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SARCASM DETECTION MODEL BASED ON TWEETS´ STRENGTH
USING HASHTAGS AND NON-HASHTAGS SENTIMENT ANALYSIS

By

SAMANEH NADALI

July 2016

Chairman:Masrah Azrifah Azmi Murad, PhD
Faculty: Computer Science and Information Technology

Recently, microblogs platforms such as Twitter are becoming popular day by
day. People used Twitter for building common ground, sharing information
and sharing opinions on a variety of topics and discussing current issues. Thus,
Twitter becomes source of opinions. Therefore understanding the sentiment of
the opinion is needed.

Over the last decades, sentiment analysis (SA) in social media has been one
of the most research areas in Natural Language Processing (NLP). The aim of
sentiment analysis is to automatically identify the polarity of a document, where
misinterpreting irony and sarcasm is a big challenge. There is a weak boundary
in the meaning between irony, sarcasm and satire, therefore in this thesis only
the term sarcasm is employed.

Sarcasm is a common phenomenon in social media, which is a nuance form of
language for expressing the opposite of what is inferred. Sarcasm generally
changes the polarity of an utterance from positive or negative into its opposite.
Therefore, identifying sarcasm correctly can enhance the performance of senti-
ment classification. Sarcasm analysis is a difficult task not only for the machine,
but also for a human, because of the intentional ambiguity. Although sarcasm
detection has an important effect on sentiment, it is usually ignored in social
media analysis because sarcasm analysis is too complicated.

Several techniques have been used in sarcasm detection such a semi-supervised,
detection sarcasm based on intensifiers and exclamation, the impact of lexical
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and pragmatic factors, contrast between positive and negative situation verb
phrases and hashtags based sentiment analysis. In this thesis, two existing
works; sarcasm as a contrast between positive sentiment and negative situation
phrases and hashtags based sentiment analysis are extended. For the former
task, the authors of the work have presented a novel bootstrapping algorithm
that automatically learns a list of positive sentiment phrases and negative
situation phrases from sarcastic tweets. The results showed a contrast between
positive and negative and they can be used in recognizing sarcastic tweets.
However, the work only identified one type of sarcasm tweets (i.e. positive verb
phrases followed by negative situation phrases). In additional they did not work
on identifying sarcasm when a negative situation phrases is followed by positive
sentiment in the separate sentences. Moreover, the intensity of the negativity is
not considered in their work. In addition, the work did not consider hashtags
and sentiment analysis of hashtags. Hashtag is a topic or key words that are
marked with a tweet. Since many of the hashtags contain polarity, detection of
sarcasm at hashtags level will have a positive effect on polarity classification.

The later work which is extended in this thesis works based on the hashtags
sentiment analysis. The authors identified sarcastic tweets based on the sarcasm
indicators and contrast between the sentiment orientation of the tweets and
hashtags. Although, the work was primary work at the level of the hashtags
sentiment analysis, they did not use systematic approach for identifying sarcasm
indicators. Moreover, they worked only based on the contrast between the sen-
timent orientation of the tweets and hashtags. Since sarcasm utterance contains
hyperbole and exaggeration and some hashtags are used for emphasizing the
text, identifying based on the contrast between the sentiment of the tweets and
hashtags is not sufficient.

To address problems, a Sarcasm Detection Model (SDM) is proposed. In the
proposed model, three classifiers; SentiStrength Sarcasm Classifier (SSC), Sar-
casm Hashtags Classifier (SHC) and Hashtags-SentiStrength Sarcasm Classifier
(HSSC) is used. SSC is worked at the level of the non-hashtags sentiment
analysis, whereas SHC and HSSC at the level of the hashtags sentiment anal-
ysis. In the SSC, sarcasm is identified based on the strength level of tweets.
Several lexical and pragmatic features such as emoticons, interjections, capi-
tal words and elongate words are applied in the proposed SentiStrength formula.

Sarcasm Hashtags Classifier (SHC) is used to identify sarcastic tweets based on
the Sarcasm Hashtags Indicator (SHI) and Sentiment Hashtags Analysis (SHA).
In the classifier (SHC), a bootstrapping algorithm is used to identify Sarcasm
Hashtags Indicator (SHI). SHI contains a list of hashtags that help to identify
sarcastic tweets easily. In the proposed model (SDM), if a tweet contains SHI, it
will be labeled as sarcastic tweet; otherwise the Sentiment Hashtags Analysis
(SHA) is applied. SHA is worked based on the contrast between sentiment
orientation of the tweets and hashtags. In this part, the hashtags are retokenized
through preprocessing and the orientation of the hashtags is identified. Next,
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the orientation of a tweet without hashtags is also identified. The tweet is
considered as sarcasm hashtags if there is a contrast between the orientation of
the tweet and hashtags.

The HSSC, works based on the strength level of tweets and hashtags. In this
classifier, the effect of the sentiment of the hashtags for increasing the polarity of
the tweets is considered.

The Sarcasm Detection Model (SDM) has been tested on two datasets which
each dataset contains 3000 sarcastic and non- sarcastic tweets. All of the tweets
were extracted randomly using the Twitter API. So far, no work has been done
in sarcasm detection at the level of hashtags and non-hashtags based sentiment
analysis. So, the novelty of the proposed model (SDM) is in identifying sarcastic
tweets by analyzing strength of the tweets at the level of the hashtags and
non-hashtags sentiment analysis. The results of the study (0.85% of precision)
demonstrates that the SDM is more accurate and effective than the existing
works which was done based on the contrast between positive and negative
situation phrases and hashtags based sentiment analysis.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia
sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

MODEL PENGESANAN SINDIRAN BERDASARKAN KEKUATAN
TWEET MENGGUNAKAN ANALISIS SENTIMEN HASHTAGS DAN

BUKAN HASHTAGS

Oleh

SAMANEH NADALI

Julai 2016

Pengerusi: Masrah Azrifah Azmi Murad, PhD
Fakulti: Sains Komputer dan Teknolologi Maklumat

Baru-baru ini, platform mikroblog seperti Twitter menjadi popular hari demi
hari. Orang awam menggunakan Twitter untuk membina persefahaman,
perkongsian maklumat dan berkongsi pendapat mengenai pelbagai topik dan
membincangkan isu-isu semasa. Oleh itu, Twitter merupakan sumber pendapat.
Maka, memahami sentimen bagi pendapat amat diperlukan.

Sejak beberapa dekad yang lalu, analisis sentimen (SA) dalam media sosial
telah menjadi salah satu bidang penyelidikan paling utama dalam Pemprosesan
Bahasa Asli (NLP). Tujuan analisis sentimen adalah untuk mengenal pasti
kekutuban sesuatu dokumen, di mana mentafsirkan ironi dan sindiran secara
otomatik adalah satu cabaran besar. Terdapat sempadan lemah dalam makna di
antara ironi, sindiran dan satira, oleh itu dalam tesis ini hanya sindiran istilah
ini digunakan.

Sindiran adalah satu fenomena biasa dalam media sosial, yang merupakan
satu bentuk nuansa bahasa bagi menyatakan yang bertentangan dengan apa
yang dibayangkan. Sindiran umumnya menukarkan kekutuban sesuatu ujaran
daripada positif atau negatif ke ujaran bertentangan. Oleh itu, mengenal
pasti sindiran dengan betul boleh meningkatkan prestasi klasifikasi sentimen.
Analisis sindiran adalah tugas yang sukar bukan sahaja untuk mesin, tetapi juga
untuk manusia, kerana kekaburan yang disengajakan. Walaupun pengesanan
sindiran mempunyai kesan penting kepada sentimen, ia biasanya diabaikan
dalam analisis media sosial kerana analisis sindiran terlalu rumit.
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Beberapa teknik telah digunakan dalam pengesanan sindiran seperti separuh
seliaan, sindiran pengesanan berdasarkan penguat dan seru, kesan faktor
leksikal dan pragmatik, perbezaan antara frasa kata kerja positif dan negatif dan
analisis sentimen berasaskan hashtag. Dalam tesis ini, dua kerja penyelidikan se-
dia ada iaitu sindiran sebagai kontra antara sentimen positif dan frasa keadaan
negatif dan analisis sentimen berdasarkan hashtag diperluaskan. Bagi kerja sedia
ada yang pertama, penyelidik telah membentangkan algoritma bootstrapping
baharu yang secara otomatik mempelajari senarai frasa sentimen positif dan
frasa keadaan negatif daripada tweet sindiran. Hasil kajian menunjukkan satu
perbezaan antara positif dan negatif dan ianya boleh digunakan dalam mengik-
tiraf tweet sindiran. Walau bagaimanapun, kerja-kerja penyelidikan hanya
mengenal pasti satu jenis tweet sindiran (iaitu frasa kata kerja positif diikuti
oleh frasa keadaan negatif). Dan, mereka tidak berjaya mengenal pasti sindiran
apabila frasa keadaan negatif diikuti oleh sentimen positif dalam ayat yang
berasingan. Selain itu, keamatan negatif tidak dianggap dalam kerja mereka.
Di samping itu, kerja-kerja itu tidak mempertimbangkan hashtag dan analisis
sentimen hashtag. Hashtag adalah satu topik atau kata kunci yang ditandakan
dengan tweet. Oleh kerana banyak hashtag mengandungi kekutuban, mengesan
sindiran di peringkat hashtag akan mempunyai kesan positif ke atas klasifikasi
kekutuban.

Kerja penyelidikan yang seterusnya yang dilanjutkan dalam tesis ini berfungsi
berdasarkan analisis sentimen bagi hashtag. Penyelidik mengenal pasti tweet
sindiran berdasarkan petunjuk sindiran dan kontra antara orientasi sentimen
daripada tweet dan hashtag. Walaupun, kerja itu adalah kerja utama pada tahap
analisis sentimen hashtag, mereka tidak menggunakan pendekatan sistemik
untuk mengenalpasti petunjuk sindiran. Selain itu, penyelidikan mereka hanya
berdasarkan perbezaan antara orientasi sentimen daripada tweet dan hashtag.
Oleh sebab ujaran sindiran mengandungi hiperbola dan penokoktambahan dan
beberapa hashtag digunakan untuk menekankan teks, maka, mengenal pasti
berdasarkan perbezaan antara sentimen tweet dan hashtag tidak mencukupi.

Bagi menangani masalah, Model Pengesanan Sindiran (SDM) dicadangkan.
Dalam model yang dicadangkan, tiga pengelas iaitu Pengelas Sindiran Sen-
tiStrength (SSC), Pengelas Hashtags Sindiran (SHC) dan Pengelas Sindiran
Hashtags-SentiStrength (HSSC) digunakan. SSC berfungsi pada tahap analisis
sentimen bukan hashtag, manakala SHC dan HSSC pada tahap analisis sentimen
hashtag. Dalam SSC, sindiran yang telah ditetapkan mengikut tahap kekuatan
tweet. Beberapa ciri leksikal dan pragmatik seperti emotikon, seru, kata-kata
ibu dan kata-kata yang panjang digunakan dalam formula SentiStrength yang
dicadangkan.

Pengelas Hashtags Sindiran (SHC) digunakan untuk mengenal pasti tweet
sindiran berdasarkan Penunjuk Hashtags Sindiran (SHI) dan Analisis Sentimen
Hashtags (SHA). Dalam pengelas (SHC), satu algoritma bootstrapping digunakan
untuk mengenal pasti Penunjuk Hashtags Sindiran (SHI). SHI mengandungi
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senarai hashtag yang membantu untuk mengenal pasti tweet sindiran dengan
mudah. Dalam model yang dicadangkan (SDM), jika tweet mengandungi SHI,
ia akan dilabelkan sebagai tweet sindiran; jika tidak Analisis Sentimen Hashtags
(SHA) akan digunakan. SHA bekerja berdasarkan perbezaan antara orientasi
sentimen tweet dan hashtag. Dalam bahagian ini, hashtag ditoken melalui pra
pemprosesan dan orientasi hashtag dikenalpasti. Seterusnya, orientasi tweet
tanpa hashtag juga dikenalpasti. Tweet tersebut dianggap sebagai hashtag sindi-
ran jika terdapat satu perbezaan antara orientasi tweet dan hashtag.

HSSC berfungsi berdasarkan tahap kekuatan tweet dan hashtag. Dalam pengelas
ini, kesan sentimen hashtag untuk meningkatkan kekutuban tweet dipertim-
bangkan.

Model Pengesanan Sindiran (SDM) telah diuji pada dua set data yang mana
setiap set data mengandungi 3000 tweet sindiran dan bukan sindiran. Semua
tweet dipetik secara rawak menggunakan API Twitter. Setakat ini, tiada kerja
yang dilakukan dalam pengesanan sindiran pada tahap hashtag dan analisis sen-
timen berasaskan bukan hashtag. Jadi, sesuatu yang baru berkenaan model yang
dicadangkan (SDM) adalah dalam mengenal pasti tweet sindiran dengan men-
ganalisis kekuatan tweet pada tahap hashtag dan analisis sentimen bukan hash-
tag. Hasil kajian (0.85% ketepatan) menunjukkan bahawa SDM adalah lebih
tepat dan berkesan daripada kerja-kerja yang sedia ada yang telah dilakukan
berdasarkan perbezaan antara frasa keadaan positif dan negatif analisis senti-
men berasaskan hashtag.
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CHAPTER 1

INTRODUCTION

1.1 Background

Twitter is one of the most popular platforms of microblogs which has been
used for all ordinary individuals, politics and companies (Himelboim et al.,
2013). Twitter allows registered users to read and post tweets (140 characters
messages). All of the studies on SA of Twitter messages are term based (Go
et al., 2009; Bermingham and Smeaton, 2010; Pak and Paroubek, 2010; Barbosa
and Feng, 2010). Previous researchers extracted tweets based on a certain term
and then analyze the sentiment of these extracted Twitter posts. In the general
area of SA, sarcasm plays a role as an interfering factor that can flip the polarity
of a message (Liebrecht et al., 2013).

In the Oxford English Dictionary (OED) (1989) "sarcasm" is defined as " a sharp,
bitter, or cutting expression or remark; a bitter gibe or taunt". Sarcasm may
employ ambivalence, although it is not necessarily ironic. Sarcasm might be
used to comic effect or can be used to hurt or offend. Unlike simple negation
words, a sarcasm message usually expresses a negative sentiment utilizing only
positive words or even strong positive words. Although detection of sarcasm
is not crucial, it is important for the development of sentiment analysis system
(Liebrecht et al., 2013).

In this thesis, a sarcasm detection model for tweets was introduced. Twitter is
chosen in this study, because it is one of the largest platforms where people tend
to explain their opinion. Twitter also provides features such as hashtag which
aid in detecting sarcasm in the tweets.

Different studies have been done in sarcasm detection such as; semi-supervised
sarcasm recognition, investigation of the impact of lexical and pragmatic factors,
identification of sarcasm based on intensifiers and exclamation, contrast be-
tween positive and negative situation verb phrases, identifying the relationship
between a tweet and an author’s past tweet, and identifying extra-linguistic
information from the context of an utterance on Twitter such as properties of the
author, the audience and the immediate communicative environment (Davidov
et al., 2010; González-Ibánez et al., 2011; Reyes et al., 2012; Liebrecht et al., 2013;
Rajadesingan et al., 2015; Bamman and Smith, 2015).

Due to the intentional ambiguity, analysis of sarcasm is a difficult task not only
for machine, but even for human. Although, sarcasm detection has an important
role on SA, it is generally disregard in social media analysis, because sarcasm
analysis is very complicated. Since the aim of the SA is to automatically identify
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the sentiment of a document, misinterpreting sarcasm indicates a big challenge
(Davidov et al., 2010).

1.2 Problem Statement

Lack of study in determining sarcasm among social media is one of the pro-
pounded problems from early days. Since recognizing sarcasm is important
for development of sentiment analysis systems, identifying sarcastic tweets
becomes an issue in this area of research. Previous studies in sarcasm detection
are divided into two tasks: context-level and content-level. Several approaches
have worked on the former task (Rajadesingan et al., 2015; Bamman and Smith,
2015).

The past works in sarcasm detection for latter task (content-level) involves rule-
based and statistical approaches. Some studies worked based on the unigrams,
pragmatic features (such as emoticon) (González-Ibánez et al., 2011; Carvalho
et al., 2009; Barbieri and Saggion, 2014) whereas, other studies have worked
based on extraction of common patterns, such as hashtag-based sentiment
(Maynard and Greenwood, 2014), positive verb being followed by negative
situation phrases (Riloff et al., 2013), or discriminative n-grams (Tsur et al., 2010;
Davidov et al., 2010).

Riloff et al. (2013) used a well-constructed lexicon based method for identifying
sarcasm at the level of content based on the contrast between positive sentiment
and negative situation phrases (Rajadesingan et al., 2015). They presented
a novel bootstrapping algorithm that automatically learns a list of positive
sentiment phrases and negative situation phrases from sarcastic tweets. Their
method was efficient, however, they achieved 0.62 of precision. Because they
just focused on one type of tweets, i.e. positive verb phrases followed by
negative situation phrases (e.g. I love being ignored). This method has some
disadvantages.

Firstly, it was not able to identify other types of sarcasm; i.e. negative situation
phrases followed by positive sentiment in separate sentences or clue. Secondly,
the intensity of the negativity of the tweets is not identified which may be useful
for identifying sarcastic tweets.

Finally this method focused only on the sentiment analysis of the tweets.
Identifying sarcastic tweets based on the sentiment analysis of the hashtags is
not possible. Hashtags are un-spaced phrases or words that are followed by
"#". Twitter users use hashtags for using their feelings, so most of the hashtags
contains polarity such as "#love", "hate" and "amazing" which can flip or enhance
the polarity of the tweets.
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Sarcasm detection based on the sentiment analysis of the hashtags, just worked
by (Maynard and Greenwood, 2014). Their method worked based on the
sarcasm indicators and contrast between the sentiment orientation of the
tweets and hashtags. Although, their method was the primary study on the
hashtags sentiment analysis, it is limited to identify sarcasm indicators; hashtags
tokenization and finding sentiment orientation of the tweets and hashtags.
Therefore, they obtained 0.46 pf precision. Only 77 sarcasm indicators were
extracted by their method which is very small. Furthermore, tokenizing of some
hashtags such as "#gratstart" is not possible in their method. In addition, for
identifying sarcastic tweets and hashtags, lexicon based approach were used
which is not accurate approach. For some event such as "going to the dentist"
or "waiting for a long time" which have negative sentiment, their method was
not able identify the orientations correctly. Moreover, their method is not able to
identify sarcasm when there is no sarcasm indicators and no contrast between
the sentiment orientation of the tweets and hashtags. Generally, people use
intensifiers in their messages in order to make the expression hyperbolic and
thereby sarcastic, without using a linguistic marker such as: "#sarcasm". As
far as we are concerned, there is no work done in identifying English sarcastic
tweets using hyperbole.

Although most of the previous works in sarcasm detection have been done by the
psychologists and behavioral scientists (Gibbs and Colston, 2007; Gibbs, 1986;
Kreuz and Caucci, 2007; Kreuz and Glucksberg, 1989; Utsumi, 2000), only few
works have been done by social media analysis (González-Ibánez et al., 2011;
Tsur et al., 2010) because sarcasm detection is a complex task. Analysis of sar-
casm is usually ignored in social media analysis due to the complexity and in-
tentional ambiguity in sarcasm. This thesis addresses the following problems:

• There is no work done on modeling sarcastic tweets detection that support
hashtags-based sentiment and non-hashtags based sentiment.

• There is no work done on identifying sarcastic tweets using the strength
level of the tweets at the level of the non-hashtags sentiment analysis.

• Lack of studies on determining sarcastic tweets using sarcasm indica-
tor and contrast between the orientation of the tweets and hashtag(s)
(hashtags-based sentiment analysis).

• To date, the model to detect sarcasm at the level of hashtags and non-
hashtags sentiment analysis with high precision is not provided.

• lack of sarcasm indicator for identifying sarcastic tweets at the level of
hashtahs sentiment analysis.

• At the level of hashtags sentiment analysis, there is no work done on iden-
tifying sarcastic tweets using the strength level of tweets and hashtags.
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1.3 Research Objectives

The main objective of the research is to identify sarcastic tweets based on the
strength level of the tweets. This can be done by achieving the following objec-
tives:

• To propose a new Sarcasm Detection Model (SDM) in order to classify
tweets into sarcasm and non-sarcasm at the level of hashtag and non-
hashtag based sentiment analysis.

• Tp propose a new classifier named: SentiStrength Sarcasm Classifier (SSC)
to classify sarcastic tweets based on the strength level of the tweets only at
the level of non-hashtags sentiment analysis.

• To develop a classifier named: Sarcasm Hashtags Classifier (SHC) to clas-
sify tweets into sarcastic and non-sarcastic (at the level of the hashtags-
based sentiment) using the sarcasm hashtags indicators sentiment hashtags
analysis.

• To propose a model for identifying sarcastic tweets at the level of hashtags
and non-hashtags sentiment analysis with high precision.

• To create more Sarcasm indicators for identifying sarcastic tweet more ac-
curate.

• To propose a new classifier named: Hashtags- SentiStrength Sarcasm
Classifier (HSSC) to classify tweets into sarcastic and non-sarcastic (at
the level of the hashtags) based on the strength level of the tweets and
hashtag(s).

In this study, three classifiers named: SSC, SHC and HSSC are used. These
classifiers work better when they are used as part of a coherent model rather
than used individually.

1.4 Research Scope

Since sarcasm detection has a positive effect on sentiment analysis (sarcasm can
flip the polarity of a sentence) this research is focused on sarcasm detection on
Twitter posts. Sarcastic tweets detection has been done at two different aspects:

• content-based aspect (Riloff et al., 2013)

• contextual-based aspect (Rajadesingan et al., 2015; Bamman and Smith,
2015)
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In this thesis we are focusing on the content of the tweets only.

Moreover, in this study we focus only on one type of social media network. i.e
Twitter.

In order to compare the proposed model (SDM), in this study, precision, recall
and F-score are used (same as previous works).

1.5 Research Contribution

The contributions of this research are as follows:

• New model for sarcasm detection based on tweets’ strength at the level of
the hashtag(s) and non-hashtag(s).

• A classifier that can classify sarcastic tweet based on the strength level of
the hashtag(s) and tweet.

• The combination of the lexical and pragmatic features to recognize the
strength levels of tweet. The combination of both features has a positive
effect in identifying the strength level of tweet.

• A large number of sarcasm Hashtags Indicator (SHI) is created to identify
sarcastic tweets more effectively.

• A classifier that can classify sarcastic tweet based on the contrast between
the orientation of the tweet and hashtags.

1.6 Overview of Thesis

This thesis is outlined in six chapters. Chapter 1 provides background infor-
mation about sentiment classification and sarcasm detection approaches, and
the problem statement is discussed. The objectives and contributions of this
research are also included in this chapter.

Chapter 2 consists of a literature review on sentiment analysis (SA) as well as
SA of microblogs, the type of existing approaches that have been presented in
this area and the sarcasm detection approach.
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Chapter 3 presents the research methodology of this study. The proposed
Sarcasm Detection Model (SDM) is included. Evaluation metrics is discussed in
this chapter.

Chapter 4 describes the proposed Sarcasm Detection Model (SDM) and the
contribution of this study. This chapter illustrates how the proposed model
works. Furthermore, implementation of the SDM is discussed.

Chapter 5 reports the results and discussion. Finally, Chapter 6 is the conclusion
which summarizes the most important aspects of the research. This chapter
ends with suggested future research.

1.7 Summary

The central goal of this thesis is to develop a new sarcasm detection model for
identifying sarcastic tweets at the level of hashtag(s) and non-hashtag(s). This
chapter briefly covers different approaches in sarcasm detection. Then the prob-
lem statement is explained. After that, the research objectives, contributions and
scope of this research are elaborated. Finally, the chapter ends by discussing the
thesis outline.
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