+ isin(H) where H = ωh to the (1.4.1),

the fitted values will be obtained.

1.7 Order Conditions

Order conditions of the method are important to determine the order of the method.

Based on linear multistep method (1.4.1), the linear difference operator L is defined

as:

L [y(x);h] =
k

∑
j=0

[α jy(x+ jh)−h2β jy′′(x+ jh)], (1.7.1)

where y(x) is an arbitrary function, continuously differentiable on [a,b]. By expand-

ing y(x+ jh) and y′′(x+ jh) as Taylor series about point x, it gives

L [y(x);h] =C0y(x)+C1hy(1)(x)+ . . .+Cqhqy(q)(x)+ . . . , (1.7.2)

where Cq are constants.

Based on equation (1.7.2), the order conditions for special second order ODEs are

defined as follows:

4
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C0 =
k

∑
j=0

α j

C1 =
k

∑
j=0

( jα j)

C2 =
k

∑
j=0

(
j2

2!
α j −β j)

C3 =
k

∑
j=0

(
j3

3!
α j − jβ j)

...

Cq =
k

∑
j=0

(
jq

q!
α j − jq−2

(q−2)!
β j), q = 3,4, . . . (1.7.3)

Following Henrici (1962), the method is said to has order p if

C0 =C1 = · · ·=Cp =Cp+1 = 0, Cp+2 �= 0;

Cp+2 is then the error constant of the method.

1.8 Stability of the Method

Based on Lambert (1973), the first and second characteristic polynomial of linear

multistep method (1.4.1) are defined as ρ(ζ ) and σ(ζ ) respectively:

ρ(ζ ) =
k

∑
j=0

α jζ j, σ(ζ ) =
k

∑
j=0

β jζ j. (1.8.1)

Based on Lambert (1973), the test equation used for LMM (1.4.1) is,

y′′ = λy. (1.8.2)

Next, definitions on certain types of stability of LMM will be given.

Definition 1.2 [Lambert (1973)]
The linear multistep method (1.4.1) is said to be zero-stable if no root of the first
characteristic polynomial ρ(ζ ) has modulus greater than one, and if every root with
modulus one has multiplicity not greater than two.

Definition 1.3 [Fatunla (1991)]
The block method is zero stable provided the roots R j, j = 1(1)k of the first charac-

5
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teristic polynomial ρ(R) specified as

ρ(R) = det[
k

∑
i=0

A(i)Rk−i] = 0,A(0) =−I (1.8.3)

satisfies |R j| ≤ 1, and for those roots with |R j|= 1, the multiplicity must not exceed
2.

Definition 1.4 [Lambert (1973)]
The linear multistep method (1.4.1) is said to be absolutely stable for a given h̄
if, for that h̄, all the roots rs of stability polynomial, π(r, h̄) = ρ(r)− h̄2σ(r) = 0,
where h̄ = hλ satisfy |rs|< 1,s = 1,2, . . . ,k, and to be absolutely unstable for that h̄
otherwise.

Definition 1.5 [Yap et al. (2011)]
The linear multistep method (1.4.1) is said to have region of absolute stability D
where D is a region of the complex h̄-plane, if it is absolutely stable for all h̄ ∈ D .
The intersection of D with the real axis is called the interval of absolute stability.

1.9 The Objectives of the Thesis

Objectives of this research are as follows:

1. To construct the trigonometrically fitted explicit and implicit multistep meth-

ods of step number k=4 based on the existing methods derived by Yap et al.

(2011) and to develop constant and variable step size based on the methods for

solving oscillatory problems.

2. To derive 2-point block multistep method of step number k=3 and k=5 and

developing codes based on the methods using both constant and variable step

size techniques for solving special second order ODEs.

3. To construct the trigonometrically fitted 2-point block multistep methods of

step number k=3 and k=5 for solving oscillatory problems.

4. To determine the zero stability and absolute stability of the new methods.

1.10 Outline of the Thesis

This thesis is arrange as follows:

In Chapter 1, a brief introduction to the differential equation, initial value problem

and numerical methods for ordinary differential equations are given. Definition

6
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