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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of 

the requirement for the degree of Doctor of Philosophy 

  

TEMPORAL INTEGRATION BASED FACTORIZATION TO IMPROVE 

PREDICTION ACCURACY OF COLLABORATIVE FILTERING 

   

By 

ISMAIL AHMED AL-QASEM AL-HADI  

November 2016 

 

Chairman: Nurfadhlina Mohd Sharef, PhD 

Faculty: Computer Science and Information Technology 

 

A recommender system provides users with personalized suggestions for items based on 

the user’s behaviour history. These systems often use the collaborative filtering (CF) for 

analysing the users’ preferences for items in the rating matrix. The rating matrix typically 

contains a high percentage of unknown rating scores which is called the data sparsity 

problem. The data sparsity problem has been solved by several approaches such as 

Bayesian probabilistic, machine learning, genetic algorithm, particle swarm optimization 

and matrix factorization. The matrix factorization approach through temporal approaches 

has the accurate performance in addressing the data sparsity problem but still with low 

accuracy. The existing temporal-based factorization approaches used the long-term 
preferences and the short-term preferences. The difference between long-term 

preferences is that it utilizes the whole recorded preferences while the short-term 

preferences utilizes the recorded preferences within a session (e.g. week, month, season, 

etc.). However, there are four issues when a factorization approach is adopted which are 

latent feedback learning, score overfitting, user’s interest drifting and item’s popularity 

decay over time.  

 

This study proposes three approaches which are (i) the Ensemble Divide and Conquer 

(EDC) which achieved accurate latent feedback learning, (ii) two personalized matrix 

factorization (MF) based temporal approaches, namely the LongTemporalMF and 

ShortTemporalMF to solve overfitting during the optimization process, user’s interest 
drifting and item’s popularity decays over time and (iii) TemporalMF++ approach which 

solved all the issues. The TemporalMF++ approach relies on the k-means algorithm and 

the bacterial foraging optimization algorithm.  

 

The Root Mean Squared Error metric is used to evaluate the prediction accuracy. The 

factorization approaches such as the Singular Value Decomposition, Baseline, Matrix 

Factorization and Neighbours based Baseline are used to be compared against the 

proposed approaches. In addition, the Temporal Dynamics, Short-Term based Latent, 

Short-Term based Baseline, Long-Term, and Temporal Interaction approaches are used 

to benchmark the proposed approaches.  
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The MovieLens, Epinions, and Netflix Prize are real-world datasets which are used in 

the experimental settings. The experimental results show the TemporalMF++ approach 

is higher prediction accuracy compared to the approaches of EDC, LongTemporalMF, 

and ShortTemporalMF. In addition, the TemporalMF++ approach has a prediction 

accuracy higher than the benchmark approaches of factorization and temporal. In 

summary, the TemporalMF++ approach has a superior effectiveness in improving the 

accuracy prediction of the CF by learning the temporal behaviour.  
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk ijazah Doktor Falsafah 

  

PENGINTEGRASIAN TEMPORAL BAGI MEMPERBAIKI KETEPATAN 

RAMALAN KEJARANGAN DATA DI DALAM PENAPISAN 

BERKOLABORASI 

 

Oleh 

ISMAIL AHMED AL-QASEM AL-HADI  

November 2016 

 

Pengerusi: Nurfadhlina Mohd Sharef, PhD 

Fakulti: Sains Komputer dan Teknologi Maklumat 

 

Sesebuah sistem cadangan memberikan pengguna cadangan item secara personalisasi 

berdasarkan sejarah kelakuan pengguna. Sistem-sistem ini selalunya menggunakan 

penapisan berkolaborasi (CF) untuk menganalisa kecenderungan pengguna-pengguna 

bagi item-item di dalam matriks perkadaran. Matriks perkadaran biasanya mengandungi 

skor pekadaran dengan peratusan yang tinggi dan ini dikenali sebagai permasalahan 

kejarangan data. Masalah kejarangan data telah diselesaikan oleh beberapa pendekatan 

seperti kebarangkalian bayesian, pembelajaran mesin, algoritma genetik, 

pengoptimuman partikel paya dan pemfaktoran matriks. Pendekatan pemfaktoran 
matriks menerusi teknik-teknik temporal mempunyai pencapaian yang tepat di dalam 

menangani permasalahan kejarangan data tetapi masih dengan ketepatan yang rendah. 

Pendekatan-pendekatan pemfaktoran berdasarkan temporal yang ada menggunakan 

kecenderungan jangkamasa panjang dan kecenderungan jangka masa pendek. Perbezaan 

di antara kecenderungan jangka masa panjang dan jangka masa pendek ialah 

kecenderungan jangka masa panjang menggunakan keseluruhan rekod kecenderungan 

manakala kecenderungan jangkamasa pendek menggunakan kecenderungan yang 

direkod di dalam satu sesi (cth, minggu, bulan, musim, dll). Walaubagaimanapun, 

terdapat empat isu di mana pendekatan pemfaktoran digunapakai iaitu pembelajaran 

suapbalik pendam, skor terlebih muat, kehanyutan minat pengguna-pengguna dan 

pereputan populariti item dalam suatu tempoh.  

 

Kajian ini mencadangkan tiga pendekatan iaitu (i) Ensembel Pecah dan Takluk (EDC) 

yang mencapai pembelajaran suapbalik pendam yang tepat, (ii) dua pemfaktoran matriks 

berpersonalisasi berdasarkan pendekatan temporal, yang dinamakan 

TemporalPanjangMF dan TemporalPendekMF bagi menyelesaikan terlebihmuat semasa 

proses optimisasi, hanyutan minat pengguna-pengguna dan pereputan populariti item 

dalam tempoh masa, dan (iii) pendekatan TemporalMF++ yang menyelesaikan semua 

isu. Pendekatan TemporalMF++ bergantung kepada algoritma k-means dan algoritma 

optimisasi bakteria pengumpul makanan.  
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Metrik Ralat Punca Min Kuasa Dua digunakan untuk menilai ketepatan ramalan. 

Pendekatan-pendekatan pemfaktoran seperti algoritma Nilai Penguraian Tunggal, Garis 

Asas, Pemfaktoran Matriks dan Garis Asas Berdasarkan-Jiran digunakan untuk 

perbandingan dengan pendekatan yang dicadangkan. Sebagai tambahan, pendekatan-

pendekatan  dinamik temporal, pemendaman berdasarkan jangkamasa-pendek, garis asas 

berdasarkan jangkamasa-panjang, jangkamasa-panjang dan interaksi temporal 

digunakan sebagai penanda aras kepada pendekatan yang dicadangkan.  

 

MovieLens, Epinions dan Hadiah Netflix adalah dataset dunia sebenar yang digunakan 

di dalam eksperimen. Hasil eksperimen menunjukkan yang pendekatan TemporalMF++ 
mempunyai ketepatan ramalan yang lebih tinggi dibandingkan dengan pendekatan EDC, 

TemporalPanjangMF dan TemporalPendekMF. Tambahan lagi, pendekatan 

TemporalMF++ mempinya ketepatan ramalan yang lebih tinggi daripada pendekatan 

pemfaktoran dan temporal. Ringkasnya, pendekatan TemporalMF++ lebih efektif di 

dalam memperbaiki pencapaian ramalan CF dengan mempelajari kelakuan temporal.  
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CHAPTER 1 

   

INTRODUCTION 

   

1.1 Motivation  

 

Recommendation system (RS) is becoming popular due to its great utility of users 

interests to recommend personalized items (Hong et al., 2012). Collaborative filtering 

(CF) is one of the most popular techniques of the personalized recommendations, where 

CF generates personalized predictions based on the similarities among members in the 

rating matrix. However, the rating matrix contains a high percentage of unknown rating 

scores which lowers the quality of the prediction. The similarity evaluation among the 

common users will be impossible or not reliable when the percentage of unknown rating 

scores (data sparsity) are high which lower the quality of the prediction (Sharma and 

Gera, 2013; Verbert et al., 2011; Bobadilla et al., 2011; Bobadilla et al., 2013).  

 

Several factorization approaches have addressed the data sparsity problem (Koenigstein 

et al., 2011; Zhou et al., 2011; Mirbakhsh and Ling, 2013). The factorization approaches 

use the latent feedback of preferences, the baseline variants and the latent factors which 

are the combination between the baseline variables and the latent feedback in several 

formulas. The Singular Value Decomposition (SVD) is one of the algorithms which 

provide the latent feedback of preferences. During streaming the rating scores of the users 

into the memory, some rating scores have misplaced from its appropriate cell in the rating 

matrix which lower the quality of the latent feedback and this limitation has been solved 

by the divide and conquer matrix factorization approach (Mackey et al., 2011). However, 

the divide and conquer matrix factorization approach relies on randomize matrix 

factorization and it has not used the similarity of users or the similarity of items in 

learning the accurate latent feedback. The Ensemble Divide and Conquer approach 

(EDC) is proposed for learning the accurate latent feedback of preferences based on the 

similarities among the members in the rating matrix.  

 

The temporal recommendation system is designed to recommend the items to the users 

at a suitable time where the time is a significant factor to learn the interest of users and 

the popularity of items over time (Koenigstein et al., 2011; Hong et al., 2012). Thus, the 

temporal preference with matrix factorization is one of the successful collaborative-

based approaches compared to the factorization based approaches in addressing data 

sparsity. The Temporal Dynamics approach by Koren (2010a) has improved the 

prediction accuracy of the CF, where this approach divides the time of preferences into 

static numbers of bins while the time preferences are changed over time. This approach 

learns a global weight based on the stochastic gradient descent algorithm for minimizing 

the overfitting. However, the global weight has a weakness in term of personalized 

preferences, which motivates to find other weights based on personalized preferences 

and find the suitable learning algorithm for learning these weights. 
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Ye and Eskenazi (2014) improved the prediction performance of the CF technique using 

the temporal interaction between two kinds of temporal preferences which are the long-

term preferences and the short-term preferences. The short-term preferences are 

represented by the shrunk neighbour method. In addition, the short-term technique based 

on the shrunk neighbour (Koren, 2008; Ye and Eskenazi, 2014) gives the short-term 

feedback of users and incorporated it into the baseline variants which suffer from 

overfitting (Koren, 2010a). The overfitting in the predicted rating scores means a few of 

the predicted values are bigger than the range scale of the rating scores, e.g. the range 

scale of MovieLens dataset [0-5] when the predicted rating scores are such as {5.3; 6.2; 

5.5}. Although the overall performance of the prediction accuracy of the Temporal 

Integration approach by Ye and Eskenazi (2014) is better than the Short-Term based 

Latent approach by Yang et al. (2012), the performance of the prediction accuracy is still 

poor and it needs more improvements. Besides, the concept drift is the most significant 

challenge for recommendation systems based temporal where the customer interest is 

drifting over time (Koren, 2010a; Ma et al., 2007; Saha et al., 2010). The prediction 

performance in the sparse rating matrix is still low by the latent feedback of the 

preferences due to concept drift in the users’ preferences and also in the popularity of 

items over time. Therefore, the TemporalMF++ approach, which is the integration of the 

LongTemporalMF and ShortTemporalMF approaches is proposed to solve the current 

limitations of temporal approaches.  

 

1.2 Problem Statement  

 

CF is one of the most popular techniques of the recommendation system due to the least 

computational demand required (Abdelwahab et al., 2012). CF suffers from a high 

percentage of unknown rating scores in the rating matrix which is called the data sparsity 

problem. Besides, during data streaming into memory, some rating scores are misplaced 

from its appropriate cell in the rating matrix which lowers the quality of the latent 

feedback by the SVD. Mackey et al. (2011) proposed the divide and conquer matrix 

factorization approach to address this problem based on the approximation among the 

randomize MF. However, neither the user similarity nor the item similarity have not 

exploited, which might yield the accurate prediction accuracy.  

 

Recently, the temporal preferences with matrix factorization is one of the successful 

collaborative-based approaches compared to the factorization based methods (SVD, 

baseline, matrix factorization (MF) and Neighbours based Baseline) in addressing data 

sparsity. Koren (2010a) has addressed the data sparsity through the Temporal Dynamics 

approach which suffer from the difficulties in splitting the timeline to static numbers of 

bins while the user’s preferences are changed over time. This approach minimizes the 

overfitting of the predicted rating scores in the latent space by a global weight. However, 

global weight has weaknesses in terms of personalized preferences. Meanwhile, Yang et 

al. (2012) has addressed the data sparsity problem by temporal approach using the Short 

Term-based Latent approach which focus on learning the short-term preferences through 

the latent feedback of the neighbours’ preferences. This approach has a weakness in 

terms of the long-terms, drift behaviours of the users, and item’s popularity decay over 

time. In addition, Ye and Eskenazi (2014) have addressed the data sparsity problem 

through the Temporal Interaction approach using long-term and short term-based 

baseline techniques which focus on the drift issue. However, this approach has 
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weaknesses in terms of personality, and also in terms of learning the drift and the items’ 

popularity decay over time where the prediction accuracy of the CF is still low.  

 

Presently, the latent feedback learning, the scores overfitting, the drift of the user’s 

preferences and the time decay of the item’s popularity are the current limitations of the 

temporal recommendation system which typically utilize the long-term and/or the short-

term user preferences. This is because users’ behaviours are changing throughout the 

course of time. Furthermore, the popularity of items also decays over time (indicated by 

decreasing rating scores). Therefore, the temporal terms are the significant factors in 

learning the users’ behaviours and the interest for each item over the stretch of time. MF 

combines the latent feedback by SVD, baseline variants and the temporal factors of long-

term and short-term techniques. However, MF needs to be improved for the short-term 

technique and it is also still weak in handling the drifting of user preferences. Besides, 

the weaknesses of the Temporal Dynamics , Short Term-based Latent and Temporal 

Interaction approaches are that they neither give the solution for the drift of the user’s 

preferences nor the decay time of the item’s popularity during the long-term. For the 

short-term, the best approach is the neighbourhood with the base features by Ye and 

Eskenazi (2014), while the long-term approach (Ye & Eskenazi, 2014) is used to learn 

the drift in the user’s preferences because the drift in the popularity of items is caused by 

an evolution of the user’s taste. The hybrid of short-and long-term (Ye & Eskenazi, 2014) 

is used to learn the drift in the user’s interest over time.  

 

1.3 Research Objectives 

 

The main objective is to propose a temporal integration approach based on matrix 

factorization namely TemporalMF++ to improve prediction accuracy of the data sparsity 

in the collaborative filtering. The detail objectives are as follow:  

1. To propose Ensemble Divide and Conquer approach for solving latent feedback 

learning which provides the accurate prediction scores. 

2. To propose the personalized temporal-based approach using bacterial foraging 

optimization algorithm to solve scores overfitting, user’s interest drifting and 

item’s popularity decay over time which provides the accurate prediction 

scores. 

3. To integrate the approaches of long-term and short-term to solve the latent 

feedback learning, scores overfitting, user’s interest drifting, item’s popularity 

decay over time which provides the accurate prediction scores. 

 

1. 4 The Scope of Research 

 

This research focuses on improving the prediction performance of CF based on 

extracting the knowledge from the explicit rating scores and its temporal vectors. Three 

datasets are explored for testing all the experimental approaches, which are MovieLens, 

Netflix Prize and Epinions. Due to the exploitation of the data sparsity concept in the 
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Recommendation System, it is important to mention some critical assumptions about 

using this model, as follows: 

 The data sparsity is the main problem addressed in this study, which is explored 

according to the factorization and temporal based factorization approaches. 

 The process of classification after clustering the global rating matrix has been 

used for solving the problem of cold-start (new items/new users). Therefore, the 

measures of classification as precision, recall and F1 are not used in evaluating 

the experimental approaches. 

 For the personalized differences in the users’ behaviours, the root mean squared 

error (RMSE) is computed for the whole test set of the target users, where each 

target user has a different accuracy prediction from another target user.  

 One of the swarming algorithm which is the bacterial foraging optimization 

algorithm is used for extracting the optimum weights of short-term preferences, 

which improve the performance of data according to the CF technique.  

 

1.5 The Contribution of The Thesis  

 

The primary contribution of this research work is improving the prediction accuracy in 

the CF technique based on data sparsity issue by devising the temporal integration based 

factorization approaches which learn the accurate latent effects of the temporal 

behaviours of the user’s preferences. The novel features of the proposed approaches are 

as follows: 

1. Data sparsity issue: The approach of ensemble divide and conquer has reduced 

the data sparsity error and also the combination of time convergence, 

personalized duration and personalized temporal weighting methods are 

incorporated in matrix factorization to reduce data sparsity error.  

2. Personalized recommendation issue: The combination of time convergence and 

personalized duration approaches is proposed to improve the preference drifting 

factor and personalized recommendation.  

3. Overfitting; drift; decay: The bacterial foraging optimization algorithm based 

personalized temporal weight approach is proposed to normalize the overfitting 

in the predicted rating scores based on the regularizing weights. The swarming 

function in BFOA has tracked the duration drift and the duration decay.  

The novel features of the proposed approaches are as follows: 

 The proposed personalized duration of each user has improved the 

personalized preferences of the long-term. 

 Incorporating the baseline variants, latent feedback and temporal preferences 

into one approach has improved the quality of prediction accuracy.  

 The clustering based on the time converges among users has provided the 

controlling weights for normalizing the overfitting.  

 TemporalMF++ approach has solved the sparsity problem and the weaknesses 

of neighbours, overfitting, drift and time decay based on integrating the 

feedback of factorization approaches and the learning temporal vectors 

dynamically. 
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1.6 Thesis Outlines 

 

The rest of this thesis is organized as follows: Chapter 2 provides background knowledge 

of recommendation system and temporal recommendation system based on CF 

technique. This chapter will give an overview about the prediction approaches and the 

techniques which are used for the RS and explore the limitations of the current 

factorization approaches and the temporal approaches. In addition, this chapter covers 

the concepts of bacterial foraging optimization algorithm which will be used for 

extracting the temporal features. Chapter 3 presents the review of the issues of RS and 

temporal RS according to the limitations and the proposed solutions. The data 

preparation will be described in this chapter and the metric evaluations. Chapter 4 is 

dedicated to experimental results for the proposed approaches. It presents the results of 

EDC, LongTemporalMF, ShortTemporalMF and TemporalMF++. All results are 

implemented on the datasets of MovieLens, Epinions and Netflix Prize, according to two 

scales which are [0-1] and [0-5]. Furthermore, all proposed approaches will be compared 

to the previous approaches in the same major. Chapter 5 presents the experimental results 

and analysis. Chapter 6 presents the conclusion of all the experimental works and 

recommending for the future work. 
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