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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of 

the requirement for the Degree of Doctor of Philsophy 

SLICING ASPECT-ORIENTED PROGRAM USING ASPECT- ORIENTED 

DEPENDENCE FLOW GRAPH FOR SOFTWARE MAINTENANCE 

By 

SYARBAINI AHMAD 

October 2016 

Chairman 

Faculty 

: Professor Abdul Azim Abdul Ghani, PhD 

: Computer Science and Information Technology 

Program slicing is useful for debugging, testing, and maintaining software systems due 

to availability of information about the structure and relationship of the program 

modules. In general, program slicing can be performed either based on control flow 

graph (CFG) or dependence graph (DG). However, in the case of aspect-oriented 

programming (AOP), aspect-oriented control flow graph (AOCFG) or aspect-oriented 

dependence graph (AODG) individually is not enough to model the features of Aspect-

oriented (AO) programs. Thus, a suitable graph model for aspect-oriented program 

slicing is required to gather information on the structure of aspect-oriented programs. 

 In this thesis, the concept of slicing aspect-oriented programs for maintenance purpose 

is proposed. In order to aid in slicing an aspect-oriented program, a graph model known 

as Aspect-Oriented Dependence Flow Graph (AODFG) is proposed to represent the 

structure of aspect-oriented programs. The graph is formed by merging AOCFG and 

AODG.  As a consequence, more information about dependencies involving the features 

of AOP, such as join point, advice, aspects, their related constructs, and the flow of 

control are able to be gathered. Based on AODFG, slicing criteria are defined for aspect-

oriented features. A prototype tool called Aspect-Oriented Slicing Tool (AOST) was 

developed to implement AODFG. 

The prototype tool was evaluated for its applicability by checking the consistency of 

output by analysing ten AspectJ  programs taken from AspectJ  Development Tools. The 

analysis showed the outputs from the prototype are consistent with those from AODG 

and AOCFG. Furthermore, a one-shot experimental case study  involving experts was 

conducted to find out the effect of AOST in terms of effectiveness,  understandability, 

and modifiability for maintenance purpose. The results of the experiement show positive 

responses  which are more than 85% of the experts says that AOST supports their 

understanding of the programs structure, helps in identifying aspect-oriented features, 

and effectively represents the program structure. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk Ijazah Doktor Falsafah 

PENGHIRISAN PROGRAM BERORIENTASI ASPEK MENGGUNAKAN 

GRAF ALIRAN KEBERGANTUNGAN BERORIENTASI ASPEK UNTUK 

PENYELENGGARAAN PERISIAN 

Oleh 

SYARBAINI AHMAD 

Oktober 2016 

Pengerusi 

Fakulti 

: Profesor Abdul Azim Abdul Ghani, PhD 

: Sains Komputer dan Teknologi Maklumat 

Penghirisan program sangat berguna untuk proses nyahpijat, pengujian, dan 

penyelenggaraan sistem perisian disebabkan oleh ketersediaan maklumat mengenai 

struktur dan hubungan modul program. Secara umumnya, penghirisan program dapat 

dilakukan sama ada berdasarkan graf kawalan aliran atau graf kebergantungan. Walau 

bagaimanapun, dalam kes pengaturcaraan berorientasi aspek (AOP), graf kawalan aliran 

berorientasi aspek (AOCFG) atau graf kebergantungan berorientasi aspek (AODG) 

secara bersendirian tidak cukup untuk memodelkan ciri-ciri program berorientasi aspek 

(AO). Oleh itu, suatu model graf yang sesuai untuk penghirisan program berorientasi 

aspek diperlukan untuk mengumpul maklumat mengenai struktur program berorientasi 

aspek. 

Dalam tesis ini, konsep penghirisan program berorientasi aspek untuk tujuan 

penyelenggaran dicadangkan. Sebagai bantuan dalam menghiris proram berorientasi 

aspek, satu model graf dikenali dengan Aspect-Oriented Dependence Flow Graph 

(AODFG) dicadangkan untuk mewakili struktur program berorientasi aspek. Graf 

tersebut dibentuk dengan menggabungkan AOCFG dan AODG. Hasilnya, lebih banyak 

maklumat mengenai kebergantungan yang melibatkan ciri-ciri AOP seperti join point, 

advice, aspect, binaan yang berkaitan, dan  aliran kawalan dapat dikumpul. Berdasarkan 

AODFG, kriteria penghirisan ditakrif untuk ciri-ciri berorientasi aspek. Satu alatan 

prototaip dikenali sebagai Aspect-Oriented Slicing Tool (AOST) telah dibangunkan 

untuk mengimplemen AODFG. 

Alatan prototaip tersebut telah dinilai kebolehgunaannya melalui penyemakan 

konsistensi output dengan menganalisis sepuluh program AspectJ yang diambil dari 

AspectJ Development Tools. Analisis menunjukkan output prototaip konsisten dengan 

output AODG dan AOCFG. Tambahan, satu kes kajian eksperimen bentuk tunggal 

melibatkan pakar telah dijalankan untuk mendapat tahu efek AOST terhadap 
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keefektifan, kebolehfahaman, dan kebolehubahan bagi tujuan penyelenggaraan. 

Keputusan eksperimen menunjukkan respon yang positif yang mana lebih daripada 85% 

pakar mengatakan bahawa AOST menyokong kefahaman mereka tentang struktur 

program, membantu dalam mengenalpasti ciri-ciri berorientasi aspek, dan secara efektif 

mewakili struktur program. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 Background Study 

 

Software maintenance is a modification of a software product after delivery, to correct 

faults, to improve performance or other attributes, or to adapt the product to a modified 

environment (Grubb & Takang, 2003). The basic understanding about software 

maintenance is, it is not only about program. It is a temptation to think of activities 

carried out exclusively on programs such as source code, object code and documentation 

of any facet of the program such as requirements analysis, specifications, design, and 

user manuals. Software maintenance are most likely working with reverse engineering 

technique such as re-engineering, re-use, refactoring and slicing.  

 

 

Maintainability of software system is something that is notoriously difficult to describe. 

Certain aspect may be easy to measure. But, practically there are many different ways to 

measure, especially for complex software. Different development method also will make 

the maintenance activity have a different way of measure. For example, the development 

for procedural method is different compare to object-oriented measurement. Even, 

object-oriented is also different compare to aspect-oriented.  

 

 

Aspect-oriented (AO) is a post Object Oriented (OO) paradigm proposed by Kiczales et. 

al. (2001) with the goal of enhancing software maintainability through new 

modularization mechanisms for encapsulating crosscutting concern. It is very useful in 

software engineering to lead the reducing of complexity in the development cycle 

especially in the maintenance phase. Separation of concerns (Laddad, 2003) are able to 

identify, encapsulate and manipulate in isolated way only those parts of software that are 

relevant to a concept, objective or intention given. It is aimed at breaking the hegemony 

of the dominant decomposition (Colyer & Clement, 2005).  

 

 

Slicing is a reverse engineering technique in software maintenance to extract a part of 

codes with respect to some special computation. It was first introduced by Weiser with 

the procedural programming in 1979 (Weiser, 1979). Slicing was first developed to 

facilitate debugging, but it is then found helpful in many aspects of the software 

development life cycle especially software maintenance. Since the last two decades there 

are many types of slicing have been presented (Xu, Qian,Zhang,Wu, & Chen, 2005) such 

as hybrid slicing, relevant slicing, union slicing etc. but the major focus of research in 

slicing are static and dynamic slicing. Ishio, Kusumoto, and Inoue (2004) claim that 

because of the features of aspect-oriented programming (AOP), debugging, testing, and 

verifying program can be more complex than with the traditional programming 

technique. In this domain, slicing can be more useful technique. It can be used to find 

the part of the program that affects the criteria, or is affected by the criteria.   
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Dependence flow graph (DFG) is a combination of two types of graph which are 

dependence graph (DG) and control flow graph (CFG). DG is a directed graph normally 

used to represent dependencies of several objects towards each other. In OO (Zhao, 

2002), DG is a collection of method dependence graph representing a main() method or 

a method in a class of the program, or some additional arcs to represent direct or indirect 

dependencies between a call and the called method and transitive interprocedural data 

dependencies.  DG in AO used to represent the dependencies between the concept of 

join points, advice, aspects and their associated constructs. CFG is a model of node (or 

point) corresponds to a program statements, and each arc (or directed edge) indicates the 

flow of control from one statement to another (EL-Manzalawy, 2004).  

 

 

1.2 Problem Statement 

 

Many people currently, would search through the code and communicate with a logging 

method in appropriate location. If the system properly designed and developed, the code 

might require very minimum changes in only a few places. For most system, though, 

insertions would be necessary in many places. If the system were object-oriented, we 

might build a logging class and then use an instance of it to handle the logging. We might 

need to understand the hierarchy of classes to handle a complex interaction in different 

files and databases. In AOP, conceptually crosscutting concerns produce a list of codes 

and classes using standard language constructs expressly because these concerns was 

tangled with the basic functionality of the code. The repeated rounds of program 

transformation and analysis are difficult to handle and gives rise to the increase of the 

system complexity in the maintenance perspectives.  

 

 

There are many researches focus in getting the best way to represent the architecture of 

aspect code in order to understand the program. Some of them are using control flow 

graph (Gold, 2010; Bernardi & di Lucca, 2007; Yin, Jiang, Yin, Zhou, & Li, 2009; 

Cacho, Filho, Garcia, & Figueiredo, 2008), dependence graph (Arora, Bhatia, & Singh, 

2012; Würthinger, 2007), call graph (Ishio et al., 2004; Lin, Zhang, & Zhao, 2009) etc. 

as their representation tool.  The control flow graph allows us to formulate a simple 

algorithm, based on abstract interpretation, which finds possible-paths constants without 

the need for program transformations. However, the complexity of the program is related 

to the algorithm that uses control flow graphs (Pingali, Beck, Johnson, Stodghill, & 

Moudgill, 1991) and dependence graph (Arora et al., 2012). 

 

 

There is a different problem when using dependence graph. The dependence graphs can 

only construct the relationship of data dependency once at the beginning of the code 

before we identified the slicing area. It can only represent single process and cannot 

handle multiple programs at once. The complexity of algorithms that use the various 

dependence graphs is very high, and none of them finds possible paths (Duanzhi, 2010). 

Therefore, the slicing based on dependence graph must be study in deep and detail.  

 

 

Control flow graphs show the block of sequence consecutive statement flow of control 

from the beginning and leaves at the end without halt or possibility of branching until 

the end of the program. It can present the flow of processes even in complicated 
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branches. Nevertheless, the more branches in the program the harder to eliminate dead 

code in low-level code. It makes hard to extract information branches and loops in the 

program because different branches taken, different number of loop iterations in the 

execution. 

 

 

An ideal program representation for dependence flow graph would have a local 

execution semantics from which an abstract interpretation can easily derived. It would 

also be a sparse representation of program dependencies, in order to yield an efficient 

algorithm. There are some advantages and disadvantages of dependence graph and 

control flow graph. Why not we mix the advantages of dependence graph and control 

flow graph and prove a better solution to represent the architecture of aspect code. We 

view as a data structure that can be traversed efficiently for dependence information and 

it can be viewed as a precisely defined language with a local operational semantics and 

prove a better solution to represent the architecture of aspect code. We view as a data 

structure that can be traverse efficiently for dependence information, and it can be 

viewed as a precisely defined language with a local operational semantics. 

 

 

Moreover, for more effective software maintenance, program slicing has been advocated 

to clearly extract all statements that may possibly be affected in the aspect-oriented 

program. Ishio, Kusumoto, and Inoue (2002) have proposed a step to slice the aspect-

oriented programs. However, Ishio’s work focuses on dependence graph which cannot 

be used directly. In this thesis, the idea of control flow graph and dependence graph are 

merged to form a single graph for the purpose of slicing of aspect-oriented programs. 

 

 

1.3 Research Objectives 

 

The main objective of this research is to propose a static slicing approach on aspect-

oriented programs for maintenance purposes. In order to achieve this objective, the 

research needs to fulfil the following sub-objectives: 

 

• To propose an aspect-oriented dependence flow graph to represent aspect-

oriented programs. 

• To formulate static slicing criteria for aspect-oriented programs by defining 

criteria involving features of aspect-oriented programs. 

• To develop a prototype tool that implements the aspect-oriented dependence 

flow graph with the defined slicing criteria.  

 

 

1.4 Scope of the Research  

 

This research is about slicing of aspect-oriented programs to help maintainers in 

maintaining software that was developed. Aspect-oriented programs will be represented 

by a proposed graph that is able to show the aspect-oriented features. Control flow graph 

and dependence graph are the basis for formation of the proposed graph for the purpose 

of slicing aspect-oriented programs. The slicing criteria for the proposed graph extends 

the slicing criteria for object-oriented. This research uses static slicing as the technique 

to slice the proposed graph. This idea is implemented in a prototype tool. Furthermore, 



© C
OPYRIG

HT U
PM

4 

 

this work focuses on AspectJ language which is seamless aspect-oriented extension of 

JAVA programming language.  

 

 

The consistencty of output from the tool been investigated through construction of 

graphs for ten AspectJ programs of various sizes ranging from 87 to 2285 lines of code 

with the number of aspects is between 1 to 9. The ten programs were taken from AspectJ 

Development Tools. These programs are commonly used by other researchers in aspect-

oriented research. Moreover, the evaluation of the study is conducted by running an 

experiment involving 20 experts.  

 

 

1.5 Thesis Organization 
 

This thesis is divided into eight chapters. The first chapter is the introduction of the 

thesis. It describes the background study, problem statement, research objectives and 

scope of study. Literature review is in Chapter two. The chapter does the discussion 

about overview of software maintenance, reverse engineering and its comprehension 

tools. After that is a brief of aspect-oriented paradigm and slicing as one of the reverse 

engineering technique in software engineering.  

 

 

Chapter three is a discussion about research methodology. This chapter is about the way 

how this research was completely conducted. It begins by understanding the flow of idea 

in literature study.  Next the chapter briefly explains a proposal on static slicing 

technique for maintaining aspect-oriented program. After that, the application of 

proposed technique to the tool that developed as a prototype. At the end, experiment was 

conducted in order to evaluate the proposed technique.  

 

 

Chapter four is a discussion about the concept of aspect-oriented dependence flow graph 

and its original study. The scope of discussion in this chapter is about to bring the original 

study of DFG into the implementation of AODFG as a specifically focus to the aspect-

oriented. The discussion begins with the Du and Ud chain and DFG concept. Based on 

the concept, the proposed aspect-oriented dependence flow graph (AODFG) is 

conceptually designed. The concept of AODFG is based on the control flow and 

dependencies in aspect-oriented.  

 

 

Chapter five then continue from discussion in Chapter 4 and specifically discussed about 

the proposal of slicing approach for aspect-oriented dependence flow graph. The 

discussion begins with introducing slicing approach in original study and followed by 

the work on the program slicing in the perspective of aspect-oriented.  

 

 

Chapter six is a discussion about the implementation of slicing AODFG by using AOST 

which is a prototype to support AODFG. This chapter begins with detail out the 

requirements needed by AODFG. The clearly defined requirements help to design the 

prototype. It then developed by following the design.  
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Chapter 7 is a description about the experiment and survey that we were contribute to 

support the proposed concept. This chapter described about the way how the experiment 

and survey are implemented. There are two evaluations provided. The first evaluation is 

an empirical evaluation by introducing the technique to the expertise in the area of study. 

The second evaluation is to know the capability of AOST to used and compare with the 

traditional techniques. The details of discussion can be referred to the particular given. 

Chapter eight is the conclusion of thesis and some suggestion for future works.  
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