

UNIVERSITI PUTRA MALAYSIA

SLICING ASPECT-ORIENTED PROGRAM USING ASPECT- ORIENTED
DEPENDENCE FLOW GRAPH FOR SOFTWARE MAINTENANCE

SYARBAINI AHMAD

FSKTM 2016 47

© C
OPYRIG

HT U
PM

i

SLICING ASPECT-ORIENTED PROGRAM USING ASPECT- ORIENTED

DEPENDENCE FLOW GRAPH FOR SOFTWARE MAINTENANCE

By

SYARBAINI AHMAD

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in

Fulfillment of the Requirements for the Degree of Doctor of Philosophy

October 2016

© C
OPYRIG

HT U
PM

i

COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons,

photographs and all other artwork, is copyright material of Universiti Putra Malaysia

unless otherwise stated. Use may be made of any material contained within the thesis for

non-commercial purposes from the copyright holder. Commercial use of material may

only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia

© C
OPYRIG

HT U
PM

ii

DEDICATION

 وَإ ذَاق يلَ انْشُزُوافاَنْشُزُوا يرَْفَع

لْمَ دَرَجَـتٍ وَاللهُ ب مَا تعَْـمَلـُوْنَ خَـب يْـر يْنَ اوُتوُ الْع نـكُْمْ وَالذّ يْنَ امَنوُا م الله الذ

And when you are told to rise up, rise up. Allah will exalt in degree those of you who

believe, and those who have been granted knowledge. And Allah is Well-Acquainted

with what you do.

[Al-Mujadalah 58:11]

Dedicated to my parent;

to my wife and kids;

to my brothers;

to my family;

Thank you for make me stronger on my journey

© C
OPYRIG

HT U
PM

i

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of

the requirement for the Degree of Doctor of Philsophy

SLICING ASPECT-ORIENTED PROGRAM USING ASPECT- ORIENTED

DEPENDENCE FLOW GRAPH FOR SOFTWARE MAINTENANCE

By

SYARBAINI AHMAD

October 2016

Chairman

Faculty

: Professor Abdul Azim Abdul Ghani, PhD

: Computer Science and Information Technology

Program slicing is useful for debugging, testing, and maintaining software systems due

to availability of information about the structure and relationship of the program

modules. In general, program slicing can be performed either based on control flow

graph (CFG) or dependence graph (DG). However, in the case of aspect-oriented

programming (AOP), aspect-oriented control flow graph (AOCFG) or aspect-oriented

dependence graph (AODG) individually is not enough to model the features of Aspect-

oriented (AO) programs. Thus, a suitable graph model for aspect-oriented program

slicing is required to gather information on the structure of aspect-oriented programs.

 In this thesis, the concept of slicing aspect-oriented programs for maintenance purpose

is proposed. In order to aid in slicing an aspect-oriented program, a graph model known

as Aspect-Oriented Dependence Flow Graph (AODFG) is proposed to represent the

structure of aspect-oriented programs. The graph is formed by merging AOCFG and

AODG. As a consequence, more information about dependencies involving the features

of AOP, such as join point, advice, aspects, their related constructs, and the flow of

control are able to be gathered. Based on AODFG, slicing criteria are defined for aspect-

oriented features. A prototype tool called Aspect-Oriented Slicing Tool (AOST) was

developed to implement AODFG.

The prototype tool was evaluated for its applicability by checking the consistency of

output by analysing ten AspectJ programs taken from AspectJ Development Tools. The

analysis showed the outputs from the prototype are consistent with those from AODG

and AOCFG. Furthermore, a one-shot experimental case study involving experts was

conducted to find out the effect of AOST in terms of effectiveness, understandability,

and modifiability for maintenance purpose. The results of the experiement show positive

responses which are more than 85% of the experts says that AOST supports their

understanding of the programs structure, helps in identifying aspect-oriented features,

and effectively represents the program structure.

© C
OPYRIG

HT U
PM

ii

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai

memenuhi keperluan untuk Ijazah Doktor Falsafah

PENGHIRISAN PROGRAM BERORIENTASI ASPEK MENGGUNAKAN

GRAF ALIRAN KEBERGANTUNGAN BERORIENTASI ASPEK UNTUK

PENYELENGGARAAN PERISIAN

Oleh

SYARBAINI AHMAD

Oktober 2016

Pengerusi

Fakulti

: Profesor Abdul Azim Abdul Ghani, PhD

: Sains Komputer dan Teknologi Maklumat

Penghirisan program sangat berguna untuk proses nyahpijat, pengujian, dan

penyelenggaraan sistem perisian disebabkan oleh ketersediaan maklumat mengenai

struktur dan hubungan modul program. Secara umumnya, penghirisan program dapat

dilakukan sama ada berdasarkan graf kawalan aliran atau graf kebergantungan. Walau

bagaimanapun, dalam kes pengaturcaraan berorientasi aspek (AOP), graf kawalan aliran

berorientasi aspek (AOCFG) atau graf kebergantungan berorientasi aspek (AODG)

secara bersendirian tidak cukup untuk memodelkan ciri-ciri program berorientasi aspek

(AO). Oleh itu, suatu model graf yang sesuai untuk penghirisan program berorientasi

aspek diperlukan untuk mengumpul maklumat mengenai struktur program berorientasi

aspek.

Dalam tesis ini, konsep penghirisan program berorientasi aspek untuk tujuan

penyelenggaran dicadangkan. Sebagai bantuan dalam menghiris proram berorientasi

aspek, satu model graf dikenali dengan Aspect-Oriented Dependence Flow Graph

(AODFG) dicadangkan untuk mewakili struktur program berorientasi aspek. Graf

tersebut dibentuk dengan menggabungkan AOCFG dan AODG. Hasilnya, lebih banyak

maklumat mengenai kebergantungan yang melibatkan ciri-ciri AOP seperti join point,

advice, aspect, binaan yang berkaitan, dan aliran kawalan dapat dikumpul. Berdasarkan

AODFG, kriteria penghirisan ditakrif untuk ciri-ciri berorientasi aspek. Satu alatan

prototaip dikenali sebagai Aspect-Oriented Slicing Tool (AOST) telah dibangunkan

untuk mengimplemen AODFG.

Alatan prototaip tersebut telah dinilai kebolehgunaannya melalui penyemakan

konsistensi output dengan menganalisis sepuluh program AspectJ yang diambil dari

AspectJ Development Tools. Analisis menunjukkan output prototaip konsisten dengan

output AODG dan AOCFG. Tambahan, satu kes kajian eksperimen bentuk tunggal

melibatkan pakar telah dijalankan untuk mendapat tahu efek AOST terhadap

© C
OPYRIG

HT U
PM

iii

keefektifan, kebolehfahaman, dan kebolehubahan bagi tujuan penyelenggaraan.

Keputusan eksperimen menunjukkan respon yang positif yang mana lebih daripada 85%

pakar mengatakan bahawa AOST menyokong kefahaman mereka tentang struktur

program, membantu dalam mengenalpasti ciri-ciri berorientasi aspek, dan secara efektif

mewakili struktur program.

© C
OPYRIG

HT U
PM

iv

ACKNOWLEDGEMENTS

In the name of Allah, the Beneficent the Compassionate and who giving me strength,

patience, and motivation to complete this study. This is the opportunity for me to present

my gratitude towards the great peoples that patiently support during my study.

Particularly Prof. Dr. Abdul Azim Abdul Ghani, the research supervisory committee

leader, who has always spend his time to share his knowledge, invaluable guidance,

fruitful discussion, gold recommendations and suggestions also encourage me

continuously in every single stage of this study. Also a great thanks to my second

supervisor Assoc. Prof. Dr Nor. Fazlida Mohd Sani for her support, attentions during my

research work and the guidance in each discussion during all steps of this work. Also to

Assoc. Prof. Dr. Rodziah Atan for her victorious guidance, encouragement and help

during the time of doing the research. Thousands grateful to Mr. Fairol Zamzuri Che

Sayuti for his standing up me during the hard times and his never ending support.

Next, my acknowledgement belong to International Islamic University College Selangor

(KUIS) for funding my study. Finally, I would like to express my deepest gratitude to

my family and friends for their lasting support and encouragement. This thesis would

not have been possible without the foundation created by them. Thank you!

© C
OPYRIG

HT U
PM

© C
OPYRIG

HT U
PM

vi

This thesis was submitted to the Senate of the Universiti Putra Malaysia and has been

accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The

members of the Supervisory Committee were as follows:

Abdul Azim Abdul Ghani, PhD

Professor

Faculty of Computer Science and Information Technology

Universiti Putra Malaysia

(Chairman)

Nor Fazlida Mohd Sani, PhD

Associate Professor

Faculty of Computer Science and Information Technology

Universiti Putra Malaysia

(Member)

Rodziah Atan, PhD

Associate Professor

Faculty of Computer Science and Information Technology

Universiti Putra Malaysia

(Member)

BUJANG BIN KIM HUAT, PhD

Professor and Dean

School of Graduate Studies

Universiti Putra Malaysia

Date:

© C
OPYRIG

HT U
PM

vii

Declaration by graduate student

I hereby confirm that:

 this thesis is my original work;

 quotations, illustrations and citations have been duly referenced;

 this thesis has not been submitted previously or concurrently for any other degree at

any institutions;

 intellectual property from the thesis and copyright of thesis are fully-owned by

Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research)

Rules 2012;

 written permission must be obtained from supervisor and the office of Deputy Vice-

Chancellor (Research and innovation) before thesis is published (in the form of

written, printed or in electronic form) including books, journals, modules,

proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture

notes, learning modules or any other materials as stated in the Universiti Putra

Malaysia (Research) Rules 2012;

 there is no plagiarism or data falsification/fabrication in the thesis, and scholarly

integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies)

Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research)

Rules 2012. The thesis has undergone plagiarism detection software

Signature: Date: 13 October 2016

Name and Matric No.: Syarbaini Ahmad / GS22466

© C
OPYRIG

HT U
PM

viii

Declaration by Members of Supervisory Committee

This is to confirm that:

 the research conducted and the writing of this thesis was under our supervision;

 supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate

Studies) Rules 2003 (Revision 2012-2013) were adhered to.

Signature:

Name of Chairman

of Supervisory

Committee:

Signature:

Name of Member

of Supervisory

Committee:

Signature:

Name of Member

of Supervisory

Committee:

© C
OPYRIG

HT U
PM

ix

TABLE OF CONTENTS

 Page

ABSTRACT i

ABSTRAK ii

ACKNOWLEDGEMENTS iv

APPROVAL v

DECLARATION vii

LIST OF TABLES xii

LIST OF FIGURES xiii

LIST OF ABBREVIATIONS xv

CHAPTER

1 INTRODUCTION 1

 1.1 Background Study 1

 1.2 Problem Statement 2

 1.3 Research Objectives 3

 1.4 Scope of the Research 3

 1.5 Thesis Organization 4

2 LITERATURE REVIEW 6

 2.1 Introduction 6

 2.2 Overview of Software Maintenance 6

 2.2.1 Definitions of Software Maintenance 6

 2.2.2 Software Maintenance Approaches 7

 2.3 Reverse Engineering in Software Maintenance 8

 2.4 Comprehension Tools for Reverse Engineering 8

 2.4.1 Program Slicing 9

 2.4.2 Static Analyser 9

 2.4.3 Dynamic Analyser 9

 2.4.4 Data Flow Analyser 9

 2.5 Aspect-oriented paradigm 10

 2.5.1 The AOP Implementation 10

 2.5.2 Fundamental Concepts in AOP 13

 2.6 Program Slicing Study 16

 2.7 Maintenance of Aspect-Oriented Programs 19

3 RESEARCH METHODOLOGY 22

 3.1 Introduction 22

 3.2 Literature Study 24

 3.3 Propose Static Slicing Technique for Maintaining AOP 24

 3.4 Implement Tool to Support the Proposed Technique 25

 3.5 Evaluate of the Proposed Technique 25

 3.6 Summary 26

4 ASPECT-ORIENTEND DEPENDENCE FLOW GRAPH

(AODFG) CONCEPTUAL DESIGN

27

 4.1 Introduction 27

© C
OPYRIG

HT U
PM

x

 4.2 Du and Ud Chains 28

 4.3 DFG Construct 29

 4.4 AODFG Conceptual Design 32

 4.5 Creating a Control Flow For Aspect-oriented 33

 4.5.1 Concurrent Branching of AOCFG 38

 4.5.2 Alternative Branching 39

 4.6 Dependence Graph in Aspect-oriented 40

 4.6.1 Data Dependence 42

 4.7 AODFG Construction 42

 4.8 Summary 44

5 PROPOSED SLICING APPROACH FOR ASPECT-

ORIENTED DEPENDENCE FLOW GRAPH48

45

 5.1 Introduction 45

 5.2 Basic Relationship 45

 5.3 Slicing Approach 55

 5.4 Extension of Aspect-oriented to Program Slicing 57

 5.4.1 Join point information 57

 5.4.2 A pointcut reference 57

 5.4.3 A dynamic pointcut 57

 5.4.4 An advice call relation 58

 5.5 Summary 58

6 IMPLEMENTATION OF SLICING AODFG BY USING

ASPECT ORIENTED SLICING TOOL (AOST)

59

 6.1 Introduction 59

 6.2 Requirements of AOST 59

 6.3 Architecture of AOST 60

 6.3.1 Input Components 61

 6.3.2 Output Component 61

 6.4 AOST System Design 61

 6.4.1 Package Diagram 62

 6.4.2 Class Diagram 63

 6.5 AOST Development Tools 66

 6.6 Execution of AOST 67

 6.7 Summary 71

7 Evaluation of AODFG 72

 7.1 Introduction 72

 7.2 Empirical Evaluation 72

 7.2.1 Validation Steps 72

 7.2.2 Questionnaire 73

 7.2.3 Findings 74

 7.3 Applicability of the Proposed Technique 79

 7.3.1 AOCFG Manual Construction 80

 7.3.2 AODG Manual Construction 83

 7.3.3 AODFG Construction Using AOST 85

 7.4 Threats to Validity 87

 7.5 Discussion 88

 7.6 Lesson Learned 89

© C
OPYRIG

HT U
PM

xi

8 CONCLUSION AND FUTURE WORKS 91

 8.1 Conclusion 91

 8.2 Future Works 91

REFERENCES 93

APPENDICES 99

BIODATA OF STUDENT 104

LIST OF PUBLICATIONS 105

© C
OPYRIG

HT U
PM

xii

LIST OF TABLES

Table Page

2.1 Categories of Software Maintenance (IEEE Std. 1219-1998) 7

2.2 Categories of Software Maintenance 8

2.3 Summary of work related to analysis and slicing 21

7.1 General output 75

7.2 Understandability output 76

7.3 Modifiability output 77

7.4 Effectiveness output 78

7.5 Key properties of aspectJ programs 80

7.6 AOCFG analysis output 83

7.7 AODG analysis output 85

7.8 AODFG analysis output 87

7.9 Comparison between AODFG, AODG and AOCFG 89

© C
OPYRIG

HT U
PM

xiii

LIST OF FIGURES

Figure Page

2.1 Concept of aspect weaver 10

2.2 Crosscutting concerns in object-oriented language 11

2.3 Tracing statements in object-oriented application 12

2.4 Aspect-oriented programming weaving 12

2.5 A tracing aspect in pseudo-code 13

2.6 Generic model of AOP system 14

3.1 Research methodology 23

4.1 Overview of DFG original concept study 28

4.2 Example program and its representation 30

4.3 Example DFG for a small program 32

4.4 Overview of AODFG slicing process 33

4.5 Example of AOCFG definition node 35

4.6 Representing a selection node 37

4.7 Representing a guard node 37

4.8 Examples of concurrent branching 38

4.9 If-else branching in programs 40

4.10 Example of dependence graph 41

4.11 The macro view of AODFG 43

5.1 Example of execution sequence code 46

5.2 Execution sequence of aspect 46

5.3 Example of method usage by statement 47

5.4 Example of variable usage by statement 48

5.5 Example of variable definition by a statement 48

© C
OPYRIG

HT U
PM

xiv

5.6 Example of variable definition by method 49

5.7 Example of method usage by method 49

5.8 Example of inheritance class 50

5.9 Example code of class used by another class 50

5.10 Example of class affected by another class 51

5.11 Example of variable definition by advice 51

5.12 Example of advice usage by join point 52

5.13 Example passing context from pointcut to join point in advice 53

5.14 Example of aspect used by another aspect 54

5.15 Example of class uses by aspect 55

6.1 AOST implementation architecture 60

6.2 AOST package diagram 63

6.3 AOST complete class diagram 64

6.4 AOST user interface 68

6.5 Open explorer window and file list 69

6.6 AspectJ code in “Original Code” frame 69

6.7 Analysis output in “Analysed Code” frame 70

6.8 Example of AODFG code extraction from “PointShadowProtocol” 70

7.1 HashablePoint code 81

7.2 AOCFG of “HashablePoint.aj” 82

7.3 AODG of “HashablePoint.aj” 84

7.4 AODFG of ‘HashablePoint.aj’ 86

© C
OPYRIG

HT U
PM

xv

LIST OF ABBREVIATIONS

AJDT AspectJ development tools

AO aspect-oriented

AOCFG aspect-oriented control flow graph

AODFG aspect-oriented dependence flow graph

AODG aspect-oriented dependence graph

AOP aspect-oriented programming

AOST aspect-oriented slicing tool

ASDG aspect-oriented system dependence graph

CASDG Concurrent Aspect-oriented System Dependence Graph

CFG control flow graph

DADG Dynamic Aspect-Oriented Dependence Graph

DDS distributed dynamic slicing

DDST Dynamic Dependence Slicing Tool

DFG dependence flow graph

DG dependence graph

DPDG distributed program dependence graph

DU define-use

EASDG extended aspect-oriented system dependence graph

GUI graphical user interface

IDE integrated development environment

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronics Engineer

ISO International Organization for Standardization

JDK Java Development Kit

JRE Java Runtime Environment

© C
OPYRIG

HT U
PM

xvi

MtDG multithreaded dependence graph

OO object-oriented

OOP object-oriented programming

PARC Palo Alto Research Center

RUP Rational Unified Process

SDG system dependence graph

SDST Static Dependence Slicing Tools

TBDS trace File Based Dynamic Slicing

UD use-define

UML Unified Modelling Language

© C
OPYRIG

HT U
PM

1

CHAPTER 1

INTRODUCTION

1.1 Background Study

Software maintenance is a modification of a software product after delivery, to correct

faults, to improve performance or other attributes, or to adapt the product to a modified

environment (Grubb & Takang, 2003). The basic understanding about software

maintenance is, it is not only about program. It is a temptation to think of activities

carried out exclusively on programs such as source code, object code and documentation

of any facet of the program such as requirements analysis, specifications, design, and

user manuals. Software maintenance are most likely working with reverse engineering

technique such as re-engineering, re-use, refactoring and slicing.

Maintainability of software system is something that is notoriously difficult to describe.

Certain aspect may be easy to measure. But, practically there are many different ways to

measure, especially for complex software. Different development method also will make

the maintenance activity have a different way of measure. For example, the development

for procedural method is different compare to object-oriented measurement. Even,

object-oriented is also different compare to aspect-oriented.

Aspect-oriented (AO) is a post Object Oriented (OO) paradigm proposed by Kiczales et.

al. (2001) with the goal of enhancing software maintainability through new

modularization mechanisms for encapsulating crosscutting concern. It is very useful in

software engineering to lead the reducing of complexity in the development cycle

especially in the maintenance phase. Separation of concerns (Laddad, 2003) are able to

identify, encapsulate and manipulate in isolated way only those parts of software that are

relevant to a concept, objective or intention given. It is aimed at breaking the hegemony

of the dominant decomposition (Colyer & Clement, 2005).

Slicing is a reverse engineering technique in software maintenance to extract a part of

codes with respect to some special computation. It was first introduced by Weiser with

the procedural programming in 1979 (Weiser, 1979). Slicing was first developed to

facilitate debugging, but it is then found helpful in many aspects of the software

development life cycle especially software maintenance. Since the last two decades there

are many types of slicing have been presented (Xu, Qian,Zhang,Wu, & Chen, 2005) such

as hybrid slicing, relevant slicing, union slicing etc. but the major focus of research in

slicing are static and dynamic slicing. Ishio, Kusumoto, and Inoue (2004) claim that

because of the features of aspect-oriented programming (AOP), debugging, testing, and

verifying program can be more complex than with the traditional programming

technique. In this domain, slicing can be more useful technique. It can be used to find

the part of the program that affects the criteria, or is affected by the criteria.

© C
OPYRIG

HT U
PM

2

Dependence flow graph (DFG) is a combination of two types of graph which are

dependence graph (DG) and control flow graph (CFG). DG is a directed graph normally

used to represent dependencies of several objects towards each other. In OO (Zhao,

2002), DG is a collection of method dependence graph representing a main() method or

a method in a class of the program, or some additional arcs to represent direct or indirect

dependencies between a call and the called method and transitive interprocedural data

dependencies. DG in AO used to represent the dependencies between the concept of

join points, advice, aspects and their associated constructs. CFG is a model of node (or

point) corresponds to a program statements, and each arc (or directed edge) indicates the

flow of control from one statement to another (EL-Manzalawy, 2004).

1.2 Problem Statement

Many people currently, would search through the code and communicate with a logging

method in appropriate location. If the system properly designed and developed, the code

might require very minimum changes in only a few places. For most system, though,

insertions would be necessary in many places. If the system were object-oriented, we

might build a logging class and then use an instance of it to handle the logging. We might

need to understand the hierarchy of classes to handle a complex interaction in different

files and databases. In AOP, conceptually crosscutting concerns produce a list of codes

and classes using standard language constructs expressly because these concerns was

tangled with the basic functionality of the code. The repeated rounds of program

transformation and analysis are difficult to handle and gives rise to the increase of the

system complexity in the maintenance perspectives.

There are many researches focus in getting the best way to represent the architecture of

aspect code in order to understand the program. Some of them are using control flow

graph (Gold, 2010; Bernardi & di Lucca, 2007; Yin, Jiang, Yin, Zhou, & Li, 2009;

Cacho, Filho, Garcia, & Figueiredo, 2008), dependence graph (Arora, Bhatia, & Singh,

2012; Würthinger, 2007), call graph (Ishio et al., 2004; Lin, Zhang, & Zhao, 2009) etc.

as their representation tool. The control flow graph allows us to formulate a simple

algorithm, based on abstract interpretation, which finds possible-paths constants without

the need for program transformations. However, the complexity of the program is related

to the algorithm that uses control flow graphs (Pingali, Beck, Johnson, Stodghill, &

Moudgill, 1991) and dependence graph (Arora et al., 2012).

There is a different problem when using dependence graph. The dependence graphs can

only construct the relationship of data dependency once at the beginning of the code

before we identified the slicing area. It can only represent single process and cannot

handle multiple programs at once. The complexity of algorithms that use the various

dependence graphs is very high, and none of them finds possible paths (Duanzhi, 2010).

Therefore, the slicing based on dependence graph must be study in deep and detail.

Control flow graphs show the block of sequence consecutive statement flow of control

from the beginning and leaves at the end without halt or possibility of branching until

the end of the program. It can present the flow of processes even in complicated

© C
OPYRIG

HT U
PM

3

branches. Nevertheless, the more branches in the program the harder to eliminate dead

code in low-level code. It makes hard to extract information branches and loops in the

program because different branches taken, different number of loop iterations in the

execution.

An ideal program representation for dependence flow graph would have a local

execution semantics from which an abstract interpretation can easily derived. It would

also be a sparse representation of program dependencies, in order to yield an efficient

algorithm. There are some advantages and disadvantages of dependence graph and

control flow graph. Why not we mix the advantages of dependence graph and control

flow graph and prove a better solution to represent the architecture of aspect code. We

view as a data structure that can be traversed efficiently for dependence information and

it can be viewed as a precisely defined language with a local operational semantics and

prove a better solution to represent the architecture of aspect code. We view as a data

structure that can be traverse efficiently for dependence information, and it can be

viewed as a precisely defined language with a local operational semantics.

Moreover, for more effective software maintenance, program slicing has been advocated

to clearly extract all statements that may possibly be affected in the aspect-oriented

program. Ishio, Kusumoto, and Inoue (2002) have proposed a step to slice the aspect-

oriented programs. However, Ishio’s work focuses on dependence graph which cannot

be used directly. In this thesis, the idea of control flow graph and dependence graph are

merged to form a single graph for the purpose of slicing of aspect-oriented programs.

1.3 Research Objectives

The main objective of this research is to propose a static slicing approach on aspect-

oriented programs for maintenance purposes. In order to achieve this objective, the

research needs to fulfil the following sub-objectives:

• To propose an aspect-oriented dependence flow graph to represent aspect-

oriented programs.

• To formulate static slicing criteria for aspect-oriented programs by defining

criteria involving features of aspect-oriented programs.

• To develop a prototype tool that implements the aspect-oriented dependence

flow graph with the defined slicing criteria.

1.4 Scope of the Research

This research is about slicing of aspect-oriented programs to help maintainers in

maintaining software that was developed. Aspect-oriented programs will be represented

by a proposed graph that is able to show the aspect-oriented features. Control flow graph

and dependence graph are the basis for formation of the proposed graph for the purpose

of slicing aspect-oriented programs. The slicing criteria for the proposed graph extends

the slicing criteria for object-oriented. This research uses static slicing as the technique

to slice the proposed graph. This idea is implemented in a prototype tool. Furthermore,

© C
OPYRIG

HT U
PM

4

this work focuses on AspectJ language which is seamless aspect-oriented extension of

JAVA programming language.

The consistencty of output from the tool been investigated through construction of

graphs for ten AspectJ programs of various sizes ranging from 87 to 2285 lines of code

with the number of aspects is between 1 to 9. The ten programs were taken from AspectJ

Development Tools. These programs are commonly used by other researchers in aspect-

oriented research. Moreover, the evaluation of the study is conducted by running an

experiment involving 20 experts.

1.5 Thesis Organization

This thesis is divided into eight chapters. The first chapter is the introduction of the

thesis. It describes the background study, problem statement, research objectives and

scope of study. Literature review is in Chapter two. The chapter does the discussion

about overview of software maintenance, reverse engineering and its comprehension

tools. After that is a brief of aspect-oriented paradigm and slicing as one of the reverse

engineering technique in software engineering.

Chapter three is a discussion about research methodology. This chapter is about the way

how this research was completely conducted. It begins by understanding the flow of idea

in literature study. Next the chapter briefly explains a proposal on static slicing

technique for maintaining aspect-oriented program. After that, the application of

proposed technique to the tool that developed as a prototype. At the end, experiment was

conducted in order to evaluate the proposed technique.

Chapter four is a discussion about the concept of aspect-oriented dependence flow graph

and its original study. The scope of discussion in this chapter is about to bring the original

study of DFG into the implementation of AODFG as a specifically focus to the aspect-

oriented. The discussion begins with the Du and Ud chain and DFG concept. Based on

the concept, the proposed aspect-oriented dependence flow graph (AODFG) is

conceptually designed. The concept of AODFG is based on the control flow and

dependencies in aspect-oriented.

Chapter five then continue from discussion in Chapter 4 and specifically discussed about

the proposal of slicing approach for aspect-oriented dependence flow graph. The

discussion begins with introducing slicing approach in original study and followed by

the work on the program slicing in the perspective of aspect-oriented.

Chapter six is a discussion about the implementation of slicing AODFG by using AOST

which is a prototype to support AODFG. This chapter begins with detail out the

requirements needed by AODFG. The clearly defined requirements help to design the

prototype. It then developed by following the design.

© C
OPYRIG

HT U
PM

5

Chapter 7 is a description about the experiment and survey that we were contribute to

support the proposed concept. This chapter described about the way how the experiment

and survey are implemented. There are two evaluations provided. The first evaluation is

an empirical evaluation by introducing the technique to the expertise in the area of study.

The second evaluation is to know the capability of AOST to used and compare with the

traditional techniques. The details of discussion can be referred to the particular given.

Chapter eight is the conclusion of thesis and some suggestion for future works.

© C
OPYRIG

HT U
PM

93

REFERENCES

Abran A., Nguyenkim H. (1993). Measurement of the Maintenance Process from a

Demand-Based Perspective. Journal of Software: Evolution and Process, 5(2):

63- 90.

Agrawal, H., & Horgan, J. (1990). Dynamic Program Slicing, ACM SIGPLAN Notices,

25(6): 246-256.

Al-Fawareh, H. J. K. (2001). Slicing Object-oriented Programs for Maintenance

Purpose. Ph.D Thesis, Universiti Putra Malaysia.

April, A. (2010). Studying supply and demand of software maintenance and evolution

services. Seventh International Conference on the Quality of Information and

Communications Technology, 352-357.

Arora, V., Bhatia, R. K., & Singh, M. (2012). Evaluation of flow graph and dependence

graphs for program representation. International Journal of Computer

Applications, 56(14):18–23.

Baniassad, E. & Clarke, S. (2005). Aspect-Oriented Analysis and Design: The Theme

Approach. Reading, Mass.: Addison-Wesley.

Basili, V., Shull, F., & Lanubile, F. (1999). Building Knowledge Through Families of

Experiments, IEEE Transactions on Software Engineering, 25: 435-437.

Batista, T., Chavez, C., Garcia, A., Rashid, A., Sant’Anna, C., Kulesza, U., & Filho, F.

C. (2006). Reflections on architectural connection: seven issues on aspects and

ADLs. Proceedings of the 2006 International Workshop on Early Aspects at

ICSE06, 3-10.

Bernardi, M. L., & di Lucca, G. A. (2007). An interprocedural aspect control flow graph

to support the maintenance of aspect oriented systems. IEEE International

Conference on Software Maintenance (ICSM2007), 2-5 Oct, 435–444.

Beszedes, A., Gergely, T., Mihaly Szabo, Z., Csirik, J. & Gyimothy, T. (2001). Dynamic

Slicing Method for Maintenance of Large C Programs, Proceedings of the Fifth

European Conference on Software Maintenance and Reengineering

(CSMR'01), 105-113 .

Braak, T. (2006). Extending Program Slicing in Aspect-Oriented Programming with

Inter-Type Declarations, 5th Twente Student Conference on IT, Enschede.

Cacho, N., Filho, F. C., Garcia, A., & Figueiredo, E., (2008). EJFlow  : Taming

exceptional control flows in aspect-oriented programming. Proceedings of the

7th international conference on Aspect-oriented software development

(AOSD’08), 72–83.

© C
OPYRIG

HT U
PM

94

Canfora, G., & Cimitile, A. (2002). Software Maintenance. In S. K. Chang (Eds.),

Handbook of Software Engineering and Knowledge Engineering Vol. 1 (pp. 91-

120). Singapore:World Scientific.

Capilla, R., Duenas, J. C., & Ferenc, R. (2013). A retrospective view of software

maintenance and reengineering research – a selection of papers from European

Conference on Software Maintenance and Reengineering 2010. Journal of

Software: Evolution and Process. 25(6):569-661.

Chapin, N. (2009). Software maintenance in complying with IT governance: A report

from the field. IEEE International Conference on Software Maintenance

(ICSM2009), 499-502.

Chen, Z., Duan, Y., Zhao, Z., Xu, B., & Qian, J. (2011). Using Program Slicing To

Improve the Efficiency and Effectiveness of Cluster Test Selection,

International Journal of Software Engineering and Knowledge Engineering,

21(06): 759–777.

Chikofsky, E. J., & Cross, J. H. (1990). Reverse Engineering and Design Recovery: A

Taxonomy. IEEE Software, 7(1): 13-17.

Colyer, A., & Clement, A. (2005). Aspect-oriented Programming with AspectJ. IBM

System Journal, 44(2): 301-308.

Coogan, K., Debray, S., Kaochar, T., & Townsend, G., Automatic static unpacking of

malware binaries. Proceedings 16th Working Conference on Reverse

Engineering (WCRE2009), 167-176.

Desharnais, J., & April, A. (2010). Software maintenance productivity and maturity.

Proceedings of the 11th International Conference on Product Focused

Software (PROFES ’10), 121-125.

Duanzhi, C. (2010). A collection of program slicing. International Conference on

Computer Application and System Modeling (ICCASM 2010), 82–85.

EL-Manzalawy, Y. (2004). Aspect Oriented Programming. Retrieved from

http://www.developer.com/print.php/3308941.

Erdil, K., Finn, E., Keating, K., Meattle, J., Park, S., & Yoon, D. (2003). Software

Maintenance As Part of the Software Life Cycle, Comp180: Software

Engineering Project. Department of Computer Science, Tufts University.

Gallagher, K. B., & Lyle, J. R. (1991). Using Program Slicing in Software Maintenance.

IEEE Transactions on Software Engineering, 17(8): 751–761.

Gold, R. (2010). Control flow graphs and code coverage. International Journal of

Applied Mathematics and Computer Science, 20(4):739–749.

© C
OPYRIG

HT U
PM

95

Gold, R., (2014), Reductions of Control Flow Graphs. International Journal of

Computer, Electrical, Automation, Control and Information Engineering, 8(3),

427–434. Retrieved from http://waset.org/publications/9997636/reductions-of-

control-flow-graphs

Gradecki, J., & Lesiecki, N. (2003). Mastering AspectJ: Aspect-Oriented Programming

in Java. Indianapolis: Wiley Publishing, Inc.

Grubb, P.A. & Takang, A.A. (2003). Software Maintenance Concepts and Practice.

London: Thompson Computer Press.

Grundy, J. (1999). Aspect-oriented Requirements Engineering for Component-based

Software Systems. Proceedings IEEE International Symposium on

Requirements Engineering, 84–91.

Hunt, B., Turner, B., & McRitchie, K. (2008). Software Maintenance Implications on

Cost and Schedule. IEEE Aerospace Conference, 1-6.

IEEE Std 1219-1998. (1998). IEEE Standard for Software Maintenance. Software

Engineering Standard, IEEE Computer Society.

Ishio, T., Kusumoto, S., & Inoue, K. (2002). Program slicing tool for effective software

evolution using aspect-oriented technique. Sixth International Workshop on

Principles of Software Evolution (IWPSE’02), 1–10.

Ishio, T., Kusumoto, S., & Inoue, K. (2004). Debugging support for aspect-oriented

program based on program slicing and call graph. Proceedings of 20th IEEE

International Conference on Software Maintenance, 178–187.

ISO/IEC Standard 14764. (2000). Software Engineering – Software Life Cycle Processes

– Maintenance. International Organisation for Standardization: Geneva,

Switzerland.

Jaffar, J., & Murali, V. (2014). A Path-Sensitively Sliced Control Flow Graph.

Proceedings of the 22nd ACM SIGSOFT International Symposium on

Foundations of Software Engineering (FSE2014), 133–143.

Jia, L., Jing, Y., Hui, W. M., & Hone, J. C. (2008). Crosscutting Invariant and An

efficient Checking Algorithm Using Program Slicing. ACM SIGPLAN Notices,

43(2): 12–20.

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., and Griswold, W. G.

(2001). An Overview of AspectJ. Proceedings of the 15th European

Conference on Object-Oriented Programming, Springer-Verlag, 327–355.

Kiselev, I. (2003). Aspect-oriented programming with AspectJ. Indianapolis: SAMS

Publishing.

M. Hassaan, D. Nguyen, and K. Pingali, (2015) “Kinetic dependence graphs,” in

ASPLOS’15,

© C
OPYRIG

HT U
PM

96

Kulesza, U., Sant’Anna, C., Garcia, A., Coelho, R., Staa, A., & Lucena, C. (2006).

Quantifying the Effects of Aspect-Oriented Programming: A Maintenance

Study. 22nd IEEE International Conference on Software Maintenance, 223–

233.

Laddad, R. (2010). AspectJ In Action. 2nd Edition, Greenwich: Manning Publications

Co.

Lallchandani, J. T., & Mall, R. (2009). Static Slicing of UML Architectural Models.

Journal of Object Technology, 8(1): 159-188.

Larsen, L., & Harrold, M. J. (1996). Slicing Object-Oriented Software. Proceedings of

the 18th International Conference on Software Engineering, 495-505.

Lehman, M. M. (1980). Programs, Lifecycles, and the Laws of Software Evolution.

Proceedings of the IEEE. 68(9):1060-1076.

Lehman, M. M. (1996). Laws of Software Evolution Revisited. Proceedings of the 5th

European Workshop on Software Process Technology, UK,108-124.

Li, B. (2002). Analyzing information-flow in java program based on slicing technique.

ACM SIGSOFT Software Engineering Notes, 27(5): 98-103.

Lientz, B, & Swanson, E. (1980). Software maintenance management. Reading, Mass.:

Addison-Wesley,(p.214).

Lin, Y., Zhang, S., & Zhao, J. (2009). Incremental call graph reanalysis for AspectJ

software. IEEE International Conference on Software Maintenance

(ICSM2009), 306–315.

Mamone, S. (1988). The IEEE standard for software maintenance. ACM SIGSOFT

Software Engineering Notes. 19:75-76.

Mohanty, S. R., Behera, P. K., & Mohapatra, D. P., (2015). Slicing Aspect-oriented

program Hierarchically. (IJCSIT) International Journal of Computer Science

and Information Technologies, 6(6), 5004–5013.

Mohapatra, D. P., Kumar, R., Mall, R., Kumar, D. S., & Bhasin, M. (2006). Distributed

dynamic slicing of Java programs. Journal of Systems and Software, 79(12):

1661–1678.

Mohapatra, D. P., Sahu, M., Kumar, R., & Mall, R. (2008). Dynamic Slicing of Aspect-

Oriented Programs. Informatica, 32:261–274.

Moreira, A., Chitchyan, R., Araujo, J., & Rashid, A. (eds.) (2013). Aspect-oriented

Requirements Engineering. New York: Springer.

Nanda, M.G., & Ramesh, S. (2006). Interprocedural Slicing of Multithreaded Programs

with Applications to Java. ACM Transactions on Programming Languages and

System, 28(6): 1008-1144.

© C
OPYRIG

HT U
PM

97

Nishimatsu, A., Kusumoto, S., & Inoue, K. (1999). Experimental Evaluation of Program

Slicing on Software Maintenance Process, IEICE Transactions on Information

and Systems, Pt.1 (Japanese Edition), J82-D-1(8): 1121-1123.

Ohata, F., Hirose, K., Fujii, M., & Inoue, K. (2001) A Slicing Method for Object-

Oriented Programs Using Lightweight Dynamic Information, Proceedings of

Eighth Asia-Pacific Software Engineering Conference, 273-280.

Parizi, R. M. (2008). Control Flow Structure and Graph Embodiment of Aspect-Oriented

Programs (AOPs): Definitions, Algorithm, and tool Support. Project for Master

of Computer Science, Universiti Putra Malaysia.

Pigoski T. M., (1996). Practical software maintenance: Best practices for managing

your software investment. NewYork: John Wiley & Son.(p. 384).

Pingali, K., Beck, M., Johnson, R., Stodghill, P., & Moudgill, M. (1991). Dependence

flow graphs: an algebraic approach to program dependencies. Proceedings of

the 18th ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages (POPL ’91), 67–78.

Raheman, S. R., Ray, A., & Pradhan, S. (2011). Dynamic Slicing of Aspect-Oriented

Programs using AODG, International Journal of Computer Science and

Information Security, 9(4): 123–126.

Rashid, A. (2004). Aspect-oriented Database Systems. Berlin: Springer-Verlag.

Ray, A., Mishra, S., & Mohapatra, D. P. (2013). An Approach for Computing Dynamic

Slice of Concurrent Aspect-Oriented Programs. International Journal of

Software Engineering and Its Applications, 7(1): 13–32.

Ren, Y., Chen, X., Xing, T., & Chai, X. (2011). Research on Software Maintenance Cost

of Influence Factor Analysis and Estimation Method. Proceedings of 3rd

International Workshop on Intelligent Systems and Applications (ISA), May 28-

29, Wuhan, 1–4.

Rombach, D. H., & Ulery, B. T. (1989). Improving Software Maintenance through

Measrement. Proceedings of the IEEE, 77(4): 581-595.

Rumbaugh, J., Jacobson, I., & Booch, G. (2004). The Unified Modeling Language

Reference Manual, Canada: Addison-Wesley.

Sahu, M., & Mohapatra, D. P. (2007). A Node-Marking Technique for Dynamic Slicing

of Aspect-Oriented Programs. 10th International Conference on Information

Technology (ICIT 2007), 155–160.

Sikka, P., & Kaur, K. (2013). Program Slicing Techniques and their Need in Aspect

Oriented Programming. International Journal of Computer Applications,

70(3): 11–15.

© C
OPYRIG

HT U
PM

98

Singh, R. (1996). International Standard ISO/IEC 12207 Software Life Cycle Processes.

Software Process: Improvement and Practice, 2(1), 35-50.

Singh, Y., & Goel, B. (2007). A Step Towards Software Preventive Maintenance. ACM

Software Engineering Notes, 32(4), article no.10.

Vanek, L., & Davis, L. (1990). Expert Dataflow and Static Analysis Tool. IEEE

Software, 7(3): 63.

Weiser, M. (1979). Program Slices: Formal, Psychological, and Practical

Investigations of an Automatic Program Abstraction Method. Ph.D Thesis,

University of Michigan.

Weiser, M. (1982). Programmers Use Slices With Debugging. Communications of the

ACM, 25(7): 446- 452.

Würthinger, T. (2007). Visualization of program dependence graphs. Master’s Thesis,

Johannes Kepler University Linz.

Xu, B., Qian, J., Zhang, X., Wu, Z., & Chen, L. (2005). A Brief Survey of Program

Slicing, ACM Sigsoft Software Engineering Notes, 30(2):1-36.

Xu, G., & Rountev, A. (2007). Data-flow and Control-flow Analysis of AspectJ

Software for Program Slicing. Technical Report OSU-CISRC-5/07-TR46,

Computer Science and Engineering Research Center, Department of Computer

Science and Engineering, Ohio State University.

Yatapanage, N., Winter, K., & Zafar, S. (2010). Slicing Behavior Tree Models for

Verification. In C. S. Calude & V. Sassone (eds.), Theoretical Computer

Science IFIP AICT, Vol. 323, (p.125–139). Springer.

Yin, W., Jiang, L., Yin, Q., Zhou, L., & Li, J. (2009). A control flow graph reconstruction

method from binaries based on XML. International Forum on Computer

Science -Technology and Applications, 226–229.

Zhang, G., & Mei, R. (2008). An Approach of Concurrent Object-oriented Program

Slicing Base on LTL Property. International Conference on Computer Science

and Software Engineering 2008, 650-653.

Zhang, S., Gu, Z., Lin, Y., & Zhao, J. (2008). Celadon : A Change Impact Analysis Tool

for Aspect-Oriented Programs, Proceedings ICSE Companion ’08 Companion

of 30th International Conference on Software Engineering, 913–914.

Zhang, X., Gupta, R., & Zhang, Y., Precise Dynamic Slicing Algorithms, 2003, IEEE,

319–329.

Zhao, J. (2002). Slicing aspect-oriented software. Proceedings of 10th International

Workshop on Program Comprehension, 251–260.

Zhi, Y. (2004). Software Engineering Standards Manual. China Standards Press.

	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page

