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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment 
of the requirement for the Degree of Master of Science 

A TOOL FOR MODELING SOFTWARE SECURITY REQUIREMENTS 
USING SECURITY PATTERNS 

By

ZULFIKAR AHMED MAHER 

October 2016

Chairman : Associate Professor Nor FazlidaMohdSani, PhD
Faculty : Computer Science and Information Technology 

Security requirements of today’s software systems are increasing and becoming 
complex. Software industry has well recognized that security should be incorporated 
at earlier stages of the software development. It is not easy for the programmers and 
developers to incorporate security in the software without proper expertise in it. For 
that reason different security patterns were proposed by the security experts for 
implementation of security by non-security experts. A security pattern provides well 
proven solution for the existing security problem in a specific context provided by the 
security experts. Security patterns usually are in textual format due to which they are 
often neglected at the design level. Security patterns do not constitute an intuitive 
solution that can be used by software designers because they are not useful without a 
systematic way to apply them. Security patterns lack comprehensive structure that 
conveys essential information inherent to security engineering (SE). This research 
presentsmethodology for presenting secure software requirements using Security 
Patterns that is tailored to meetthe needs of secure system development. In order to 
maximize comprehensibility, well-known notations of Unified Modeling Language 
(UML) is used to represent structuraland behavioral aspects of design. Only 13% of 
the papers published till 2015 involve tooling support for security patterns. To 
encounter this limitation, a methodology which focuses on the providing solution 
provided by the security pattern in the form of standard UML notations. As the 
proposed method results in an extension of Deployment diagram, it is named as 
Security Patterns Deployment Diagram (SPDD). It represents the solution provided 
by security patterns in standard UML graphical notation, which includes the 
compulsory elements of security patterns that are context, problem, actors, relations 
and solution including where attacks will be fended off in the early design stage of the 
software system in a single view. SPDD is proposed along with security modeling tool 
called SPDD Editor for modeling security pattern solution using proposed 
methodology. Security patterns research uses UML for modeling regardless of 
security patterns to be dealt with. It could be because UML is the most widely accepted 
formalism for the analysis and design of software. Therefore, itis considered as 
security pattern modeling method. This extension of deployment diagram provides a 
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suitable way to define semantics for each solution provided by security pattern and 
allowing developers to easily understand software security requirements and their 
implementations in detail. A Plug-in for SeaMonster security designing tool has been 
developed to support the designing of the proposed diagram using Eclipse Graphical 
Modeling Framework (GMF) and Eclipse Graphical Editor Framework (GEF). The 
validation of SPDD has been done with the Hospital Information System (HIS) and 
E-Commerce System case studies. 

An expert review was performed to verify the proposed methodology and proposed 
tool support. SPDD editor tool and both methods SPDD and Component based 
application (CBA) were also evaluated by three experts in the field. The expert review 
results showed positive results towards acceptance of SPDD method and tool. 
Experimental comparison with twenty participants was also performed to validate the 
effectiveness and to find out the better method in terms of designing solution provided 
by security patterns from the participant’s point of view. The CBA method was 
selected to compare with proposed SPDD method because of the fact that most of the 
programmers and developers usually known to component diagram and there is no 
need to teach them its application and they can easily perform the tasks related to CBA 
method and also security pattern modeling application using CBA is previously 
proposed in literature.  The experimental results from participants showed that there 
is a significant difference in designing threats and mitigation using SPDD editor in 
two methods. The SPDD method is used to design more threats and mitigation as 
compared to CBA method. By using proposed methodology and SPDD editor tool it 
is easier for the non-security expert to incorporate security at earlier stages of software 
development. It provides the facility of designing the security requirements in the 
architecture at design stage with incorporating expert knowledge of the security 
experts provided by the security patterns.  
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 
memenuhi keperluan untuk Ijazah Master Sains 

PERALATAN UNTUK KEPERLUAN KESELAMATAN 
PERMODELAN PERISIAN MENGGUNAKAN CORAK KESELAMATAN 

Oleh 

ZULFIKAR AHMED MAHER 

Oktober 2016
  

Pengerusi : Profesor Madya Nor FazlidaMohdSani, PhD
Fakulti : Sains Komputer dan Teknologi Maklumat 

Industri perisian telah mengenal pasti bahawa faktor keselamatan perlu diterapkan 
pada peringkat awal pembangunan perisian. Secara praktikal bukan mudah bagi 
pengaturcara untuk menggabungkan keselamatan dalam perisian tanpa memiliki 
kepakaran yang tepat mengenainya. Oleh sebab itu, corak keselamatan yang berbeza 
telah dicadangkan oleh pakar-pakar keselamatan bagi pelaksanaan sistem keselamatan 
kepada bukan pakar-pakar keselamatan. Corak keselamatan mampu memberi 
penyelesaian yang berkesan untuk masalah keselamatan yang sedia ada dalam konteks 
tertentu yang dicadangkan oleh pakar-pakar keselamatan. Kebiasaannya corak 
keselamatan dalam format teks menyebabkan ia sering diabaikan pada peringkat reka 
bentuk. Corak keselamatan bukan merupakan penyelesaian intuitif yang boleh 
digunakan oleh pereka perisian kerana ia tidak berkesan tanpa adanya cara yang 
sistematik untuk diaplikasikan. 

Kekurangan pada corak keselamatan dapat mendedahkan maklumat penting kepada 
sesiapa yang tidak berkaitan. Oleh itu ,pihak keselamatan mencadangkan arahan untuk 
menghentikan penyalahgunaan maklumat yang khusus perlu digunakan dalam 
meningkatkan faktor keselamatan. Bagi menangani isu ini, kaedah metodologi lebih 
menjurus kepada penyelesaian merupakan corak keselamatan dalam bentuk Unified 
Modeling Language (UML) notasi standard. Kami mencadangkan lanjutan daripada 
rajah penggunaan UML dipanggil Rajah Penggunaan Corak Keselamatan (SPDD). Ini 
merupakan penyelesaian yang diberikan oleh corak keselamatan standard notasi UML 
grafik, yang merangkumi elemen wajib corak keselamatan iaitu konteks, masalah, 
pelakon, hubungan dan penyelesaian termasuk dapat menghalang serangan pada 
peringkat reka bentuk awal sistem perisian dalam paparan tunggal. Lanjutan rajah 
penggunaan menyediakan cara yang sesuai untuk menentukan semantik bagi setiap 
penyelesaian yang disediakan oleh corak keselamatan dan membolehkan pengguna 
dengan mudah memahami keperluan sistem keselamatan dan pelaksanaannya secara 
terperinci. Plug-in untuk alat keselamatan SeaMonster telah diwujudkan untuk 
menyokong aktiviti gambar rajah yang dicadangkan menggunakan Rangka Kerja 
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Eclipse Grafik Model (GMF) dan Rangka Kerja Editor Grafik Eclipse (GEF). 
Perbandingan SPDD telah dilakukan dalam kajian Sistem Maklumat Hospital (HIS) 
dan Sistem E-Perdagangan.   

Semekan pakar yang dilakukan untuk mengesahkan kaedah yang dicadangkan dan 
sokongan peralatan yang dicadangkan. Peralatan editorSPDD dan kedua-dua kaedah 
SPDD dan Aplikasi BerdasarkanKomponen (CBA) turut dinilai oleh tiga pakar dalam 
bidang ini. Keputusan semakanpakar menunjukkan hasil yang positif terhadap 
penerimaan kaedah SPDD dan peralatan. perbandingan eksperimen dengan dua puluh 
peserta juga telah dilakukan untuk mengesahkan keberkesanan dan untuk mengetahui 
kaedah yang lebih baik dari segi mereka bentuk penyelesaian yang disediakan oleh 
corak keselamatan dari sudut pandanganpeserta. Kaedah CBA telah dipilih untuk 
membuat perbandingan dengan kaedah SPDD yang dicadangkan kerana hakikat 
bahawa kebanyakan pengaturcara dan pembangun biasanya diketahuisebagai rajah 
komponen dan tidak ada keperluan untuk mengajar mereka mengaplikasinia dan 
mereka dengan mudah boleh melaksanakan tugas-tugas yang berkaitan dengan kaedah 
CBA dan juga aplikasi pemodelancorak keselamatan menggunakan CBA adalah 
sebelum ini dicadangkan dalam kesusasteraan. Keputusan eksperimen daripada 
peserta menunjukkan bahawa terdapat perbezaan yang signifikan dalam mereka 
bentuk ancaman dan penguranganya menggunakan editorSPDD dalam dua kaedah. 
Kaedah SPDD digunakan untuk mereka bentuk lebih ancaman dan pengurangan 
berbanding kaedah CBA. Dengan menggunakan kaedah yang dicadangkan dan 
peralatan editor SPDD ia adalah lebih mudah untuk bukanpakar keselamatan untuk 
menggabungkan keselamatan di peringkat awal pembangunan perisian. Ia 
menyediakan kemudahan mereka bentuk keperluan keselamatan dalam seni bina pada 
peringkat reka bentuk dengan menggabungkan pengetahuan pakar daripada pakar-
pakar keselamatan yang disediakan oleh corak keselamatan. 
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

Traditionally, security in software development life cycle (SDLC) is not considered at 
early stages, usually it is incorporated at later stages. Realizing security at later stages 
of software development (SD) results in increased risks of occurring security flaws. 
Fixing system risksand vulnerabilities after SDcost high for developers and 
users.There are many best practices are available to address these issues, but often are 
difficult to reuse due to their implementation-specific nature. Furthermore,
understanding of the root causes of security flaws in detail has led to a greater 
importance of security into design phase. For this reason security patterns were 
proposed by security experts for implementing security in the software system by the 
non-security experts and for those with least expertise in security implementation.  

Security pattern provides well proven documented description of a solution for the 
recurring security problem (Bouaziz&Kammoun, 2016) in a specific context in the 
textual format by the security experts. It is often neglected by the software developer 
because of the lack of the guidance provided for their concrete application(Bouaziz 
and Coulette, 2012). Security patterns alone are not sufficient because of thelack of 
providing systematic guidelines in order to allow their easy application. That is why 
at the design level these patterns are often neglected and unable to provide clear 
solution that can be used by software developers(Bouaziz and Coulette, 2012).
Considering this situation, using standard modeling languages such as UML (Unified 
Modeling Language) for providing solution gathered by security experts in a security 
patterns is helpful for both software architects for designing a secure architecture as 
well for the software developers to understand the solution provided by security 
pattern.    

1.1.1 Software security andsecurity patterns 

Security is a non-functional property that software developers have to implement 
during the SD. The security requirements of today’s software systems are increasing 
day by day and it is not easy for software developers to incorporate security in the 
software without proper expertise in security. During development of software, faults 
and flaws are introduced either from the implementation or from the design of the 
software. During runtime, these faults and flaws can propagate into failures that can 
result in vulnerabilities. Security flaws and presence of vulnerabilities needs 
developers spend more time on maintenance instead of new features and also increases 
the total cost. Typically software developers are experts in the functional requirements 
with a minimal security knowledge, which causes weak security decisions (Mouradet 
al.,2010). Security patterns were proposed for this reason by security experts so that 
non security experts can implement security in software system with least amount of 
expertise in security.  
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A security pattern provides well proven documented description of a solution for the 
recurring security problem in a specific context provided by the security experts 
(Kimet al., 2006; Lincke 2012). Generally,it can be said that a security pattern is a 
pattern with focus on the security implementation of a system. The main characteristic 
of a security pattern is a solution of a problem which occurs in a specific context 
(Lincke, 2012). Therefore, a security pattern does not only provide a solution but it 
also includes a context and a problem for which it should be used. 

1.2 Research background and motivation 

A report from Software Engineering Institute’s CERT Coordination Centre showed 
that number of application vulnerabilities increased from 171 to5990 during the period 
of 1995 to 2005(Kim et al.,2006). Another reports presented by National Institute of 
Standards and Technology (NIST) described that 59.5 billion U.S dollars were cost on 
repairs of faulty software and breakdowns on security and reliability each year(Haley 
et al., 2008). Above facts showed that security and reliability needs immediate 
attention and needs major improvements. Therefore, security need to be considered at 
early stages of development otherwise it will be very expensive and difficult to
considerably improve it on deployed software(Linckeet al.,2012). Secure software 
engineering (Secure SE) aims to avoid these flaws in SD by considering security 
aspects from the very beginning of SDLC. Requirements engineering is the area which 
provide foundation for developing quality software. Security requirements elicitation 
plays a central role in requirement engineering process; it allows secure SD by 
providing security requirements at early design stage. 

Different techniques for security requirement elicitation has been proposed in 
literature, among these techniques Misuse case diagrams (MCD)(Sindre and Opdahl, 
2005)are widely accepted for eliciting negative scenario based security requirements 
by modeling the possible future attacks to the system. MCD have been proven useful 
in providing the image of vulnerable attacks to new software, during the requirements 
stage. The major problem in using MCD is that their outputs can be very lengthy, 
which makes themdifficult to understand and hard to analyze(Rizzi, 2003; Mouradet 
al.,2010). It has a wide range of application possibilities (Brandozzi and Perry, 2001;
Ren and Taylor, 2005; Karpatiet al.,2010) as general rather than being a specific 
technique. It is an open-ended method, so the results are very much dependent on the 
modeler’s creativity(Ren and Taylor, 2005). Misuse case diagrams provide image of 
future attacks to the system but where these attacks are handled is missing in the 
diagram(Linckeet al.,2012). MCDs are good at defining security threats or attacks, but 
unable to define where security should be implemented(Linckeet al.,2012). 

Along with defining expected security threats to software with the help of MCD, every 
security concerned enterprise selects its own security measures in order to avoid 
unexpected events and accidents. The objective of all the security measures is to 
protect the enterprise’s own resources and assets from damage.  Most of the time, the 
accidents or disasters take place in enterprise are similar in nature, and are caused by 
similar kind of vulnerabilities. However, many security analysts find it difficult to 
select the right security measure for a particular problem because the previous proven 
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solutions are not properly documented. In this context Security Patterns could be 
helpful since they present the proven solutions that potentially could be reused in the 
similar situations(Bouaziz and Coulette, 2012).   

Schumacher et al.(2013) reported that security patternsare well identified solution for 
the information security problem. They present a solution to a security problem or 
threat by the knowledge accumulated by security experts for security of a software 
system. A large number of security patterns have been proposed, but they are generally 
without guiding developers for their application details(Bouaziz and Coulette, 2012).
Security patterns alone are not sufficient(Fernandez, 2009) because they do not 
provide systematic guidelines in order to allow their easy application. This is the main 
reason for neglecting of security patterns at design level and does not provide a 
solution that can easily be used by software designers(Bouaziz and Coulette, 2012).
Security patterns have some limitations such as security patterns do not provide 
guidance to indicate how specific misuses of information can be stopped also do not 
indicate when they should be applied along the SDLC. Unnecessary security patterns 
may increase overhead and complexity. 

Mostly requirements engineers are untrained and not good at security at all, and those 
few who are trained have only been given an overview of security mechanisms such 
as encryption and passwords rather than training them about actual security 
requirements (Salini and Kanmani, 2010). As a result, methodology which guides 
developers with the capabilities to apply the security patterns with minimal security 
expertise is becoming a very challenging issue in this domain of research(Mouradet 
al.,2010). 

In order to enhance the usefulness ofMCD and to make security patterns techniques 
more applicablefor clear elicitationof security requirements at the earliest stage of 
SDLC, this study present an efficient security requirement elicitation and security 
threat modeling method. The suggested method incorporates security patterns with 
MCD and deployment diagrams to address their limitations. This study is beneficial 
to clearly identify the security requirements and also the mitigating strategy at early 
stage of SD. The proposed method is generic in nature which allows developing more 
secure software systems more efficiently.  

1.3 Problem statement 

Software developers are generally not security experts (Bouaziz&Kammoun, 2016) 
and face difficult time to deploy security constraints(Vieira and Antunes, 
2013).Security mechanisms are complex and it is difficult for the average developer 
to understand how to fulfill the security requirements of these mechanisms and how 
to achieve the goal of secure implementations. Software developers are not 
necessarilysecurity experts, identifying potential threats and vulnerabilitiesin the early 
stage of the development process is difficult for them Kobashiet al. (2015).  No clear 
solution has been provided for these challenges(Fernandez, 2009). Major difficulty in 
integrating security at SDphase is the selection of security mechanisms to be used, 
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secondly where these mechanisms are applied in the system and lastly at what level of 
abstraction is needed for application of these mechanisms (Bouazizet al.,2011).
Developers need concrete guidelines for constructing secure 
applications(Lodderstedtet al.,2002). Concrete in a sense that it should include how 
different security attacks can be mitigated across system is also important(Linckeet 
al., 2012).Vysoky(2012) discussed that there is a lack of tools to exactly model and 
analyze the system and through which it is possible to detect potential threats and 
impacts of attacks from users. 

Security has been integrated into UML diagrams using various techniques such asmis-
sequence diagrams, security patterns and packages state diagrams.However 
thesetechniques are unable to show the concrete security deployment technique, which 
should include how these attacks can be handled in the systems. For example, to 
mitigate SQL attack, the input validation must occur. If this validation only occurs at 
client side, the security mechanism is inadequate. Therefore, the location of security 
code in the system is as important as its existence(Linckeet al.,2012). Different 
methods are presented for dealing security requirements at early SD phases, but no 
solution addresses security requirements in relation to design of secure architectures 
(Howard and Lipner, 2009). Most of the security patterns research uses UML for 
modeling regardless of security patterns to be dealt with. It could be because UML is 
the most widely accepted formalism for the analysis and design of software. Therefore, 
UML is considered as security pattern modeling method (Itoet al., 2015). 

Many studies on security patterns are presented in literature and recently it has 
received much needed attention as a solution for capturing security solutions. A lot of 
security patterns are proposed without guiding developers for their concrete 
application(Bouaziz and Coulette, 2012). Security patterns alone are not sufficient 
because they do not provide systematic guidelines for their easy application. That is 
why at the design level these patterns are often neglected and unable to provide clear 
solution that can be used by software designers(Bouaziz and Coulette, 2012). Security 
patterns possess some limitations such as they lack directions to stop the specific 
misuses of information for the developer and also do not specify when they should be 
applied along the SDLC, whichresults in increased complexity in the systemdue to an 
unnecessary use of a security patterns. Modeling methods of security are uncertain and 
demand for efficient and reliable techniques to applying SPs is high(Itoet al., 2015).

Security patterns have two major deficiencieswhile using for design of secure software 
systems (SSS)(Horvath and Dörges, 2008). Firstly,they are informal descriptions like 
design patterns and explain what to do and secondly, they are not suitable for 
describing complex architectures. One more major problem with security patterns is 
that they are expressed in a textual format and does not include sufficient descriptions 
for their method and to extend their use(Hamid et al.,2010).

UML diagrams are commonly used to plan and build software systems based on the 
Object-Oriented approach. These diagrams allow to understand the system 
architecture and implementation details, as well as system functioning. When a system 
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securityanalysis is performed, many aspects of the system are considered such as, 
operation, functioning, data flow, data types, architecture and implementation details 
must be well known and modeled in order to determine possible weak points for the 
system security. The various UML diagrams supply all the information needed for a 
security system analysis and many aspects of the UML methodology can be applied 
for the same purpose. UML diagrams can be used efficiently for security system 
environment analysis (Rachelet al.,2006). There are many previous studies present in 
the literature which focus on security using UML diagrams.  UML is the most widely 
accepted formalism for the analysis and design of software. Therefore, UML is 
considered as security pattern modeling method (Ito et al., 2015). Using the UML 
diagrams to model security specification and mitigation will have advantages such as 
it will not require new set of semantics and notations. Using other modeling 
languageshave some disadvantages such as (i) new notations and semantics will not 
be compatible with available commercial tools, (ii)developers need to learn new 
semantics and notations to understand. These disadvantages justify the choice of using 
standardized UML diagrams for encountering the security requirement problem in SD
industry. 

1.4 Research Questions 

In this research work, there are three research questions which help to achieve the 
research objectives. These questions will also help to understand the overall purpose 
and contribution of this research.  

RQ 1: How to model security requirements of a software system?  
This questions stands as the main research problem of this thesis. In literature 
review part different methods of modeling security requirements has been 
discussed. As an answer to this question, how business security analyst and 
developers could use Security Patterns to model security requirements will be 
described.  

RQ 2: How to model security requirements of a software system using Security 
Patterns? 
As an answer to this question, this research focuses on developing a new 
approach for modeling software security requirements using security patterns. 

RQ 3:How to evaluate the applicability of the proposed methodology and tool in the 
industry ? 
This question seeks the answer regarding the applicabilityof proposed SPDD 
methodology and tool. The answer will be presentedin the results of expert 
review and experimental comparison between proposed and existing method. 

1.5 Research objectives 

1. To propose a method for modeling secure requirements for designing 
software.  

2. To evaluate the effectiveness of proposed method and tool for designing 
secure software requirements  
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1.6 Proposed solution 

To encounter the imitations of security patterns such as lack of suggesting directions 
to stop the specific misuses of information and fail to describe when these patterns 
should be applied along the development lifecycle, Security Patterns Deployment 
Diagram (SPDD) is proposed.SPDD combines the power of security patterns for 
providing proven solutions gathered by security experts to secure a software system. 
A SPDD can show threat, actors, relations and where attacks will be fended off in the 
early design stage of the system in a single view. A SPDD is used at requirements 
stage to show where these attacks should be addressed in the system. 

As patterns are often neglected at the design level and do not constitute an intuitive 
solution that can be used by software designers because they are not very useful 
without a systematic way to apply(Fernandezet al.2009). In order to provide designers 
with guidelines, a secure software design using SPDD is proposed which shows in a 
single picture how software is deployed including the security implementation 
provided by security patterns. The proposed solution will improve the expression 
power of security patterns by providing their visually illustration (design) in the form 
of SPDD. 

1.7 Significance andscope of the study 

The result of the study will provides a suitable way to define semantics for each 
solution proposed by security pattern. It allows developers to easily understand 
security requirements of the systems and their implementations detail with the help of 
Security Patterns Deployment Diagram. According to the literaturenot much work has 
been done in the past to visualize the deployment or implementation of security 
patterns to help the developers for better understanding of their security 
implementation. 

In contrast to the previous studies on security elicitation, proposed methodology 
addresses security requirements separately from the functional requirements by 
combining the security knowledge from experts, in the form of security patterns with 
the UML Diagrams. Most of the security patterns research uses UML for modeling 
regardless of security patterns to be dealt with. It could be because UML is the most 
widely accepted formalism for the analysis and design of software. Therefore, UML 
is considered as security pattern modeling method.Our contribution includes adapting 
proposed security patterns that capture security knowledge and integrate these patterns 
to UML models for better understanding of security implementation by the developers. 
It is a systematic approach which deals with the security from the beginning.Realizing 
the elicited security requirements by security patterns on design artifacts contributes 
to reduce architectural flaws. A systematic approach is provided which (i) deals with 
security from the beginning  (ii) realize the elicited security requirements by security 
patterns on design artifacts and (iii) Contributes to reduced architectural flaws in 
security implementation. 
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1.8 Thesis organization 

The rest of the thesis is mainly isconsisting four chapters. Each chapter has its sections 
relevant to the topics discussed in that chapter.Chapter 2 surveys existing research in 
the area of security patterns. The review explores the state-of-art and practices in their 
representation and identifies gaps and need for a diagram which visualize the solution 
provided by a security pattern. It explores how can potentially leverage on the state-
of-art.Chapter 3 discussed the methodology used to resolve the problem identified in 
Security Pattern representation.  

Chapter 4 consists of the data collection and analysis method used for comparison of 
the proposed method with the existing method for representation of security patterns. 
Tool development process was also discussed. A case study is performed using the 
developed tool to implement proposed method using identified security patterns for 
its usage validation. Chapter 5 discussed the finding of the experimental comparison 
and results of the study however Chapter 6 consists of conclusion drawn from this 
thesis and future recommendation. 
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