UNIVERSITI PUTRA MALAYSIA

STABILIZATION OF ANTHOCYANINS IN MANGOSTEEN
(Garcinia mangostana Linn) PERICARP THROUGH INHIBITION
OF ENZYMATIC BROWNING AND SPRAY-DRYING

MAHSA ZIABAKHSH DEYLAMI

FSTM 2016 3
STABILIZATION OF ANTHOCYANINS IN MANGOSTEEN
(Garcinia mangostana Linn) PERICARP THROUGH INHIBITION
OF ENZYMATIC BROWNING AND SPRAY-DRYING

By

MAHSA ZIABAKHSH DEYLAMI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia,
in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

May 2016
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Specially Dedicated to
My parents who gave me roots to grow and wings to fly
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the Degree of Doctor of Philosophy

STABILIZATION OF ANTHOCYANINS IN MANGOSTEEN (Garcinia mangostana Linn) PERICARP THROUGH INHIBITION OF ENZYMATIC BROWNING AND SPRAY-DRYING

By

MAHSA ZIABAKHSH DEYLAMI

May 2016

Chairman: Professor Russly Abdul Rahman, PhD
Faculty: Food Science and Technology

Anthocyanins are natural red colorants with potential health effects. Mangosteen pericarp composes more than half of the fruit weight and is agriculture waste. The pericarp has high anthocyanin content, comparable to some commercial sources of anthocyanin. The main objective of this study was to stabilize anthocyanins of mangosteen pericarp in order to develop an anthocyanin-based food coloring. In this regard the problems to be overcome were the fast enzymatic browning of mangosteen pericarp and intrinsic instability of anthocyanins. Polyphenol oxidase (PPO) is the main enzyme responsible for the pericarp enzymatic browning. Biochemical characteristics of mangosteen pericarp PPO were determined. PPO showed the greatest substrate specificity towards catechol. The optimum temperature and pH for PPO activity were 50°C and 7.5, respectively. Among the inhibitors with different mechanism of action, oxalic acid, cinnamic acid and cysteine were the most potent inhibitors. Blanching significantly (p<0.05) reduced PPO activity but it was not sufficient for complete enzyme inactivation. The activation energies of polyphenol oxidase inactivation, anthocyanin loss and total color changes were 43.11, 26.49 and 18.86 kJ/mol, respectively, which showed PPO inactivation was the most sensitive parameter towards temperature changes. The effect of combinations of oxalic acid (100-180 mM), cinnamic acid (0.5-1.5 mM) and cysteine (0.5-1.5 mM) as an alternative non-thermal enzyme inhibition method was evaluated. The results showed synergistic effect of oxalic acid with cinnamic acid and additive effect of cysteine with the other inhibitors, suggesting the greater potential of combined inhibitors for reducing PPO activity compared to their individual application. Besides, combined chemical treatment significantly (p<0.05) improved anthocyanin and color stability of mangosteen pericarp compared to non-treated pericarp. The application of mild thermal treatment (5 min steaming) with combined chemical treatment (100 mM oxalic acid, 0.5 mM cinnamic acid and 1.528 mM cysteine) resulted in 99.2% inhibition of PPO. In an attempt to stabilize anthocyanins of mangosteen pericarp, spray drying with maltodextrin (DE 10) was investigated using varying inlet air temperature (140-
180°C), feed pump rate (8-10 rpm) and pericarp to maltodextrin ratio (5:3 to 1:1 w/w). The retention of anthocyanins during spray drying was improved at higher pericarp to maltodextrin ratio and lower inlet air temperature. The stability of mangosteen pericarp powder was studied throughout 12 weeks storage at different temperatures (25 and 40°C) and relative humidity (50-97%). The results showed both parameters negatively ($p<0.05$) affected anthocyanin and color stability.
Abstrak tesis yang dikemukakan kepada Senate Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Doktor Falsafah

PENSTABILAN ANTOSIANIN KULIT MANGGIS (Garcinia mangostana Linn) MELALUI PERENCATAN PEMERANGAN ENZIMATIK DAN PENGERINGAN SEMBUR

Oleh

MAHSA ZIABAKHSH DEYLMADI

Mei 2016

Pengerusi : Profesor Russly Abdul Rahman, PhD
Fakulti : Sains dan Teknologi Makanan

Antosianin merupakan pewarna merah semula jadi yang bermanfaat terhadap kesihatan. Kulit manggis yang merangkumi lebih separuh daripada berat buah merupakan bahan sisa hasil pertanian. Kulit manggis mempunyai kandungan antosianin yang tinggi, setanding dengan beberapa sumber komersial. Objektif utama kajian ini adalah untuk menstabilkan antosianin daripada kulit manggis dan seterusnya menghasilkan pewarna makanan berasaskanannya. Dalam hal ini, masalah yang perlu diatasi adalah pemerangan kulit manggis yang terlalu cepat oleh enzim dan ketidakstabilan unsur intrinsik pigmen antosianin. Polifenol oksidase (PPO) adalah enzim utama yang bertanggungjawab atas pemerangan kulit manggis dan ciri-cirinya ditentukan. PPO menunjukkan kekhususan yang paling tinggi terhadap substrat catechol pada suhu optimum 50°C dan pada pH 7.5. Asid oksalik, asid cinnamic dan cysteine adalah antara perencat yang paling berkesan dengan mekanisme yang berbeza. Proses penceluran dapat mengurangkan aktiviti PPO (p<0.05) secara ketara tetapi tidak dapat menyahaktifkan enzim. Tenaga pengaktifan polifenol oksidase inactivation, kehilangan antosianin dan jumlah perubahan warna adalah 52.7, 26.49 dan 18.86 kJ/mol masing-masing. Ini menunjukkan penyahaktifan PPO adalah parameter yang paling sensitif terhadap perubahan suhu.Gabungan asid oksalik (100-180 mM), asid cinnamic (0.5-1.5 mM) dan cysteine (0.5-1.5 mM) sebagai alternatif bukan haba untuk perencatan enzim dikaji. Asid oksalik menunjukkan kesan sinergi dengan asid cinnamic. Sementara cysteine menunjukkan kesan aditif dengan perencat lain. Hasil kajian menunjukkan gabungan perencat memberi potensi yang lebih besar dalam mengurangkan aktiviti PPO berbanding aplikasi individu.Gabungan kaedah kimia meningkatkan kestabilan antosianin dan warna kulit manggis secara ketara (p<0.05) berbanding dengan kulit yang tidak dirawat. Penggunaan rawatan haba sederhana (5 minit pengukusan) dengan kaedah kimia (100 mM asid oksalik, 0.5 asid mM cinnamic dan 1.528 mM cysteine) berjaya merencat 99.2% aktiviti PPO. Dalam usaha untuk menstabilkan antosianin kulit manggis, kaedah pengeringan sembur telah digunakan untuk mengkaji kesan suhu udara masuk (140-180°C), kadar pam
suapan (8-10 rpm) dan nisbah kulit manggis kepada maltodekstrin DE 10 (5:3-1:1 w/w). Retensi pigmen antosianin meningkat semasa proses pengeringan sembur dengan penggunaan maltodekstrin pada nisbah yang lebih tinggi dan suhu udara masuk yang lebih rendah. Kajian penyimpanan serbuk sepanjang 12 minggu menunjukkan kedua-dua faktor suhu (25 dan 40°C) dan faktor kelembapan relatif (50-97%) memberi kesan negatif ($p<0.05$) terhadap kestabilan antosianin dan warna.
AKNOWLEDGEMENTS

First and foremost, I would like to express my deepest gratitude to Professor Dr. Russly Abdul Rahman, the chairman of my supervisory committee for his guidance, patience, encouragement to develop independent thinking and all the opportunities he made possible for me during this time.

My appreciation is also extended to the members of my supervisory committee, Professor Dr. Jamilah Bakar, Professor Dr. Ching Ping Tan and Associate Professor Dr. Lasekan Olusegun for their advices and comments.

I would like to thank the staff of the Department of Food Technology, and Faculty of Food Science and Technology, UPM for their cooperation.

I wish to thank my lab-mates at Food Processing Laboratory and all my friends who helped me through the rough times and been there to celebrate the good times with.

Last but not least, I would like to extend my deepest appreciation to my family, their never ending love and support despite being far away.
I certify that a Thesis Examination Committee has met on 31 May 2016 to conduct the final examination of Mahsa Ziaabakhsh Deylami on her thesis entitled "Stabilization of Anthocyanins in Mangosteen (Garcinia mangostana Linn) Pericarp Through Inhibition of Enzymatic Browning and Spray-Drying" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Hasanah bt Mohd Ghazali, PhD
Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Chairman)

Seyed Hamed Mirhosseini, PhD
Associate Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Internal Examiner)

Sharifah Kharidah bt Syed Muhammad, PhD
Associate Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Internal Examiner)

Khodir Madan, PhD
Professor
Université De Býjaia
Algeria
(External Examiner)

ZULKARNAIN ZAINAL, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 26 July 2016
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The member of the Supervisory Committee were as follows:

Russly Abdul Rahman, PhD
Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Chairman)

Jamilah Bakar, PhD
Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Member)

Ching Ping Tan, PhD
Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Member)

Lasekan Olusegun, PhD
Associate Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Member)

BUJANG BIM KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: ___________________________ Date: ___________________________

Name and Matric No.: Mahsa Ziaabakhsh Devlami; GS28934
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- Supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: ____________________________
Name of Chairman of Supervisory Committee: Professor Dr. Russly Abdul Rahman

Signature: ____________________________
Name of Member of Supervisory Committee: Professor Dr. Jamilah Bakar

Signature: ____________________________
Name of Chairman of Supervisory Committee: Professor Dr. Ching Ping Tan

Signature: ____________________________
Name of Member of Supervisory Committee: Associate Professor Dr. Lasekan Olusegun
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td></td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF SYMBOLS AND ABBREVIATIONS</td>
<td></td>
<td>xviii</td>
</tr>
</tbody>
</table>

CHAPTER

1 GENERAL INTRODUCTION

2 LITERATURE REVIEW

2.1 Mangosteen
2.2 Anthocyanins
2.3 Anthocyanin Stability
 2.3.1 Structural Effects
 2.3.2 Enzymes
 2.3.3 pH
 2.3.4 Temperature
 2.3.5 Light Exposure
 2.3.6 Ascorbic Acid
 2.3.7 Sugars
 2.3.8 Gums and Carbohydrates
2.4 Polyphenol Oxidase
 2.4.1 Inhibition of Polyphenol Oxidase Activity
 2.4.2 Thermal Inactivation of Polyphenol Oxidase
 2.4.3 Chemical Inactivation of Polyphenol Oxidase
 2.4.3.1 Reducing Agents
 2.4.3.2 Acidulants
 2.4.3.3 Chelating Agents
 2.4.3.4 Competitive Inhibitors
 2.4.3.5 Combined treatment
 2.4.4 Effect of Enzyme Inhibition on Anthocyanin Stability
2.5 Microencapsulation
 2.5.1 Factors Affecting Stability of Anthocyanins During Spray Drying
 2.5.1.1 Carrier Agent
 2.5.1.2 Drying Air
2.6 Kinetic Modeling of Food Quality Attributes
3 BIOCHEMICAL CHARACTERIZATION OF MANGOSTEEN PERICARP POLYPHENOL OXIDASE

3.1 Introduction 30
3.2 Materials and Methods 31
 3.2.1 Plant Materials and Chemicals 31
 3.2.2 Extraction of Crude Polyphenol Oxidase 31
 3.2.3 Determination of Protein Content of Enzyme Extract 32
 3.2.4 Determination of Crude Polyphenol Oxidase Activity 32
 3.2.5 Substrate Specificity 32
 3.2.6 Determination of Optimum pH of Polyphenol Oxidase Activity 33
 3.2.7 Determination of Optimum Temperature of Polyphenol Oxidase Activity 33
 3.2.8 Determination the Effect of Inhibitors on Polyphenol Oxidase Activity 33
 3.2.9 Statistical Analysis 34
3.3 Results and Discussion 34
 3.3.1 Substrate Specificity 35
 3.3.2 The Optimum pH of Polyphenol Oxidase Activity 35
 3.3.3 The Optimum Temperature of Polyphenol Oxidase Activity 36
 3.3.4 The Effect of Chemical Inhibitors on Polyphenol Oxidase Activity 37
3.4 Conclusion 41

4 EFFECT OF THERMAL TREATMENT ON POLYPHENOL OXIDASE ACTIVITY, ANTHOCYANIN STABILITY AND COLOR CHANGES OF MANGOSTEEN PERICARP

4.1 Introduction 42
4.2 Materials and Methods 43
 4.2.1 Plant Materials and Chemicals 43
 4.2.2 Extraction of Crude Polyphenol oxidase 44
 4.2.3 Determination of Crude Polyphenol Oxidase Activity 44
 4.2.4 Extraction of Anthocyanins 44
 4.2.5 Determination of Total Anthocyanin Content 44
 4.2.6 Steam Blanching 45
 4.2.7 Water Blanching 45
 4.2.8 Isothermal Heat Treatment 45
 4.2.9 Determination of Kinetics Parameters 46
 4.2.10 Color Measurement 47
 4.2.11 Statistical Analysis 47
4.3 Results and Discussion 47
 4.3.1 Effect of Water Blanching and Steam Blanching on Polyphenol Oxidase Activity 47
4.3.2 Effect of Water Blanching and Steam Blanching on Recovery of Anthocyanins from Mangosteen Pericarp
4.3.3 Anthocyanins’ Isothermal Degradation
4.3.4 Effect of Thermal Treatment on Color Properties

4.4 Conclusion

5 EFFECT OF CHEMICAL TREATMENT ON POLYPHENOL OXIDASE ACTIVITY, ANTHOCYANIN STABILITY AND COLOR CHANGES OF MANGOSTEEN PERICARP
5.1 Introduction
5.2 Materials and Methods
 5.2.1 Chemical Treatment
 5.2.2 Determination of Polyphenol Oxidase Activity
 5.2.3 Determination of Total Anthocyanin Content
 5.2.4 Color Measurement
 5.2.5 Statistical Analysis
5.3 Results and Discussion
 5.3.1 Effect of Combined Inhibitors on Polyphenol Oxidase Activity
 5.3.2 Effect of Combined Inhibitors on Anthocyanin Retention
 5.3.3 Effect of Combined Inhibitors on Color Changes
 5.3.4 Effect of Combination of Chemical and Thermal Treatment on Polyphenol Oxidase Activity
5.4 Conclusion

6 SPRAY DRYING MICROENCAPSULATION OF MANGOSTEEN PERICARP
6.1 Introduction
6.2 Materials and Methods
 6.2.1 Preparation of Feed Mixture and Spray Drying
 6.2.2 Feed Analysis
 6.2.3 Moisture Content
 6.2.4 Water Activity
 6.2.5 Hygroscopicity
 6.2.6 Bulk Density
 6.2.7 Color Measurement of Powder
 6.2.8 Particle Sizing
 6.2.9 Solubility Measurement
 6.2.10 Glass Transition Temperature
 6.2.11 Scanning Electron Microscopy (SEM)
 6.2.12 Anthocyanin Analysis
 6.2.13 Statistical Analysis
6.3 Results and Discussion
 6.3.1 Effect of Spray Drying on Outlet Air Temperature
 6.3.2 Effect of Spray Drying on Moisture Content
 6.3.3 Effect of Spray Drying on Water Activity
 6.3.4 Effect of Spray Drying on Hygroscopicity

xii
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3.5</td>
<td>Effect of Spray Drying on Particle Size Distribution</td>
<td>83</td>
</tr>
<tr>
<td>6.3.6</td>
<td>Effect of Spray Drying on Bulk Density</td>
<td>85</td>
</tr>
<tr>
<td>6.3.7</td>
<td>Effect of Spray Drying on Solubility</td>
<td>85</td>
</tr>
<tr>
<td>6.3.8</td>
<td>Effect of Spray Drying on Glass Transition Temperature</td>
<td>86</td>
</tr>
<tr>
<td>6.3.9</td>
<td>Morphology</td>
<td>86</td>
</tr>
<tr>
<td>6.3.10</td>
<td>Effect of Spray Drying on Color Parameters</td>
<td>88</td>
</tr>
<tr>
<td>6.3.11</td>
<td>Effect of Spray Drying on Anthocyanin Retention</td>
<td>90</td>
</tr>
<tr>
<td>6.4</td>
<td>Conclusion</td>
<td>90</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>STORAGE STABILITY OF SPRAY-DRIED MANGOSTEEN PERICARP POWDER</td>
<td>92</td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>92</td>
</tr>
<tr>
<td>7.2</td>
<td>Materials and Methods</td>
<td>92</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Storage Stability of Spray-dried Powder</td>
<td>93</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Determination of Total Anthocyanin Content</td>
<td>93</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Determination of Kinetics Parameters</td>
<td>93</td>
</tr>
<tr>
<td>7.2.4</td>
<td>Color Measurement</td>
<td>93</td>
</tr>
<tr>
<td>7.2.5</td>
<td>Statistical Analysis</td>
<td>93</td>
</tr>
<tr>
<td>7.3</td>
<td>Results and Discussion</td>
<td>94</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Effect of Storage on the Anthocyanin Stability of Mangosteen Pericarp Powder</td>
<td>94</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Effect of Storage on the Color Stability of Mangosteen Pericarp Powder</td>
<td>98</td>
</tr>
<tr>
<td>7.4</td>
<td>Conclusion</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>GENERAL CONCLUSION AND RECOMMENDATIONS FOR FUTURE RESEARCH</td>
<td>101</td>
</tr>
<tr>
<td>8.1</td>
<td>Conclusion</td>
<td>101</td>
</tr>
<tr>
<td>8.2</td>
<td>Recommendations for Future Studies</td>
<td>102</td>
</tr>
</tbody>
</table>

REFERENCES 104
APPENDICES 128
BIODATA OF STUDENT 132
LIST OF PUBLICATIONS 133
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Major Mangosteen Producing Countries</td>
<td>4</td>
</tr>
<tr>
<td>2.2 The Medicinal Properties of Mangosteen Pericarp Extract</td>
<td>6</td>
</tr>
<tr>
<td>2.3 Naturally Occurring Anthocyanins</td>
<td>9</td>
</tr>
<tr>
<td>2.4 Occurrence of Anthocyanins in Selected Fruits and Vegetables</td>
<td>10</td>
</tr>
<tr>
<td>2.5 Blanching Conditions of Selected Fruits and Vegetables</td>
<td>19</td>
</tr>
<tr>
<td>2.6 Summary of Combination of Polyphenol Oxidase Inhibitors Applied in Different Products</td>
<td>23</td>
</tr>
<tr>
<td>2.7 Summary of Spray Drying Conditions Used for Different Sources of Anthocyanins</td>
<td>26</td>
</tr>
<tr>
<td>2.8 Kinetics of Changes in Quality Parameters During Food Processing</td>
<td>29</td>
</tr>
<tr>
<td>3.1 Substrate Specificity of Mangosteen Pericarp Polyphenol Oxidase</td>
<td>35</td>
</tr>
<tr>
<td>3.2 Effect of Inhibitors on Mangosteen Pericarp Polyphenol Oxidase Activity</td>
<td>39</td>
</tr>
<tr>
<td>4.1 Reaction Rate Constants and Half-Life Times and Parameters for Eyring-Polany Model for Thermal Inactivation of Mangosteen Pericarp Polyphenol Oxidase</td>
<td>49</td>
</tr>
<tr>
<td>4.2 Reaction Rate Constants and Half-Life Times of Isothermal Degradation of Mangosteen Pericarp Anthocyanins</td>
<td>52</td>
</tr>
<tr>
<td>4.3 Color Parameters of Mangosteen Pericarp Anthocyanin Extract after 12 min of Thermal Treatment</td>
<td>53</td>
</tr>
<tr>
<td>4.4 Rate Constants and Activation Energies of Color Changes of Mangosteen Pericarp Extract During Thermal Treatment</td>
<td>54</td>
</tr>
<tr>
<td>5.1 Levels of Independent Variables Established According to the Central Composite Design (CCD)</td>
<td>58</td>
</tr>
<tr>
<td>5.2 The Matrix of the Central Composite Design for Combination of Polyphenol Oxidase Inhibitors</td>
<td>59</td>
</tr>
</tbody>
</table>
5.3 Effect of Combined Enzyme Inhibitors on Polyphenol Oxidase Activity and Anthocyanin Retention of Mangosteen Pericarp 61

5.4 Analysis of Variance for the Polyphenol Oxidase Activity, Anthocyanin Retention and Color Changes in Reduced Models 62

5.5 Regression Coefficients, R^2 and Lack of Fit for Reduced Models 63

5.6 Effect of Combined Inhibitors on Color Parameters of Mangosteen Pericarp 68

5.7 Effect of Thermal Treatment Combined with Chemical Treatment on Polyphenol Oxidase Activity 70

6.1 The Experimental Design for Spray Drying Microencapsulation of Mangosteen Pericarp 77

6.2 Effect of Spray Drying Conditions on Physico-Chemical Properties of Mangosteen Pericarp Powder 79

6.3 Analysis of Variance of the Effects of Spray Drying Conditions on Characteristics of Mangosteen Pericarp Powder 80

6.4 Effect of Spray Drying on Color Parameters of Mangosteen Pericarp Powder 89

7.1 ANOVA Table of the Effect of Storage Conditions on Anthocyanin Stability and Color Parameters of Spray-dried Powder 95

7.2 Anthocyanin Content (mg/100g) of Mangosteen Pericarp Powder Stored under Different Temperatures and Relative Humidity 96

7.3 Effect of Temperature and Water Activity on Storage Stability of Spray-Dried Mangosteen Pericarp Anthocyanins 97

7.4 Values of Normalized L^*, a^*, b^* and ΔE of Mangosteen Pericarp Powder after 12 Weeks Storage Under Different Temperatures and Relative Humidity 99

7.5 Rate constants for Kinetics of Color Changes of Mangosteen Pericarp Powder during Storage Under Different Temperatures and Relative Humidity 100
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Mangosteen Fruit; Exterior (A), Pulp (B) and Pericarp (C)</td>
<td>5</td>
</tr>
<tr>
<td>2.2</td>
<td>Skeleton Structures Of Cyanidin 3-Sophoroside (A) And Cyanidin 3-Glucoside (B)</td>
<td>7</td>
</tr>
<tr>
<td>2.3</td>
<td>Structure of Common Anthocyanidins</td>
<td>9</td>
</tr>
<tr>
<td>2.4</td>
<td>Schematic Mechanism of Anthocyanin Degradation by O-Diphenol Polyphenol Oxidase</td>
<td>12</td>
</tr>
<tr>
<td>2.5</td>
<td>Chemical Structure of Anthocyanins at Different pH Values: (A) Red Flavylium Cation, (B) Yellow Chalcone, (C) the Blue Quinonoidal Base, (D) Colorless Carbinol Pseudo-base</td>
<td>13</td>
</tr>
<tr>
<td>2.6</td>
<td>Schematic Mechanism of Polyphenol Oxidase Reactions</td>
<td>17</td>
</tr>
<tr>
<td>3.1</td>
<td>Progress Curve for Polyphenol Oxidase Reaction Measured Using Catechol as Substrate; Temperature 50°C; pH 7.5</td>
<td>34</td>
</tr>
<tr>
<td>3.2</td>
<td>Effect of pH on Mangosteen Pericarp Polyphenol Oxidase Activity</td>
<td>36</td>
</tr>
<tr>
<td>3.3</td>
<td>Effect of Temperature on Mangosteen Pericarp Polyphenol Oxidase Activity</td>
<td>37</td>
</tr>
<tr>
<td>3.4</td>
<td>Progress Curve for Polyphenol Oxidase Reaction Measured Using Catechol as Substrate; Temperature 50°C; pH 7.5</td>
<td>38</td>
</tr>
<tr>
<td>4.1</td>
<td>Thermal Inactivation Curves of Mangosteen Pericarp Polyphenol Oxidase</td>
<td>48</td>
</tr>
<tr>
<td>4.2</td>
<td>Effect of Blanching at 60, 80 and 100°C on Anthocyanin Recovery from Mangosteen Pericarp Extract.</td>
<td>50</td>
</tr>
<tr>
<td>4.3</td>
<td>Thermal Degradation Curves of Mangosteen Pericarp Anthocyanins</td>
<td>51</td>
</tr>
<tr>
<td>5.1</td>
<td>Response Surface for Remaining Polyphenol Oxidase Activity as a Function of Cinnamic Acid and Oxalic Acid Concentration at 1.5 mM Cysteine Concentration</td>
<td>65</td>
</tr>
<tr>
<td>5.2</td>
<td>Response Surface for Anthocyanin Retention as a Function of Cysteine and Oxalic Acid Concentration at 1 mM Cysteine Concentration</td>
<td>66</td>
</tr>
</tbody>
</table>
6.1 Particle Size Distribution of Mangosteen Pericarp Powder Produced with Pericarp: Maltodextrin 5:4 W/W, Inlet Air Temperature 160 °C, Feed Pump Rate 8rpm

6.2 Micrograph of Spray-dried Mangosteen Pericarp Particles Produced with Pericarp: Maltodextrin 5:4 w/w; Inlet Air Temperature 160 °C, Feed Pump Rate 8 rpm in Different Magnifications

7.1 Moisture Content of Mangosteen Pericarp Powder Stored at Different Conditions
LIST OF SYMBOLS AND ABBREVIATIONS

L Liter
v/v Volume per volume
w/w Weight per weight
min Minute
rpm Rotation per Minute
g Gram
M Molarity
mL Milliliter
\(\mu L \) Microliter
U Unit of Enzyme Activity
\(C_t \) Enzyme Activity in Treated Sample
\(C_c \) Enzyme Activity in Control Sample
mM Millimolar
IC\(_{50}\) 50% Inhibitory Concentration
ANOVA Analysis of Variance
\(p \) Significance Difference
mg Milligram
SD Standard deviation
MW Molecular Weight g/mol
DF Dilution Factor
\(\varepsilon \) Molar Absorptivity Coefficient L/cm/mol
\(l \) Path Length cm
\(t \) Time min or h
\(t_{1/2} \) Half-life Time min or h
\(E_a \) Activation Energy kJmol\(^{-1}\)
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>Universal Gas Constant</td>
<td>8.314 J/mol K</td>
</tr>
<tr>
<td>T</td>
<td>Temperature</td>
<td>°K or °C</td>
</tr>
<tr>
<td>k</td>
<td>Rate constant</td>
<td>min$^{-1}$</td>
</tr>
<tr>
<td>k</td>
<td>Boltzmann constant</td>
<td>1.381×10^{-23} JK$^{-1}$</td>
</tr>
<tr>
<td>h</td>
<td>Lanck’s constant</td>
<td>6.626×10^{-34} Js</td>
</tr>
<tr>
<td>L^*</td>
<td>Lightness</td>
<td></td>
</tr>
<tr>
<td>a^*</td>
<td>Redness or Greenness</td>
<td></td>
</tr>
<tr>
<td>b^*</td>
<td>Yellowness or Blueness</td>
<td></td>
</tr>
<tr>
<td>ΔE</td>
<td>Total Color Difference</td>
<td></td>
</tr>
<tr>
<td>CRD</td>
<td>Complete Randomized Design</td>
<td></td>
</tr>
<tr>
<td>R^2</td>
<td>Correlation Coefficient</td>
<td></td>
</tr>
<tr>
<td>χ^2</td>
<td>Chi-square</td>
<td></td>
</tr>
<tr>
<td>SEM</td>
<td>Standard Error of Mean</td>
<td></td>
</tr>
<tr>
<td>RSM</td>
<td>Response Surface Methodology</td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>Hour</td>
<td></td>
</tr>
<tr>
<td>η</td>
<td>Apparent Viscosity</td>
<td>s$^{-1}$</td>
</tr>
<tr>
<td>μm</td>
<td>Micrometer</td>
<td></td>
</tr>
<tr>
<td>T_g</td>
<td>Glass Transition Temperature</td>
<td>°C</td>
</tr>
</tbody>
</table>
CHAPTER 1

GENERAL INTRODUCTION

Color is the first characteristics of a food product that is noticed and it predetermines the expectation of consumer for flavor and quality. It may even affects consumer perception of flavor and taste (Hoegg and Alba, 2006). Color may be added to food products for enhancing the color that already presents in food, minimizing color variation between processing batches, restoring color lost during food processing and adding color to uncolored food. Food colorants can be classified based on their origin as natural colors, natural-identical colors, synthetic colors and inorganic colors (Mortensen, 2006). Natural pigments are obtained from natural edible sources, usually plant material. Insects, algae, cyanobacteria and fungi are also the other sources of natural colorants(Mortensen, 2006). Natural-identical colors are produced by chemical synthesis and have an identical chemical structure to colorants found in nature. Synthetic colorants are chemically synthesized and are not found in nature.

In recent years, food containing synthetic colors has been fallen into disfavor with consumers, partly due to an increasing trend to avoid foods containing artificial additives and also some drawbacks of synthetic colors have been widely discussed for example a link between the consumption of certain azo-dyes and their effect on childhood behavior. This has led to a preference for using natural sources of colorant in the food industry and removal of artificial colors from food products. Colors from natural sources are generally permitted. Natural colors can be used in a form of coloring foodstuff. A plant product with coloring property is called a “coloring foodstuff”, which is manufactured by physical processes that results in a concentrate or powder.

Anthocyanins, carotenoids, betalains and chlorophyll are natural colors that are widely used in every day foodstuff. Anthocyanins are water-soluble pigments, which are responsible for red to blue color of many fruits and vegetables. They are mainly used as natural red colors. To date, there is no report of anthocyanin toxicity. Anthocyanins have also health beneficial effects such as high antioxidant activity, reduction of risks of cardiovascular diseases, stroke, cancer and anti-inflammatory activity(He and Giusti, 2010). Anthocyanins can be found in wide range of fruits and vegetables such as grapes, blackcurrants, cherries, raspberries, strawberries, red cabbage, red onion, purple corn, red potato, hibiscus flowers, black rice, and eggplants. In order to make anthocyanin application economic, the source should be abundant and has high anthocyanin concentration. That is the reason why grape pomace, a byproduct of wine industry, is the most common source for anthocyanin extraction(Mortensen, 2006).
Anthocyanins are susceptible to degradation through number of factors such as the high temperatures, pH (mainly pH higher than 7), presence of light, presence of ascorbic acid, sulfite, enzymes among other factors (Santos and Albarelli, 2013). Anthocyanins are more stable at lower moisture content. Spray drying is a common method evaluated for production of anthocyanin powder.

Mangosteen (Garcinia mangostana Linn.) is well known as “the queen of fruits”. It is cultivated in Central America, tropical Africa and mainly Southeast Asia (Dembitsky et al., 2011). Fruits consist of two parts, the purplish pericarp and the white inner pulp. The pulp is sweet and juicy and is served fresh or it is processed into juice, jam and syrup. The pericarp composes more than half of the fruit weight and is considered as agriculture waste (Chisté et al., 2010). The purple color of the mangosteen pericarp is mainly due to anthocyanins. Palapol et al.(2009) has reported anthocyanin concentration of 182.4 to 423.5 mg/100 gin mangosteen pericarp. High anthocyanin content of mangosteen pericarp is comparable to that of some commercial sources of anthocyanin such as grapes, 6-600 mg/100g and red cabbage, 25 mg/100 (Giusti and Wrolstad, 2001). Based on availability and anthocyanin concentration, mangosteen pericarp is a promising source of natural color. Nevertheless, the rapid browning of pericarp after it is cut or crushed limits its use as a red colorant. Enzymatic browning, mainly polyphenol oxidase activity is the reason for this discoloration. Among the fruits susceptible to enzymatic browning such as lulo, mangosteen, mango, banana passionfruit, papaya and guava, mangosteen pulp showed one of the highest activity, while polyphenol oxidase activity in mango and banana passionfruit was lower (Falguera et al., 2012). Enzymatic browning negatively affects the color, taste, flavor, and nutritional value of food products.

Mangosteen pericarp is a rich source of fiber (Winuprasith and Suphantharika, 2013) and different phenolic compounds. Several studies have been conducted on processing of the pericarp. They focused specially on xanthons (Chaovanalikit et al., 2012; Cheok et al., 2013; Suvarnakuta et al., 2011) and some on anthocyanins (Cheok et al., 2013; Chisté et al., 2010). In spite of high polyphenol oxidase activity in mangosteen pericarp and the obvious fast browning, in none of the studies any pretreatment step was applied to control the enzyme activity in the pericarp. Suvarnakuta et al. (2011) suggested enzymatic degradation may contribute to xanthon loss during drying of mangosteen pericarp.

Many strategies have been proposed to prevent enzymatic browning among which thermal treatment is the most conventional process. Using enzyme inhibitors is an alternative non-thermal method, among which the use of acidulants is very common. Enzymatic browning of fruits is pH dependent. Lowering the pH is important for the control of discoloration even in acidic fruits. Although PPO activity may be negligible at the natural pH value of the fruit, it may be sufficient to cause browning (Vámos - Vigyázó and Haard, 1981).
It is necessary to apply an efficient enzyme inactivation method while the other quality parameters of product are well preserved. To reach this goal, choice of inactivation method should be made based on characteristics of polyphenol oxidase. Variation in the characteristics of polyphenol oxidase from different plant sources is a well known phenomenon. In case of mangosteen pericarp no information is available in literatures on characteristics of its polyphenol oxidase.

The main objective of this study is to stabilize anthocyanins of mangosteen pericarp in order to develop an anthocyanin-based coloring foodstuff. This goal offers unique challenges, among which are to inhibit enzymatic browning and to protect anthocyanins against environmental influences.

Therefore, the specific objectives of this thesis are:

1- To determine the biochemical characteristics of polyphenol oxidase of mangosteen pericarp;
2- To determine and quantify the effects of thermal treatment on polyphenol oxidase activity, anthocyanin stability and color changes of mangosteen pericarp;
3- To evaluate the effect of combined polyphenol oxidase inhibitors on polyphenol oxidase activity and to evaluate their effects on anthocyanin and color stability of mangosteen pericarp;
4- To assess the retention of mangosteen pericarp anthocyanins during spray drying and to determine the effect of process variables on powders properties;
5- To monitor the changes in anthocyanin and color of mangosteen pericarp powder during storage.
REFERENCES

Cao, S., Liu, L., Lu, Q., Xu, Y., Pan, S., Wang, K., 2009. Integrated effects of ascorbic acid, flavonoids and sugars on thermal degradation of anthocyanins in blood orange juice. European Food Research and Technology. 228, 975–983.

Cheok, C.Y., Chin, N.L., Yusof, Y. a., Talib, R. a., Law, C.L., 2013. Optimization of total monomeric anthocyanin (TMA) and total phenolic content (TPC) extractions from mangosteen (Garcinia mangostana Linn.) hull using ultrasonic treatments. Industrial Crops and Products. 50, 1–7.

Cipriano, P.D.A., Ekici, L., Barnes, R.C., Gomes, C., Talcott, S.T., de Aguiar Cipriano, P., Ekici, L., Barnes, R.C., Gomes, C., Talcott, S.T., 2015. Pre-
heating and polyphenol oxidase inhibition impact on extraction of purple sweet potato anthocyanins. Food Chemistry. 180, 227–234.

De Rosso, V. V., Mercadante, A.Z., 2007. The high ascorbic acid content is the main cause of the low stability of anthocyanin extracts from acerola. Food Chemistry. 103, 935–943.

Garcia-Palazon, A., Suthanthangjai, W., Kajda, P., Zabetakis, I., 2004. The effects of high hydrostatic pressure on β-glucosidase, peroxidase and polyphenoloxidase in red raspberry (Rubus idaeus) and strawberry (Fragaria×ananassia). Food Chemistry. 88, 7–10.

Guerrero-Beltrán, J.A., Swanson, B.G., Barbosa-Cánovas, G. V., 2005. Inhibition of polyphenoloxidase in mango puree with 4-hexylresorcinol, cysteine and ascorbic acid. LWT - Food Science and Technology. 38, 625–630.

Hou, Z., Qin, P., Zhang, Y., Cui, S., Ren, G., 2013. Identification of anthocyanins isolated from black rice (Oryza sativa L.) and their degradation kinetics. Food Research International. 50, 691–697.

Kumar, D., Mishra, D.S., Chakraborty, B., Kumar, P., 2013. Pericarp browning and quality management of litchi fruit by antioxidants and salicylic acid during ambient storage. Journal of Food Science and Technology. 50, 797–802.

Pothitirat, W., Chomnawang, M.T., Supabphol, R., Gritsanapan, W., 2009. Comparison of bioactive compounds content, free radical scavenging and anti-acne inducing bacteria activities of extracts from the mangosteen fruit rind at two stages of maturity. Fitoterapia 80, 442–447.

