

UNIVERSITI PUTRA MALAYSIA

A TOOL FOR MODELING SOFTWARE SECURITY REQUIREMENTS
USING SECURITY PATTERNS

ZULFIKAR AHMED MAHER

FSKTM 2016 49

© C
OP

UPM

ii

A TOOL FOR MODELING SOFTWARE SECURITY REQUIREMENTS
USING SECURITY PATTERNS

By

ZULFIKAR AHMED MAHER

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia,
in Fulfillment of the Requirements for the Degree of Master of Science

October 2016

© C
OP

UPM

iii

COPYRIGHT

All material contained within the thesis, including without limitation to text, logos,
icons, photographs and all other artwork, is copyright material of Universiti Putra
Malaysia unless otherwise stated. Use may be made of any material contained within
the thesis for non-commercial purposes from the copyright holder. Commercial use of
material may only be made with the express, prior, written permission of Universiti
Putra Malaysia.

Copyright © Universiti Putra Malaysia

© C
OP

UPM

iv

DEDICATION

I would like to dedicate my thesis to my beloved parents for their love and
unconditional support to me. Thank you for giving me a chance to prove and improve
myself through all my walks of life. I love you.

© C
OP

UPM

i

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment
of the requirement for the Degree of Master of Science

A TOOL FOR MODELING SOFTWARE SECURITY REQUIREMENTS
USING SECURITY PATTERNS

By

ZULFIKAR AHMED MAHER

October 2016

Chairman : Associate Professor Nor FazlidaMohdSani, PhD
Faculty : Computer Science and Information Technology

Security requirements of today’s software systems are increasing and becoming
complex. Software industry has well recognized that security should be incorporated
at earlier stages of the software development. It is not easy for the programmers and
developers to incorporate security in the software without proper expertise in it. For
that reason different security patterns were proposed by the security experts for
implementation of security by non-security experts. A security pattern provides well
proven solution for the existing security problem in a specific context provided by the
security experts. Security patterns usually are in textual format due to which they are
often neglected at the design level. Security patterns do not constitute an intuitive
solution that can be used by software designers because they are not useful without a
systematic way to apply them. Security patterns lack comprehensive structure that
conveys essential information inherent to security engineering (SE). This research
presentsmethodology for presenting secure software requirements using Security
Patterns that is tailored to meetthe needs of secure system development. In order to
maximize comprehensibility, well-known notations of Unified Modeling Language
(UML) is used to represent structuraland behavioral aspects of design. Only 13% of
the papers published till 2015 involve tooling support for security patterns. To
encounter this limitation, a methodology which focuses on the providing solution
provided by the security pattern in the form of standard UML notations. As the
proposed method results in an extension of Deployment diagram, it is named as
Security Patterns Deployment Diagram (SPDD). It represents the solution provided
by security patterns in standard UML graphical notation, which includes the
compulsory elements of security patterns that are context, problem, actors, relations
and solution including where attacks will be fended off in the early design stage of the
software system in a single view. SPDD is proposed along with security modeling tool
called SPDD Editor for modeling security pattern solution using proposed
methodology. Security patterns research uses UML for modeling regardless of
security patterns to be dealt with. It could be because UML is the most widely accepted
formalism for the analysis and design of software. Therefore, itis considered as
security pattern modeling method. This extension of deployment diagram provides a

© C
OP

UPM

ii

suitable way to define semantics for each solution provided by security pattern and
allowing developers to easily understand software security requirements and their
implementations in detail. A Plug-in for SeaMonster security designing tool has been
developed to support the designing of the proposed diagram using Eclipse Graphical
Modeling Framework (GMF) and Eclipse Graphical Editor Framework (GEF). The
validation of SPDD has been done with the Hospital Information System (HIS) and
E-Commerce System case studies.

An expert review was performed to verify the proposed methodology and proposed
tool support. SPDD editor tool and both methods SPDD and Component based
application (CBA) were also evaluated by three experts in the field. The expert review
results showed positive results towards acceptance of SPDD method and tool.
Experimental comparison with twenty participants was also performed to validate the
effectiveness and to find out the better method in terms of designing solution provided
by security patterns from the participant’s point of view. The CBA method was
selected to compare with proposed SPDD method because of the fact that most of the
programmers and developers usually known to component diagram and there is no
need to teach them its application and they can easily perform the tasks related to CBA
method and also security pattern modeling application using CBA is previously
proposed in literature. The experimental results from participants showed that there
is a significant difference in designing threats and mitigation using SPDD editor in
two methods. The SPDD method is used to design more threats and mitigation as
compared to CBA method. By using proposed methodology and SPDD editor tool it
is easier for the non-security expert to incorporate security at earlier stages of software
development. It provides the facility of designing the security requirements in the
architecture at design stage with incorporating expert knowledge of the security
experts provided by the security patterns.

© C
OP

UPM

iii

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk Ijazah Master Sains

PERALATAN UNTUK KEPERLUAN KESELAMATAN
PERMODELAN PERISIAN MENGGUNAKAN CORAK KESELAMATAN

Oleh

ZULFIKAR AHMED MAHER

Oktober 2016

Pengerusi : Profesor Madya Nor FazlidaMohdSani, PhD
Fakulti : Sains Komputer dan Teknologi Maklumat

Industri perisian telah mengenal pasti bahawa faktor keselamatan perlu diterapkan
pada peringkat awal pembangunan perisian. Secara praktikal bukan mudah bagi
pengaturcara untuk menggabungkan keselamatan dalam perisian tanpa memiliki
kepakaran yang tepat mengenainya. Oleh sebab itu, corak keselamatan yang berbeza
telah dicadangkan oleh pakar-pakar keselamatan bagi pelaksanaan sistem keselamatan
kepada bukan pakar-pakar keselamatan. Corak keselamatan mampu memberi
penyelesaian yang berkesan untuk masalah keselamatan yang sedia ada dalam konteks
tertentu yang dicadangkan oleh pakar-pakar keselamatan. Kebiasaannya corak
keselamatan dalam format teks menyebabkan ia sering diabaikan pada peringkat reka
bentuk. Corak keselamatan bukan merupakan penyelesaian intuitif yang boleh
digunakan oleh pereka perisian kerana ia tidak berkesan tanpa adanya cara yang
sistematik untuk diaplikasikan.

Kekurangan pada corak keselamatan dapat mendedahkan maklumat penting kepada
sesiapa yang tidak berkaitan. Oleh itu ,pihak keselamatan mencadangkan arahan untuk
menghentikan penyalahgunaan maklumat yang khusus perlu digunakan dalam
meningkatkan faktor keselamatan. Bagi menangani isu ini, kaedah metodologi lebih
menjurus kepada penyelesaian merupakan corak keselamatan dalam bentuk Unified
Modeling Language (UML) notasi standard. Kami mencadangkan lanjutan daripada
rajah penggunaan UML dipanggil Rajah Penggunaan Corak Keselamatan (SPDD). Ini
merupakan penyelesaian yang diberikan oleh corak keselamatan standard notasi UML
grafik, yang merangkumi elemen wajib corak keselamatan iaitu konteks, masalah,
pelakon, hubungan dan penyelesaian termasuk dapat menghalang serangan pada
peringkat reka bentuk awal sistem perisian dalam paparan tunggal. Lanjutan rajah
penggunaan menyediakan cara yang sesuai untuk menentukan semantik bagi setiap
penyelesaian yang disediakan oleh corak keselamatan dan membolehkan pengguna
dengan mudah memahami keperluan sistem keselamatan dan pelaksanaannya secara
terperinci. Plug-in untuk alat keselamatan SeaMonster telah diwujudkan untuk
menyokong aktiviti gambar rajah yang dicadangkan menggunakan Rangka Kerja

© C
OP

UPM

iv

Eclipse Grafik Model (GMF) dan Rangka Kerja Editor Grafik Eclipse (GEF).
Perbandingan SPDD telah dilakukan dalam kajian Sistem Maklumat Hospital (HIS)
dan Sistem E-Perdagangan.

Semekan pakar yang dilakukan untuk mengesahkan kaedah yang dicadangkan dan
sokongan peralatan yang dicadangkan. Peralatan editorSPDD dan kedua-dua kaedah
SPDD dan Aplikasi BerdasarkanKomponen (CBA) turut dinilai oleh tiga pakar dalam
bidang ini. Keputusan semakanpakar menunjukkan hasil yang positif terhadap
penerimaan kaedah SPDD dan peralatan. perbandingan eksperimen dengan dua puluh
peserta juga telah dilakukan untuk mengesahkan keberkesanan dan untuk mengetahui
kaedah yang lebih baik dari segi mereka bentuk penyelesaian yang disediakan oleh
corak keselamatan dari sudut pandanganpeserta. Kaedah CBA telah dipilih untuk
membuat perbandingan dengan kaedah SPDD yang dicadangkan kerana hakikat
bahawa kebanyakan pengaturcara dan pembangun biasanya diketahuisebagai rajah
komponen dan tidak ada keperluan untuk mengajar mereka mengaplikasinia dan
mereka dengan mudah boleh melaksanakan tugas-tugas yang berkaitan dengan kaedah
CBA dan juga aplikasi pemodelancorak keselamatan menggunakan CBA adalah
sebelum ini dicadangkan dalam kesusasteraan. Keputusan eksperimen daripada
peserta menunjukkan bahawa terdapat perbezaan yang signifikan dalam mereka
bentuk ancaman dan penguranganya menggunakan editorSPDD dalam dua kaedah.
Kaedah SPDD digunakan untuk mereka bentuk lebih ancaman dan pengurangan
berbanding kaedah CBA. Dengan menggunakan kaedah yang dicadangkan dan
peralatan editor SPDD ia adalah lebih mudah untuk bukanpakar keselamatan untuk
menggabungkan keselamatan di peringkat awal pembangunan perisian. Ia
menyediakan kemudahan mereka bentuk keperluan keselamatan dalam seni bina pada
peringkat reka bentuk dengan menggabungkan pengetahuan pakar daripada pakar-
pakar keselamatan yang disediakan oleh corak keselamatan.

© C
OP

UPM

v

ACKNOWLEDGEMENTS

First and foremost praises and thanks to the Almighty Allah, for his showers of
blessings and help throughout my life and especially in accomplishing this research
successfully.

This work would have been impossible without the continuous support and
supervision of my supervisor, Associate Professor Dr. Nor Fazlida Mohd Sani. All
steps taken on the way to finish this thesis were under her direct guidance and also the
other members of my supervisory committee, Dr. Jamilah Din and Associate Professor
Dr. Marzanah A. Jabar. I am also thankful to Dr. Novia Indriaty Admodisastro for
helping me as expert reviewer of my work and provide valuable guidelines to improve
my research.

I would like to express my full gratitude to my beloved wife who helped me all the
time and have to live away without me from last two years. Similarly many thanks to
my parents, sisters, brother and my kids Muhammad Amin and Yashfeen Amna, who
supported me with their prayers and encouragements and they endured the pain of
being away for more than 4 years. I am also thankful to all my friends for their constant
support.

I am also greatly indebted to the financial support of Sindh Agriculture University,
Tandojam, Pakistan for my MS studies at Universiti Putra Malaysia.

© C
OP

UPM

© C
OP

UPM

vii

This thesis was submitted to the Senate of the Universiti Putra Malaysia and has been
accepted as fulfillment of the requirement for the degree of Master of Science. The
members of the Supervisory Committee were as follows:

Nor Fazlida Mohd Sani, PhD
Associate Professor
Faculty of Computer Science and Information Technology
Universiti Putra Malaysia
(Chairman)

Marzanah A. Jabar, PhD
Associate Professor
Faculty of Computer Science and Information Technology
Universiti Putra Malaysia
(Member)

Jamilah Din, PhD
Senior Lecturer
Faculty of Computer Science and Information Technology
Universiti Putra Malaysia
(Member)

ROBIAH BINTI YUNUS, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:

© C
OP

UPM

viii

Declaration by graduate student

I hereby confirm that:
� this thesis is my original work;
� quotations, illustrations and citations have been duly referenced;
� this thesis has not been submitted previously or concurrently for any other degree

at any institutions;
� intellectual property from the thesis and copyright of thesis are fully-owned by

Universiti Putra Malaysia, as according to the Universiti Putra Malaysia
(Research) Rules 2012;

� written permission must be obtained from supervisor and the office of Deputy
Vice-Chancellor (Research and innovation) before thesis is published (in the form
of written, printed or in electronic form) including books, journals, modules,
proceedings, popular writings, seminar papers, manuscripts, posters, reports,
lecture notes, learning modules or any other materials as stated in the Universiti
Putra Malaysia (Research) Rules 2012;

� there is no plagiarism or data falsification/fabrication in the thesis, and scholarly
integrity is upheld as according to the Universiti Putra Malaysia (Graduate
Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia
(Research) Rules 2012. The thesis has undergone plagiarism detection software

Signature: _____________________________________ Date: ______________

Name and Matric No: Zulfikar Ahmed Maher, GS31877

© C
OP

UPM

ix

Declaration by Members of Supervisory Committee

This is to confirm that:
� the research conducted and the writing of this thesis was under our supervision;
� supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate

Studies) Rules 2003 (Revision 2012-2013) were adhered to.

Signature:
Name of Chairman
of Supervisory
Committee: Associate Professor Dr. Nor FazlidaMohdSani

Signature:
Name of Member
of Supervisory
Committee: Associate Professor Dr. Marzanah A. Jabar

Signature:
Name of Member
of Supervisory
Committee: Dr. Jamilah Din

© C
OP

UPM

x

TABLE OF CONTENTS

Page

ABSTRACT i
ABSTRAK iii
ACKNOWLEDGEMENTS v
APPROVAL vi
DECLARATION viii
LIST OF TABLES xiii
LIST OF FIGURES xiv
LIST OF ABBREVIATIONS xvi

CHAPTER

1 INTRODUCTION 1
1.1 Overview 1

1.1.1 Software security and security patterns 1
1.2 Research background and motivation 2
1.3 Problem statement 3
1.4 Research Questions 5
1.5 Research objectives 5
1.6 Proposed solution 6
1.7 Significance and scope of the study 6
1.8 Thesis organization 7

2 LITERATURE REVIEW 8
2.1 Secure architecture 8
2.2 Security engineering 8
2.3 Requirements 9
2.4 Security requirements 10
2.5 Patterns 12
2.6 Security patterns 13

2.6.1 Background of security patterns 14
2.6.2 Characteristics of security pattern 16

2.6.2.1 Pattern name 16
2.6.2.2 Problem 17
2.6.2.3 Context 17
2.6.2.4 Forces 17
2.6.2.5 Solution 17
2.6.2.6 Consequences 18

2.6.3 Why security patterns are needed? 18
2.6.4 Security pattern previous modeling approaches 18

2.6.4.1 UML (Unified Modeling Language) 20
2.6.4.2 Secure UML 21
2.6.4.3 UMLsec 21
2.6.4.4 Misuse Cases 21
2.6.4.5 Misuse Cases 22
2.6.4.6 Secure Tropos 22
2.6.4.7 KAOS 23

© C
OP

UPM

xi

2.6.4.8 Problem frames 23
2.6.4.9 2.6.4.9 Abuse frames 24

2.7 Tool Support for Security Patterns 27
2.8 Statistical tools used for data analysis 28
2.9 Summary of the chapter 29
2.10 Considered sources 29
2.11 Gap analysis 30

3 METHODOLOGY 33
3.1 Experimental comparison between existing and proposed

method
35

3.1.1 Experimental setup 35
3.1.2 Conducting the experiment 36

4 SECURITY PATTERNS AND IMPLEMENTATION 38
4.1 Proposed methodology 38

4.1.1 Input phase 38
4.1.2 Use case diagram 39
4.1.3 Security patterns 39

i Pattern name 39
ii Context 39

iii Problem 39
iv Solution 39
v Relationship 40

4.1.3.1 Case study 40
4.1.3.2 Alignment phase 40
4.1.3.3 Output phase 42

4.2 Use of deployment diagram at early stage of software
development

42

4.3 Experimental comparision between proposed and existing
method

43

4.3.1 Objectives of the experiment 43
4.3.2 Performing the experiment 44
4.3.3 Case study 1: Hospital Information System 44
4.3.4 Use-case for Hospital Information System 45
4.3.5 Security pattern for HIS 45
4.3.6 Case study 2: E-Commerce System 48
4.3.7 Use-case for E-Commerce System 48
4.3.8 Security pattern for E-Commerce System 49

4.4 Previous methodology of modelling security patterns using
secure component base application (CBA)

51

4.4.1 Mapping of security pattern elements on CBA
component metamodel element

51

4.4.2 Case study using Component based applications
(CBA)

51

4.5 Implementation of proposed method 53
4.5.1 Tool design and development 53
4.5.2 Eclipse platform for graphical modelling framework

development
54

4.5.3 Extending existing security modeling tool 56

© C
OP

UPM

xii

4.5.4 SPDD Ecore Model 57
4.6 Security pattern deployment diagram editor 57

4.6.1 SPDD editor elements 57
a. Nodes 58
b. Actors 60
c. Links 61

4.7 Tool usage verification and validation 61
4.8 Expert Review 63

4.8.1 Expert Answers 64
4.8.2 Validation of tool support 65

5 RESULTS AND DISCUSSION 66
5.1 Comparing praticipants background 66
5.2 Participants response analysis 69
5.3 Overall comparision between two methods using the three

matrix
69

5.4 Overall comparision between two methods 70
5.5 Calculating effectiveness of the methods to design threats

and mitigiations
71

5.6 Answer to research questions 72

6 CONCLUSION AND FUTURE WORK 73
6.1 Conclusion 73
6.2 Future work 73

REFERENCES 75
APPENDICES 83
BIODATA OF STUDENT 105
LIST OF PUBLICATIONS 106

© C
OP

UPM

xiii

LIST OF TABLES

Table Page

2.1 Mapping RBAC pattern participants with component meta-model
elements

31

3.1 Participants groups and tasks 36

4.1 Mapping scheme of security pattern elements with SPDD
notations

41

4.2 Authentication security pattern 46

4.3 Cross Domain Authentication security pattern 46

4.4 Authorization with Delegation security pattern 47

4.5 Context based Authorization security pattern 47

4.6 Non Repudiation security pattern 48

4.7 Authentication security pattern 49

4.8 Authorization security pattern 50

4.9 Role Based Access Control security pattern 50

4.10 Mapping RBAC pattern participants with component metamodel
elements

51

4.11 SPDD Nodes 59

4.12 SPDD Actors 60

4.13 SPDD Links 61

4.14 Answers of Questionnaire 64

5.1 Cronbach's Alpha-Reliability Statistics 66

5.2 Scale Statistics 66

© C
OP

UPM

xiv

LIST OF FIGURES

Figure Page

2.1 SI* diagram for access control pattern 19

2.2 Modeling patterns with security Petri nets 19

2.3 Modeling of the security pattern using Petri nets 20

2.4 Security pattern representation in i* 22

2.5 Pattern representation in secure troposmodel 23

2.6 ISDF framework 26

2.7 Profile construction process for Component based applications 31

3.1 Research methodology steps 34

3.2 Experimental comparison conduct steps 37

4.1 Methodology for development of secure system 38

4.2 Use-Case for Hospital Information system 45

4.3 Use-Case for E-Commerce System 49

4.4 Basic GPS System 52

4.5 Basic GPS architecture after RBAC profile application 52

4.6 SeaMonster Tool 54

4.7 Overview of the GMF development process 55

4.8 SeaMonster models and GMF components 56

4.9 High level ecore/class diagram of SeaMonster tool with SPDD 56

4.10 Security Pattern Deployment Diagram editor 57

4.11 Security Patterns Deployment Diagram (SPDD) for HIS 62

5.1 Participant’s development Experience 67

5.2 Participant’s UML usage experience 68

5.3 Participant’s expertise in Software Security 68

© C
OP

UPM

xv

5.4 Security consideration by the participants in their routine
development

69

5.5 Overall Comparison between two methods using the three matrix 70

5.6 Overall preference comparison between two methods 70

5.7 Overall comparison to design threats using two methods 71

5.8 Overall comparison to design mitigation using two methods 71

© C
OP

UPM

xvi

LIST OF ABBREVIATIONS

CBA Component Based Application

ESRMG Enterprise Security and Risk Management Grammer

EMF Eclipse Modeling Framework

GEF Graphical Editor Framework

GMF Graphical Modeling Framework

GOOCA Generic Object-Oriented Cryptographic Architecture

HIS Hospital Information System

ISDF Institute Sûreté de Fonctionnemen

IU Intension to Use

KAOS Knowledgeable Agent-Oriented System

MDA Model Drive Architecture

MDE Model Drive Engineering

NIST National Institute of Standards and Technology

OMG Object Management Group

PEU Perceived Ease of Use

PloP Pattern Languages of Programs

PMR Primary Medical Record

PU Perceived Usefulness

SAS Statistical Analysis System

SCRIP Security Pattern Integration Process

SD Software Development

SDLC Software Development Life Cycle

SE Software Engineering

SP Security Patterns

© C
OP

UPM

xvii

SPDD Security Pattern Deployment Diagram

SPSS Statistical Package for the Social Sciences

SQL Structured Query Language

SSD Secure Software Development

SSS Secure Software System

TESEM Test Driven Secure Modeling Tool

RBAC Role Based Access Control

RPC Remote Procedure Call

UML Unified Modeling Language

© C
OP

UPM

1

CHAPTER 1

INTRODUCTION

1.1 Overview

Traditionally, security in software development life cycle (SDLC) is not considered at
early stages, usually it is incorporated at later stages. Realizing security at later stages
of software development (SD) results in increased risks of occurring security flaws.
Fixing system risksand vulnerabilities after SDcost high for developers and
users.There are many best practices are available to address these issues, but often are
difficult to reuse due to their implementation-specific nature. Furthermore,
understanding of the root causes of security flaws in detail has led to a greater
importance of security into design phase. For this reason security patterns were
proposed by security experts for implementing security in the software system by the
non-security experts and for those with least expertise in security implementation.

Security pattern provides well proven documented description of a solution for the
recurring security problem (Bouaziz&Kammoun, 2016) in a specific context in the
textual format by the security experts. It is often neglected by the software developer
because of the lack of the guidance provided for their concrete application(Bouaziz
and Coulette, 2012). Security patterns alone are not sufficient because of thelack of
providing systematic guidelines in order to allow their easy application. That is why
at the design level these patterns are often neglected and unable to provide clear
solution that can be used by software developers(Bouaziz and Coulette, 2012).
Considering this situation, using standard modeling languages such as UML (Unified
Modeling Language) for providing solution gathered by security experts in a security
patterns is helpful for both software architects for designing a secure architecture as
well for the software developers to understand the solution provided by security
pattern.

1.1.1 Software security andsecurity patterns

Security is a non-functional property that software developers have to implement
during the SD. The security requirements of today’s software systems are increasing
day by day and it is not easy for software developers to incorporate security in the
software without proper expertise in security. During development of software, faults
and flaws are introduced either from the implementation or from the design of the
software. During runtime, these faults and flaws can propagate into failures that can
result in vulnerabilities. Security flaws and presence of vulnerabilities needs
developers spend more time on maintenance instead of new features and also increases
the total cost. Typically software developers are experts in the functional requirements
with a minimal security knowledge, which causes weak security decisions (Mouradet
al.,2010). Security patterns were proposed for this reason by security experts so that
non security experts can implement security in software system with least amount of
expertise in security.

© C
OP

UPM

2

A security pattern provides well proven documented description of a solution for the
recurring security problem in a specific context provided by the security experts
(Kimet al., 2006; Lincke 2012). Generally,it can be said that a security pattern is a
pattern with focus on the security implementation of a system. The main characteristic
of a security pattern is a solution of a problem which occurs in a specific context
(Lincke, 2012). Therefore, a security pattern does not only provide a solution but it
also includes a context and a problem for which it should be used.

1.2 Research background and motivation

A report from Software Engineering Institute’s CERT Coordination Centre showed
that number of application vulnerabilities increased from 171 to5990 during the period
of 1995 to 2005(Kim et al.,2006). Another reports presented by National Institute of
Standards and Technology (NIST) described that 59.5 billion U.S dollars were cost on
repairs of faulty software and breakdowns on security and reliability each year(Haley
et al., 2008). Above facts showed that security and reliability needs immediate
attention and needs major improvements. Therefore, security need to be considered at
early stages of development otherwise it will be very expensive and difficult to
considerably improve it on deployed software(Linckeet al.,2012). Secure software
engineering (Secure SE) aims to avoid these flaws in SD by considering security
aspects from the very beginning of SDLC. Requirements engineering is the area which
provide foundation for developing quality software. Security requirements elicitation
plays a central role in requirement engineering process; it allows secure SD by
providing security requirements at early design stage.

Different techniques for security requirement elicitation has been proposed in
literature, among these techniques Misuse case diagrams (MCD)(Sindre and Opdahl,
2005)are widely accepted for eliciting negative scenario based security requirements
by modeling the possible future attacks to the system. MCD have been proven useful
in providing the image of vulnerable attacks to new software, during the requirements
stage. The major problem in using MCD is that their outputs can be very lengthy,
which makes themdifficult to understand and hard to analyze(Rizzi, 2003; Mouradet
al.,2010). It has a wide range of application possibilities (Brandozzi and Perry, 2001;
Ren and Taylor, 2005; Karpatiet al.,2010) as general rather than being a specific
technique. It is an open-ended method, so the results are very much dependent on the
modeler’s creativity(Ren and Taylor, 2005). Misuse case diagrams provide image of
future attacks to the system but where these attacks are handled is missing in the
diagram(Linckeet al.,2012). MCDs are good at defining security threats or attacks, but
unable to define where security should be implemented(Linckeet al.,2012).

Along with defining expected security threats to software with the help of MCD, every
security concerned enterprise selects its own security measures in order to avoid
unexpected events and accidents. The objective of all the security measures is to
protect the enterprise’s own resources and assets from damage. Most of the time, the
accidents or disasters take place in enterprise are similar in nature, and are caused by
similar kind of vulnerabilities. However, many security analysts find it difficult to
select the right security measure for a particular problem because the previous proven

© C
OP

UPM

3

solutions are not properly documented. In this context Security Patterns could be
helpful since they present the proven solutions that potentially could be reused in the
similar situations(Bouaziz and Coulette, 2012).

Schumacher et al.(2013) reported that security patternsare well identified solution for
the information security problem. They present a solution to a security problem or
threat by the knowledge accumulated by security experts for security of a software
system. A large number of security patterns have been proposed, but they are generally
without guiding developers for their application details(Bouaziz and Coulette, 2012).
Security patterns alone are not sufficient(Fernandez, 2009) because they do not
provide systematic guidelines in order to allow their easy application. This is the main
reason for neglecting of security patterns at design level and does not provide a
solution that can easily be used by software designers(Bouaziz and Coulette, 2012).
Security patterns have some limitations such as security patterns do not provide
guidance to indicate how specific misuses of information can be stopped also do not
indicate when they should be applied along the SDLC. Unnecessary security patterns
may increase overhead and complexity.

Mostly requirements engineers are untrained and not good at security at all, and those
few who are trained have only been given an overview of security mechanisms such
as encryption and passwords rather than training them about actual security
requirements (Salini and Kanmani, 2010). As a result, methodology which guides
developers with the capabilities to apply the security patterns with minimal security
expertise is becoming a very challenging issue in this domain of research(Mouradet
al.,2010).

In order to enhance the usefulness ofMCD and to make security patterns techniques
more applicablefor clear elicitationof security requirements at the earliest stage of
SDLC, this study present an efficient security requirement elicitation and security
threat modeling method. The suggested method incorporates security patterns with
MCD and deployment diagrams to address their limitations. This study is beneficial
to clearly identify the security requirements and also the mitigating strategy at early
stage of SD. The proposed method is generic in nature which allows developing more
secure software systems more efficiently.

1.3 Problem statement

Software developers are generally not security experts (Bouaziz&Kammoun, 2016)
and face difficult time to deploy security constraints(Vieira and Antunes,
2013).Security mechanisms are complex and it is difficult for the average developer
to understand how to fulfill the security requirements of these mechanisms and how
to achieve the goal of secure implementations. Software developers are not
necessarilysecurity experts, identifying potential threats and vulnerabilitiesin the early
stage of the development process is difficult for them Kobashiet al. (2015). No clear
solution has been provided for these challenges(Fernandez, 2009). Major difficulty in
integrating security at SDphase is the selection of security mechanisms to be used,

© C
OP

UPM

4

secondly where these mechanisms are applied in the system and lastly at what level of
abstraction is needed for application of these mechanisms (Bouazizet al.,2011).
Developers need concrete guidelines for constructing secure
applications(Lodderstedtet al.,2002). Concrete in a sense that it should include how
different security attacks can be mitigated across system is also important(Linckeet
al., 2012).Vysoky(2012) discussed that there is a lack of tools to exactly model and
analyze the system and through which it is possible to detect potential threats and
impacts of attacks from users.

Security has been integrated into UML diagrams using various techniques such asmis-
sequence diagrams, security patterns and packages state diagrams.However
thesetechniques are unable to show the concrete security deployment technique, which
should include how these attacks can be handled in the systems. For example, to
mitigate SQL attack, the input validation must occur. If this validation only occurs at
client side, the security mechanism is inadequate. Therefore, the location of security
code in the system is as important as its existence(Linckeet al.,2012). Different
methods are presented for dealing security requirements at early SD phases, but no
solution addresses security requirements in relation to design of secure architectures
(Howard and Lipner, 2009). Most of the security patterns research uses UML for
modeling regardless of security patterns to be dealt with. It could be because UML is
the most widely accepted formalism for the analysis and design of software. Therefore,
UML is considered as security pattern modeling method (Itoet al., 2015).

Many studies on security patterns are presented in literature and recently it has
received much needed attention as a solution for capturing security solutions. A lot of
security patterns are proposed without guiding developers for their concrete
application(Bouaziz and Coulette, 2012). Security patterns alone are not sufficient
because they do not provide systematic guidelines for their easy application. That is
why at the design level these patterns are often neglected and unable to provide clear
solution that can be used by software designers(Bouaziz and Coulette, 2012). Security
patterns possess some limitations such as they lack directions to stop the specific
misuses of information for the developer and also do not specify when they should be
applied along the SDLC, whichresults in increased complexity in the systemdue to an
unnecessary use of a security patterns. Modeling methods of security are uncertain and
demand for efficient and reliable techniques to applying SPs is high(Itoet al., 2015).

Security patterns have two major deficiencieswhile using for design of secure software
systems (SSS)(Horvath and Dörges, 2008). Firstly,they are informal descriptions like
design patterns and explain what to do and secondly, they are not suitable for
describing complex architectures. One more major problem with security patterns is
that they are expressed in a textual format and does not include sufficient descriptions
for their method and to extend their use(Hamid et al.,2010).

UML diagrams are commonly used to plan and build software systems based on the
Object-Oriented approach. These diagrams allow to understand the system
architecture and implementation details, as well as system functioning. When a system

© C
OP

UPM

5

securityanalysis is performed, many aspects of the system are considered such as,
operation, functioning, data flow, data types, architecture and implementation details
must be well known and modeled in order to determine possible weak points for the
system security. The various UML diagrams supply all the information needed for a
security system analysis and many aspects of the UML methodology can be applied
for the same purpose. UML diagrams can be used efficiently for security system
environment analysis (Rachelet al.,2006). There are many previous studies present in
the literature which focus on security using UML diagrams. UML is the most widely
accepted formalism for the analysis and design of software. Therefore, UML is
considered as security pattern modeling method (Ito et al., 2015). Using the UML
diagrams to model security specification and mitigation will have advantages such as
it will not require new set of semantics and notations. Using other modeling
languageshave some disadvantages such as (i) new notations and semantics will not
be compatible with available commercial tools, (ii)developers need to learn new
semantics and notations to understand. These disadvantages justify the choice of using
standardized UML diagrams for encountering the security requirement problem in SD
industry.

1.4 Research Questions

In this research work, there are three research questions which help to achieve the
research objectives. These questions will also help to understand the overall purpose
and contribution of this research.

RQ 1: How to model security requirements of a software system?
This questions stands as the main research problem of this thesis. In literature
review part different methods of modeling security requirements has been
discussed. As an answer to this question, how business security analyst and
developers could use Security Patterns to model security requirements will be
described.

RQ 2: How to model security requirements of a software system using Security
Patterns?
As an answer to this question, this research focuses on developing a new
approach for modeling software security requirements using security patterns.

RQ 3:How to evaluate the applicability of the proposed methodology and tool in the
industry ?
This question seeks the answer regarding the applicabilityof proposed SPDD
methodology and tool. The answer will be presentedin the results of expert
review and experimental comparison between proposed and existing method.

1.5 Research objectives

1. To propose a method for modeling secure requirements for designing
software.

2. To evaluate the effectiveness of proposed method and tool for designing
secure software requirements

© C
OP

UPM

6

1.6 Proposed solution

To encounter the imitations of security patterns such as lack of suggesting directions
to stop the specific misuses of information and fail to describe when these patterns
should be applied along the development lifecycle, Security Patterns Deployment
Diagram (SPDD) is proposed.SPDD combines the power of security patterns for
providing proven solutions gathered by security experts to secure a software system.
A SPDD can show threat, actors, relations and where attacks will be fended off in the
early design stage of the system in a single view. A SPDD is used at requirements
stage to show where these attacks should be addressed in the system.

As patterns are often neglected at the design level and do not constitute an intuitive
solution that can be used by software designers because they are not very useful
without a systematic way to apply(Fernandezet al.2009). In order to provide designers
with guidelines, a secure software design using SPDD is proposed which shows in a
single picture how software is deployed including the security implementation
provided by security patterns. The proposed solution will improve the expression
power of security patterns by providing their visually illustration (design) in the form
of SPDD.

1.7 Significance andscope of the study

The result of the study will provides a suitable way to define semantics for each
solution proposed by security pattern. It allows developers to easily understand
security requirements of the systems and their implementations detail with the help of
Security Patterns Deployment Diagram. According to the literaturenot much work has
been done in the past to visualize the deployment or implementation of security
patterns to help the developers for better understanding of their security
implementation.

In contrast to the previous studies on security elicitation, proposed methodology
addresses security requirements separately from the functional requirements by
combining the security knowledge from experts, in the form of security patterns with
the UML Diagrams. Most of the security patterns research uses UML for modeling
regardless of security patterns to be dealt with. It could be because UML is the most
widely accepted formalism for the analysis and design of software. Therefore, UML
is considered as security pattern modeling method.Our contribution includes adapting
proposed security patterns that capture security knowledge and integrate these patterns
to UML models for better understanding of security implementation by the developers.
It is a systematic approach which deals with the security from the beginning.Realizing
the elicited security requirements by security patterns on design artifacts contributes
to reduce architectural flaws. A systematic approach is provided which (i) deals with
security from the beginning (ii) realize the elicited security requirements by security
patterns on design artifacts and (iii) Contributes to reduced architectural flaws in
security implementation.

© C
OP

UPM

7

1.8 Thesis organization

The rest of the thesis is mainly isconsisting four chapters. Each chapter has its sections
relevant to the topics discussed in that chapter.Chapter 2 surveys existing research in
the area of security patterns. The review explores the state-of-art and practices in their
representation and identifies gaps and need for a diagram which visualize the solution
provided by a security pattern. It explores how can potentially leverage on the state-
of-art.Chapter 3 discussed the methodology used to resolve the problem identified in
Security Pattern representation.

Chapter 4 consists of the data collection and analysis method used for comparison of
the proposed method with the existing method for representation of security patterns.
Tool development process was also discussed. A case study is performed using the
developed tool to implement proposed method using identified security patterns for
its usage validation. Chapter 5 discussed the finding of the experimental comparison
and results of the study however Chapter 6 consists of conclusion drawn from this
thesis and future recommendation.

© C
OP

UPM

75

REFERENCES

Alexander C. 1977. A pattern language: towns, buildings, construction. Vol. 2:
Oxford University Press.

Alkussayer, A., & Allen, W. H. 2009. The ISDF Framework: Integrating security
patterns and best practices. SDF framework: Integrating security patterns and
best practices. In International Conference on Information Security and
Assurance, 17-28.

Araujo, I., & Weiss, M. 2002. Linking patterns and non-functional requirements.
Proceedings of the Ninth conference on pattern language of programs (PLOP
2002).

Bandara, A., Shinpei, H., Jurjens, J., Kaiya, H., Kubo, A., Laney, R., Mouratidis, H.,
Nhlabatsi, A., Nuseibeh, B., Tahara, Y. & Tun. 2010. "Security patterns:
Comparing modeling approaches"Technical Report,75-111.

Bass, L. 2007. Software architecture in practic, Pearson Education India.

Benameur, A., Fenet, S., Saidane, A. & Sinha, S.K. 2009. A Pattern-Based General
Security Framework: An eBusiness Case Study. In High Performance
Computing and Communications, 2009. HPCC'09, 339-346.

Blakley, B, & C Heath.2004.Technical Guide: Security Design Patterns. The Open
Group.

Blakley, B, & C Heath.2004. "Members of the Open Group Security Forum." Security
Design Patterns, Open Group Technical Guide.

Bouaziz, R., & Coulette, B. 2012. Secure component based applications through
security patterns. IEEE International Conference on Green Computing and
Communications.

Bouaziz, R., Hamid, B., & Desnos, N. 2011. Towards a better integration of patterns
in secure component-based systems design. In Computational Science and Its
Applications (ICCSA 2011), 607-621. Springer.

Bouaziz, R., Kallel, S., & Coulette, B. 2014. An approach for security patterns
application in component based models. In Computational Science and Its
Applications–ICCSA 2014, 283-296.

Bouaziz, R., &Kammoun, S. 2016. SCRIStUDIO: A security pattern integration tool.
International Conference on Information Technology for Organizations
Development (IT4OD), 1-6.

Braga, A., Rubira, C., & Dahab, R. 1999. Tropyc: A pattern language for
cryptographic software.In: Proc. 5th Conference on Pattern Languages of
Programs (PLoP) Monticello, IL, USA.

© C
OP

UPM

76

Brandozzi, M. & Perry, D.E. 2001. Transforming Goal-Oriented Requirement
Specifications into Architecture Prescriptions. In Workshop from Soft. Req. to
Arch, 54-61.

Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., & Mylopoulos, J. 2004. Tropos:
An agent-oriented software development methodology. Autonomous Agents
and Multi-Agent Systems, 8(3):203-236.

Brown, F.L., DiVietri, J., de Villegas, G.D. & Fernandez, E.B. 1999, August. The
authenticator pattern. In Proceedings of Pattern Language of Programs, 15-
18.

Chris, V., T. Nikos, & F. Mark, 2002.Case research in operations
management.International Journal of Operations & Production Management.
22(2): 195.

Cotroneo, D. ed. 2013. Innovative technologies for dependable ots-based critical
systems, Springer.

Da Silva Junior, L.S., Guéhéneuc, Y.G. & Mullins, J. 2013. An approach to formalise
security patterns. Technocal report, École Polytechnique de Montréal,
Montréal Quebéc.

Darimont, Robert, Emmanuelle Delor, Philippe Massonet, & Axel van Lamsweerde.
1997. "GRAIL/KAOS: an environment for goal-driven requirements
engineering." In Proceedings of the 19th international conference on Software
engineering, 612-613.

Davis, F.D., 1989. Perceived usefulness, perceived ease of use, and user acceptance
of information technology. MIS quarterly,319-340.

De Win, B., Scandariato, R., Buyens, K., Grégoire, J., & Joosen, W. 2009. On the
secure software development process: CLASP, SDL and Touchpoints
compared. Information and software technology,51(7):1152-1171.

Dougherty, C. R., Sayre, K., Seacord, R., Svoboda, D., & Togashi, K. 2009. Secure
design patterns, Carnegie Mellon University, Software Engineering Institute,
TECHNICAL REPORT CMU/SEI 2009-TR-010, Available:
www.cert.org/archive/pdf/09tr010.pd

Essmayr, W., Pernul, G. & Tjoa, A.M. 1998. Access controls by object-oriented
concepts. Database Security XI, 325-340.

Fernandez, E.B. 2000. Metadata and authorization patterns. Departament of Computer
Science and Eng., Technical report, Florida Atlantic University TR-CSE-00-
16.

Fernandez, E.B. 2009.Security patterns and a methodology to apply them. In Security
and Dependability for Ambient Intelligence, 37-46. Springer.

© C
OP

UPM

77

Fernandez, E. B., Ballesteros, J., Desouza-Doucet, A. C., & Larrondo-Petrie, M. M.
2007. Security patterns for physical access control systems. In IFIP Annual
Conference on Data and Applications Security and Privacy, 259-274.

Fernandez, E. B., Larrondo-Petrie, M. M., & Gudes, E. 1994. A method-based
authorization model for object-oriented databases. Security for Object-
Oriented Systems, 135-150. Springer.

Fernandez, E. B & R. Pan. 2001. A pattern language for se-curity models. In 8th
Conference on Pattern Languages of Programs (PLoP).

Firesmith, D. 2007. Common Requirements Problems, their negative consequences,
and the industry best practices to help solve them. Journal of Object
Technology, 6(1): 17-33.

Gorrieri, A. A. R., & Martinelli, F. 2005. Foundations of Security Analysis and Design
III,Springer.

Graham, I. 2007. Business rules management and service oriented architecture: a
pattern language: John Wiley & Sons.

Hafiz, M. 2013. Security pattern catalog. Available
www.munawarhafiz.com/securitypatterncatalog/index.php

Hafiz, M., Adamczyk, P., & Johnson, R. E. 2007. "Organizing security patterns."
IEEE software, (4):52-60.

Haley, C., Laney, R., Moffett, J. & Nuseibeh, B., 2008. Security requirements
engineering: A framework for representation and analysis. IEEE Transactions
on Software Engineering, 34(1): 133-153.

Hall, A., & Chapman, R. 2002. Correctness by construction: Developing a commercial
secure system. Software, IEEE, 19(1):18-25.

Hallowell, M. R., & Gambatese, J. A. 2010. Qualitative research: application of the
Delphi method to CEM research. Journal of construction engineering and
management, 136(1): 99-107.

Hamid, B., Desnos, N., Grepet, C. & Jouvray, C. 2010. September. Model-based
security and dependability patterns in RCES: the TERESA approach. In
Proceedings of the International Workshop on Security and Dependability for
Resource Constrained Embedded Systems, 8. ACM.

Hays, V., Loutrel, M., & Fernandez, E. B. 2000. The object filter and access control
framework. Conference on Pattern Languages of Programs (PLoP), 12-17.

Heyman, T., Yskout, K., Scandariato, R., Schmidt, H., & Yu, Y. 2011. The security
twin peaks. In International Symposium on Engineering Secure Software and
Systems, 167-180.

© C
OP

UPM

78

Hogg, J. 2006. Web service security: Scenarios, patterns, and implementation
guidance for Web Services Enhancements (WSE) 3.0, O'Reilly Media, Inc..

Horvath, V., & Dörges, T. 2008. From security patterns to implementation using petri
nets. Proceedings of the fourth international workshop on Software
engineering for secure systems.

Howard, M., & Lipner, S. 2009. The security development lifecycle, O'Reilly Media,
Incorporated.

Humphrey, Watts S. 2000. Introduction to the team software process (sm), Addison-
Wesley Professional.

Infrastructure, P. K., & Profile, T. P. 2002. Common criteria for information
technology security evaluation. National Security Agency.

Ito, Y., Washizaki, H., Yoshizawa, M., Fukazawa, Y., Okubo, T., Kaiya, H.,
Hazeyama, A., Yoshioka, N. & Fernandez, E.B. 2015. Systematic Mapping of
Security Patterns Research. In Proceedings of the 22nd Conference on Pattern
Languages of Programs Conference(PLoP).

Jackson, M. 2001. Problem frames: analysing and structuring software development
problems, Addison-Wesley.

Jacobson, I. 1993. Object-oriented software engineering: a use case driven approac,.
Pearson Education India.

Jürjens, J. 2002. September. UMLsec: Extending UML for secure systems
development. In International Conference on The Unified Modeling
Language, 412-425. Springer Berlin Heidelberg.

Karpati, P., Redda, Y., Opdahl, A. L., & Sindre, G.2014. Comparing attack trees and
misuse cases in an industrial setting.Information and software technology,
56(3):294-308.

Karpati, P., Sindre, G., & Opdahl, A. L. 2010. Visualizing cyber attacks with misuse
case maps.Requirements Engineering: Foundation for Software Quality, 262-
275. Springer.

Keblawi, F., & Sullivan, D. 2006. Applying the common criteria in systems
engineering. Security & Privacy, IEEE 4(2):50-55.

Kienzle, D. M., Elder, M. C., Tyree, D., & Edwards-Hewitt, J. 2002. "Security
patterns repository version 1.0." DARPA, Washington DC.

Kim, J., Kim, M., & Park, S. 2006. Goal and scenario based domain requirements
analysis environment. Journal of Systems and Software, 79(7):926-938.

© C
OP

UPM

79

Kobashi, T., Yoshizawa, M., Washizaki, H., Fukazawa, Y., Yoshioka, N., Okubo, T.
& Kaiya, H. 2015. TESEM: A Tool for Verifying Security Design Pattern
Applications by Model Testing. In 8th International Conference on Software
Testing, Verification and Validation (ICST1),8. IEEE.

Konrad, S., Cheng, B. H., Campbell, L. A., & Wassermann, R. 2003. Using security
patterns to model and analyze security requirements. International Conference
on Requirements Engineering (RE).IEEE.

Laverdiere, M.A., Mourad, A., Hanna, A. & Debbabi, M. 2006. Security design
patterns: Survey and evaluation. Canadian Conference on Electrical and
Computer Engineering, 1605-1608. IEEE.

Li, T., Horkoff, J., & Mylopoulos, J. 2014. Integrating security patterns with security
requirements analysis using contextual goal models. The Practice of
Enterprise Modeling, 208-223. Springer.

Li, T., & Mylopoulos, J. 2014. Modeling and applying security patterns using
contextual goal models. The 7th International i* Workshop, iStar14.

Lin, L. C., Nuseibeh, B., Ince, D., Jackson, M., & Moffett, J. 2003a. Analysing
security threats and vulnerabilities using abuse frames. European Joint
Conferences on Theory and Practice of Software (ETAPS-04).

Lin, L., Nuseibeh, B., Ince, D., Jackson, M., & Moffett, J. 2003b. Introducing abuse
frames for analysing security requirements. In Requirements Engineering
Conference, 371-372. IEEE.

Lincke, Susan J. 2012. Designing software security with UML extensions: post-
conference workshop. Journal of Computing Sciences in Colleges, 28(1):149-
152.

Lincke, S.J., Knautz, T.H. & Lowery, M.D. 2012. Designing system security with
UML misuse deployment diagrams. In Sixth International Conference on
Software Security and Reliability Companion (SERE-C), 57-61. IEEE.

Lodderstedt, T., Basin, D. & Doser, J. 2002. SecureUML: A UML-based modeling
language for model-driven security. In International Conference on the
Unified Modeling Language, 426-441. Springer Berlin Heidelberg.

Luján-Mora, S. & Trujillo, J. 2004. Physical modeling of data warehouses using UML.
In Proceedings of the 7th ACM Iinternational workshop on Data warehousing
and OLAP, 48-57.

Massacci, F., Mylopoulos, J., & Zannone, N. 2007. An ontology for secure socio-
technical systems. Handbook of ontologies for business interaction, 1:469.

McGraw, G. 2006. Software security: building security. Vol. 1, Addison-Wesley
Professional.

© C
OP

UPM

80

Meland, P. H., Spampinato, D. G., Hagen, E., Baadshaug, E. T., Krister, K. M., &
Velle, K. S. 2008. "SeaMonster: Providing tool support for security modeling."
Norsk informasjonssikkerhetskonferanse, NISK.

Mellado, D., Fernández-Medina, E., & Piattini, M. 2007. A common criteria based
security requirements engineering process for the development of secure
information systems Computer standards & interfaces, 29(2):244-253.

Mellado, D., Blanco, C., Sánchez, L.E. &Fernández-Medina, E. 2010.A systematic
review of security requirements engineering.Computer Standards and
Interfaces, 32(4): 153-165.

Memon, M., Menghwar, G. D., Jalbani, A. A., Depar, M. H., & Rahu, G. A. 2012.
Modeling Authentication and Authorization Security Service for WS-Security
Architecture Science International, 24(3):243-249.

Meredith, J.,1998. Building operations management theory through case and field
research. Journal of Operations Management, 16(4): 441.

Mourad, A., Otrok, H. and Baajour, L. 2010. A novel approach for the development
& deployment of security patterns. In Second International Conference on
Social Computing (SocialCom), 914-919. IEEE.

Mouratidis, H., & Giorgini, P. 2007. Secure tropos: a security-oriented extension of
the tropos methodology. International Journal of Software Engineering and
Knowledge Engineering, 17(02):285-309.

Mouratidis, H., Weiss, M., & Giorgini, P. 2006. Modeling secure systems using an
agent-oriented approach and security patterns.International Journal of
Software Engineering and Knowledge Engineering, 16(03):471-498.

Nhlabatsi, A., Bandara, A., Hayashi, S., Haley, C.B., Jurjens, J., Kaiya, H., Kubo, A.,
Laney, R., Mouratidis, H., Nuseibeh, B. & Tun, T.T. 2010. Security Patterns:
Comparing Modeling Approaches. Software Engineering for Secure Systems:
Industrial and Research Perspectives, 75.

Ortiz, R., Moral-García, S., Moral-Rubio, S., Vela, B., Garzás, J., & Fernández-
Medina, E. 2010. Applicability of security patterns. On the Move to
Meaningful Internet Systems (OTM 2010), 672-684. Springer.

Ren, J., & Taylor, R. 2005. A secure software architecture description language. In
Workshop on Software Security Assurance Tools, Techniques, and Metrics,
82-89.

Richards, M. 2015. Software architecture patterns. O'Reilly Media.

Rizzi. 2003. Open problems in data warehousing: eight years later. In Proceedings of
the 5th International Workshop on Design and Management of Data
Warehouses(DMDW’03) , Berlin, Germany.

© C
OP

UPM

81

Rowe, G., & Wright, G. 1999. The Delphi technique as a forecasting tool: issues and
analysis. International Journal of Forecasting, 15(4): 353-375.

Rozanski, N., & Woods, E. 2011. Software systems architecture: working with
stakeholders using viewpoints and perspectives: Addison-Wesley.

Salini, P, & S Kanmani. 2010. A model based security requirements engineering
framework.International Journal of Computer Engineering and Technology, 1
(1):180-195.

Schmidt, H. 2010. A Pattern and Component-Based Method to Develop Secure
Software” (PhD Thesis); Baden-Baden, Germany: Deutscher Wissenschafts-
Verlag.

Schumacher, M. 2006. Security patterns: integrating security & system engg, John
Wiley & Sons.

Schumacher, M., Fernandez-Buglioni, E., Hybertson, D., Buschmann, F., &
Sommerlad, P. 2013. Security Patterns: Integrating security and systems
engineering, John Wiley & Sons.

Sindre, G., & Opdahl, A. L. 2005. Eliciting security requirements with misuse
cases.Requirements engineering,10(1):34-44.

Spears, J.L. & Parrish, J.L., Jr. 2013. Teaching Case: IS Security Requirements
Identification from Conceptual Models in Systems Analysis and Design: The
Fun & Fitness, Inc. Case, Journal of Information Systems Education, 24(1):
17.

Steel, C., & Nagappan, R. 2006. Core Security Patterns: Best Practices and Strategies
for J2EE", Web Services, and Identity Management, Pearson Education India.

Steven, J. 2006. Adopting an enterprise software security framework. Security &
Privacy, IEEE, 4(2):84-87.

Supaporn, K., Prompoon, N. & Rojkangsadan, T., 2007, December. Enterprise assets
security requirements construction from esrmg grammar based on security
patterns. In 14th Asia-Pacific Software Engineering Conference (APSEC-
2007) , 112-119. IEEE.

Uzunov, A. V., Fernandez, E. B., & Falkner, K. 2012.Securing distributed systems
using patterns: A survey. Computers & security, 31(5):681-703.

Van Lamsweerde, A. 2004. Elaborating security requirements by construction of
intentional anti-models. In Proceedings of the 26th International Conference
on Software Engineering, 148-157.

Van Lamsweerde, A., Darimont, R., & Letier, E., 1998. May. GRAIL/KAOS: an
environment for goal-driven requirements engineering. In Proceedings of the
19th international conference on Software engineering, 612-613. ACM.

© C
OP

UPM

82

Van Lamsweerde, A. 2009. Requirements engineering: from system goals to UML
models to software specifications. Wiley Publishing.

Vieira, M. & Antunes, N. 2013. Introduction to Software Security Concepts. In
Innovative Technologies for Dependable OTS-Based Critical Systems,29-38.
Springer Milan.

Vysok, M., 2012. Diagram of Security. Information Sciences & Technologies:
Bulletin of the ACM Slovakia, 4(1).

Wang, J., Song, W.T. & Chung, L. 2005. August. Analysis of secure design patterns:
A case study in e-commerce system. In Third ACIS International Conference
on Software Engineering Research, Management and Applications (SERA'05),
174-181.

Winer, Benjamin J. 1962. Latin squares and related designs. McGraw-Hill.

Yin, R.K., 2003. Case Study Research: Design and Methods, Sage
Publications. Thousand Oaks, California.

Yoder, J., & Barcalow, J. 1998. Architectural patterns for enabling application
security. Urbana, 51:61801.

Yoshioka, N., Washizaki, H., & Maruyama, K. 2008. A survey on security patterns.
Progress in informatics, 5(5):35-47.

Yu, E. S. 1997. Towards modelling and reasoning support for early-phase
requirements engineering. Requirements Engineering. 1997.Proceedings of
the Third IEEE International Symposium, 226-235.

Yu, Y., Kaiya, H., Washizaki, H., Xiong, Y., Hu, Z., & Yoshioka, N. 2008. Enforcing
a security pattern in stakeholder goal models. Proceedings of the 4th ACM
Workshop on Quality of Protection.

