
© C
OPYRIG

HT U
PM 

 

UNIVERSITI PUTRA MALAYSIA 
 

CROSSOVER AND MUTATION OPERATORS OF REAL CODED 
GENETIC ALGORITHMS FOR GLOBAL OPTIMIZATION PROBLEMS 

 

 
 
 
 
 
 
 
 
 

LIM SIEW MOOI 
 
 
 
 
 
 
 
 
 
 
 
 

FSKTM 2016 10 



© C
OPYRIG

HT U
PM 

 

 

 
CROSSOVER AND MUTATION OPERATORS OF REAL CODED 

GENETIC ALGORITHMS FOR GLOBAL OPTIMIZATION PROBLEMS  

 

 

 

 

 

 

 

 

 

 

 
By 

 

 

LIM SIEW MOOI 

 

 

 

 

 

 

 

 

 

 
Thesis Submitted to the School of Graduate Studies, Universiti Putra 

Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of 

Philosophy 

 

 
February 2016 



© C
OPYRIG

HT U
PM

 

 

COPYRIGHT 

 

 

All material contained within the thesis, including without limitation text, logos, 

icons, photographs and all other artwork, is copyright material of Universiti Putra 

Malaysia unless otherwise stated.  Use may be made of any material contained 

within the thesis for non-commercial purposes from the copyright holder.  

Commercial use of material may only be made with the express, prior, written 

permission of Universiti Putra Malaysia. 

 

 

Copyright © Universiti Putra Malaysia 

  



© C
OPYRIG

HT U
PM

 

 

DEDICATIONS 

 

 

 

 

 

 

 

This thesis is dedicated to: 

my beloved husband Wu Ta Hong, 

my daughter Elvina Wu Jit Shern, 

my son Enrico Wu Yew Ke, 

my family and friends. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 



© C
OPYRIG

HT U
PM

i 
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By 

 

LIM SIEW MOOI 
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This study is primarily aimed at investigating two issues in genetic algorithm (GA) 

and one issue in conformational search (CS) problems.  First and foremost, this 

study examines the proposed crossover and mutation operators on the problems of 

slow convergence and premature convergence to suboptimal solution.  Second of 

all, this study operates within experimental design with Taguchi method to 

discover the optimal design factors for the two proposed genetic operators.  On the 

other hand, the CS issue focuses on the effects of the combination of the two 

proposed genetic operators on two CS problems.  

 

 

Past studies have revealed that GAs are one of the most prevalently used stochastic 

search techniques to date.  The strength of the algorithm lies in the fact that it 

assists the evolution of a population of individuals who would thrive in the survival 

of the fittest towards the next generation.  GA has been employed in resolving 

many complex combinatorial optimization problems such as CS problems.   

 

 

However, the lack of diversity in a population and the difficulty to locally exploit 

the solutions within a population creates a setback for GA.  Apart from that, its 

tuning variables are tricky, as it requires intricate setting properties.  On another 

note, the drawback in CS is in locating the most stable conformation of a molecule 

with the minimum potential energy based on a mathematical function.  The number 

of local minima grows exponentially with molecular size and this makes it that 

more difficult to arrive at a solution.  As such, this research is aimed at resolving 

the issues mentioned.       
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The rationale behind developing algorithms using real encoding of chromosome 

representations is the limitations of binary encoding.  In relation to this, Real 

Coded GA (RCGA) refers to GAs which incorporate real number vector 

representations of chromosomes.  Because the representations of the solutions are 

similar to the natural formulation, RCGA gets better-customized to the 

optimization of problems in a continuous domain.  Throughout the years, there has 

been a shift in focus on constructing new crossover and mutation operators to 

improve the performance of GA in function optimization.   

 

 

GA operators employ two main strategies; that is, exploration and exploitation to 

locate the optimum solutions.  This research employed a new generational GA 

based on a combination of the proposed Rayleigh Crossover (RX) and proposed 

Scale Truncated Pareto Mutation (STPM) called RX-STPM.  It is applied in 

optimization problems like CS.  While RX displays self-adaptive behavior and 

possesses exploration capabilities, STPM thrive in its exploitation features.  Hence, 

RX-STPM becomes an optimal equilibrium between exploration and exploitation 

strategies in leading the system towards global optima.  The explorative and 

exploitative features of the proposed GA are regulated by substantial crossover 

probability and mutation rate set up using the Taguchi method.  Aside from that, 

tournament selections with proper tournament sizes, used in the design of the 

proposed operators, also led to strong exploration potentials.  

 

 

As you will see in this study, the performance of all RCGAs is contrasted to the 

standard criteria used in GA literature, which involves accuracy (judged by average 

error, mean and standard deviation of the objective function values), efficiency and 

reliability (judged by success rate and average number of function evaluation).  RX 

and STPM operators were separately tested on a dataset of ten benchmark global 

optimization problems according to the specified experimental procedure.  The 

numerical findings gathered from performance evaluations for RX and STPM were 

promising and they have shown significantly better results in comparison to the 

other crossover and mutation operators found in the literature. 

 

 

An accurate combination of GA operators is pivotal in securing effective resolution 

to the problem.  In this study, the GA was analyzed on a few operators.  The 

numerical results obtained from the performance evaluation indicated that the RX 

crossover is the most fitting pair to the STPM mutator in competently solving two 

CS problems i.e. minimizing a molecular potential energy function and finding the 

most stable conformation of pseudoethane through a molecular model, which 

involves a realistic energy function. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk Ijazah Doktor Falsafah 

 

 

PENGENDALI CROSSOVER DAN MUTASI ALGORITMA GENETIK 

KOD NYATA UNTUK MASALAH OPTIMUM SEJAGAT 

 

 

Oleh 

 

LIM SIEW MOOI 

 

Februari 2016 

 

 

Pengerusi:     Profesor Madya Md Nasir Sulaiman, PhD  

 

Fakulti:         Sains Komputer dan Teknologi Maklumat 

 

 

Tujuan kajian ini adalah untuk meneliti dua isu dalam algoritma genetik (GA) serta 

satu isu penting melibatkan masalah carian konformasi (CS).  Isu GA Pertama: 

Kajian ini meneliti pengendali crossover dan mutasi yang dicadangkan ke atas 

masalah penumpuan perlahan dan penumpuan pra-matang untuk penyelesaian 

suboptimal.  Isu GA Kedua: Reka bentuk kajian ini adalah berasaskan kaedah 

Taguchi dalam mencari faktor-faktor reka bentuk optimum bagi kedua-dua 

pengendali genetik yang dicadangkan.  Isu CS ditumpukan kepada kesan 

Algoritma Genetik Kod Nyata (RCGA) dengan menggabungkan dua pengendali 

genetik yang dicadangkan ke atas dua masalah CS. 

 

 

GA merupakan salah satu teknik carian stokastik yang paling umum digunakan. 

Algoritma ini mengevolusi populasi individu yang bakal berkesinambungan dalam 

kehidupan dengan tujuan untuk menghala ke generasi akan datang.  Berdasarkan 

kajian lepas, GA telah digunakan dalam menyelesaikan banyak masalah 

pengoptimuman kombinatorik yang sukar seperti masalah CS.  Namun begitu, GA 

juga mempunyai kelemahan tersendiri disebabkan oleh kekurangan dalam 

kepelbagaian populasi dan kesulitan dalam mengeksploitasi penyelesaian dalam 

populasi.   

 

 

Selain itu, sifat tetapan rumit dalam pembolehubah penalaan juga menambah 

cabaran.  Kelemahan dalam CS adalah dalam pencarian pengesahan molekul yang 

paling stabil dengan menggunakan tenaga keupayaan yang minimum berdasarkan 

fungsi matematik.  Bilangan tempatan minima berkembang sejajar dengan saiz 

molekul dan ini merupakan satu cabaran.  Oleh yang demikian, kajian ini bertujuan 

untuk menyelesaikan isu-isu yang dinyatakan. 
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Faktor-faktor utama untuk membina algoritma menggunakan pengekodan sebenar 

kromosom representasi adalah bagi mengatasi batasan pengekodan perduaan.  

RCGA merupakan GA yang menggabungkan perwakilan vektor nombor nyata 

kromosom. Similariti antara representasi penyelesaian kepada formulasi semulajadi 

membolehkan RCGA diubahsuai untuk masalah pengoptimuman dalam domain 

yang berterusan.  Baru-baru ini, kita dapat perhatikan bahawa tumpuan pada 

pembinaan pengendali crossover dan mutasi baru telah beralih untuk meningkatkan 

prestasi GA dalam fungsi pengoptimuman.   

 

 

Pengendali GA menggunakan dua strategi utama; iaitu eksplorasi dan eksploitasi 

untuk mencari penyelesaian yang optimum.  Oleh yang demikian, kajian ini telah 

melahirkan satu GA generasi baru dengan mengabungkan cadangan Rayleigh 

Crossover (RX) dan Scale Truncated Pareto Mutation (STPM) iaitu RX-STPM 

bagi menyelesaikan masalah pengoptimuman seperti CS.  RX  mempunyai sifat 

penyesuaian sendiri serta keupayaan eksplorasi, manakala STPM juga 

menonjolkan ciri-ciri eksploitasi.  Oleh itu, RX-STPM dikatakan mampu 

mengekalkan keseimbangan yang baik antara strategi eksplorasi dan eksploitasi 

kearah sistem optima sejagat.  Ciri-ciri penerokaan dan mengeksploitasi GA yang 

dicadangkan adalah dikawal oleh kebarangkalian crossover dan mutasi yang 

ditubuhkan dengan menggunakan kaedah Taguchi.  Selain itu, pilihan berdasarkan 

pertandingan (dengan saiz pertandingan yang sesuai) bakal menaikkan potensi 

eksplorasi. 

 

 

Berpandukan laporan dalam kajian ini, prestasi kesemua RCGA diukur-banding 

mengikut kriteria standard yang digunakan dalam kesusasteraan GA, iaitu 

ketepatan (dinilai dengan kesilapan skor, min dan sisihan piawai nilai fungsi 

objektif), kecekapan dan kebolehpercayaan (dinilai dengan kadar kejayaan dan 

nombor purata penilaian fungsi).  Pengendali RX dan STPM yang dicadangkan 

telah diuji secara berasingan ke atas sepuluh dataset masalah pengoptimuman 

sejagat mengikut prosedur eksperimen yang dinyatakan.  Hasil kajian yang 

dikumpul dari penilaian prestasi mengesyorkan bahawa RX dan STPM berpotensi 

dan ianya telah menghasilkan keputusan yang lebih baik berbanding dengan 

pengendali crossover dan mutasi lain yang ditemui dalam kesusasteraan . 

 

 

Gabungan pengendali GA yang tepat adalah amat penting dalam mengecapi 

penyelesaian yang berkesan untuk kesemua masalah GA.  Dalam kajian ini,  GA 

telah dianalisis dengan mengunakan beberapa pengendali.  Keputusan statistikal 

yang diperolehi daripada penilaian prestasi membuktikan bahawa pengendali RX 

dan STPM merupakan pasangan yang paling sesuai bagi menyelesaikan dua 

masalah CS.  Ini dicapai dengan mengurangkan satu fungsi tenaga keupayaan 

molekul dan mencari pengesahan yang paling stabil untuk molekul pseudoethane 

melalui model molekul yang melibatkan fungsi tenaga realistik. 

  



© C
OPYRIG

HT U
PM

v 

 

ACKNOWLEDGEMENTS 

 

 

I would like to express my sincere gratitude to the supervisory committee led by 

Assoc. Prof. Dr. Md Nasir B Sulaiman and committee members Assoc. Prof. Dr. 

Abu Bakar Md. Sultan, Assoc. Prof. Dr. Norwati Mustapha and Assoc. Prof. Dr. 

Bimo Ario Tejo for their guidance, valuable suggestions and advice throughout my 

research.  

 

 

My deepest appreciation is to my husband, children and parents for their love, 

continued support, encouragement and prayers over the past years, which made it 

possible for me to complete my research.  My thanks are also extended to my 

friends, colleagues and others who have directly or indirectly helped me in the 

completion of this work.  

 

 

Finally, I would like to gratefully acknowledge Universiti Putra Malaysia (UPM) 

for providing a very conducive and motivating place for study and Ministry of 

Higher Education, Malaysia for sponsoring my study.    

 

 



© C
OPYRIG

HT U
PM

vii 
 

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been 

accepted as fulfilment of the requirement for the degree of Doctor of Philosophy.  

The members of the Supervisory Committee were as follows: 

 

 

Md Nasir Sulaiman, PhD 

Associate Professor 

Faculty of Computer Science and Information Technology 

Universiti Putra Malaysia 

(Chairman) 

 

 

Abu Bakar Md. Sultan, PhD 

Professor 

Faculty of Computer Science and Information Technology 

Universiti Putra Malaysia 

(Member) 

 

 

Norwati Mustapha, PhD 

Associate Professor 

Faculty of Computer Science and Information Technology 

Universiti Putra Malaysia 

(Member) 

 

 

Bimo Ario Tejo, PhD 

Associate Professor 

Faculty of Science 

Universiti Putra Malaysia 

(Member) 

 

 

 

 

                                                                        ____________________________             

                                                                        BUJANG BIN KIM HUAT, PhD 

     Professor and Dean 

     School of Graduate Studies 

     Universiti Putra Malaysia 

 

 

                   Date:   

  



© C
OPYRIG

HT U
PM

viii 
 

DECLARATION 

 

 

Declaration by graduate student 

 

 

I hereby confirm that: 

 this thesis is my original work; 

 quotations, illustrations and citations have been duly referenced; 

 this thesis has not been submitted previously or concurrently for any other 

 degree at any other institutions; 

 intellectual property from the thesis and copyright of thesis are fully-owned by 

 Universiti Putra Malaysia, as according to the Universiti Putra Malaysia 

 (Research) Rules 2012; 

 written permission must be obtained from supervisor and the office of Deputy 

Vice-Chancellor (Research and Innovation) before thesis is published (in the 

form of written, printed or in electronic form) including books, journals, 

modules, proceedings, popular writings, seminar  papers, manuscripts, posters, 

reports, lecture notes, learning modules or any other materials as stated in the 

Universiti Putra Malaysia (Research) Rules 2012; 

 there is no plagiarism or data falsification/fabrication in the thesis, and 

scholarly integrity is  upheld as according to the Univeristi Putra Malaysia 

(Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra 

Malaysia (Research) Rules 2012.  The thesis has undergone plagiarism 

detection software. 

 

 

 

 

 

 

Signature: _____________________________         Date: ___________________ 

 

 

Name and Matric No.: ________________________________________________ 
  



© C
OPYRIG

HT U
PM

ix 
 

Declaration by Members of Supervisory Committee 

 

 

This is to confirm that: 

 the research conducted and the writing of this thesis was under our 

 supervision; 

 supervision responsibilities as stated in the Universiti Putra Malaysia 

 (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to. 

 

 

 

 

 

 

 

Signature: 

Name of Chairman of Supervisory Committee: 

Md Nasir Sulaiman, PhD 

 

 

 

 

 

 

 

Signature: 

Name of Member of Supervisory Committee: 

Abu Bakar Md. Sultan, PhD 

 

 

 

 

 

 

 

Signature: 

Name of Member of Supervisory Committee: 

Norwati Mustapha, PhD 

 

 

 

 

 

 

 

Signature: 

Name of Member of Supervisory Committee: 

Bimo Ario Tejo, PhD 
 



© C
OPYRIG

HT U
PM

x 
 

TABLE OF CONTENTS 

 

 

 Page 

ABSTRACT i 

ABSTRAK iii 

ACKNOWLEDGEMENTS v 

APPROVAL vi 

DECLARATION viii 

LIST OF TABLES xiv 

LIST OF FIGURES xvi 

LIST OF ABBREVIATIONS xviii 

 

 

CHAPTER 

 

1 INTRODUCTION 

1.1 Background of Studies 1 

1.2 Problem Statement 3 

1.3 Objectives 4 

1.4 Scope of the Study 5 

1.5 Research Contribution 5 

1.6 Organization of Thesis 6 

 

 

2 LITERATURE REVIEW 

2.1 Introduction 8 

2.2 Combinatorial Optimization Problem 8 

2.3 Deterministic versus Stochastic Approaches 9 

2.4 Metaheuristic Techniques 10 

2.5 Evolutionary Algorithms 12 

2.6 Genetic Algorithms as an Evolutionary Approach 13 

2.6.1  Advantageous of Genetic Algorithm 14 

2.6.2  Binary Coded versus Real Coded Genetic Algorithm 15 

2.6.3  Achieving Exploration and Exploitation in Genetic 

Algorithm 

15 

2.6.4  Mutation Operators 17 

2.6.5  Crossover Operators 19 

2.6.6  Parameter Setting 22 

2.6.7 Genetic Algorithm Applications in Conformational 

Searches of Molecular Systems  

24 

2.7 Summary 25 

 

 

 

 

 

 



© C
OPYRIG

HT U
PM

xi 
 

3 TECHNIQUES FOR CONFORMATIONAL SEARCH 

3.1 Introduction 26 

3.2 Conformational Search Problems 26 

3.3 Computational Steps in Conformational Search 27 

3.4  Technical Aspects of Method Comparisons in Conformational 

Search 

28 

3.5 Techniques for Conformational Search Problem 28 

3.6 Application of Metaheuristic to Conformational Search 

Problems 

29 

3.6.1 Probabilistic Algorithms 30 

3.6.2 The Metropolis Algorithms 33 

3.6.3 Physical Algorithms 34 

3.6.4 Swarm Algorithms 35 

3.6.5 Other Metaheuristic Algorithms 36 

3.7 Systematic Search Algorithms 37 

3.8 Build-Up Procedure / Fragments 38 

3.9 Distance Geometry 38 

3.10 Smoothing / Deformation Method 39 

3.11 Summary 39 

 

 

4 RESEARCH METHODOLOGY 

4.1 Introduction 40 

4.2 Research Overview 40 

4.2.1 Identifying the Research Problem 41 

4.2.2 Implementation of the Recent Related Work 41 

4.2.3 Design and Implementation 41 

4.2.4 Experimental Evaluation 42 

4.3 Datasets 42 

4.3.1 Five Non-Scalable Benchmark Functions  43 

4.3.2 Five Scalable Benchmark Functions 44 

4.3.3 First Conformational Search Application Problem 45 

4.3.4 Second Conformational Search Application Problem 47 

4.4 System Design 49 

4.4.1 Computing Environment 49 

4.4.2 System Development 50 

4.4.3 System Architecture 51 

4.5 System Implementation 52 

4.5.1 Running of the System 52 

4.5.2 Experimental Design 52 

4.6 Evaluation Analysis 52 

4.6.1 Capturing Data for Orthogonal Array and Signal-to-

Noise Ratio 

53 

4.6.2 Capturing Data for Average Number of Function 

Evaluation and Success Rate 

54 

4.6.3 Capturing Data for Average Error, Mean and Standard 

Deviation  

55 

4.7 Summary 56 

 



© C
OPYRIG

HT U
PM

xii 
 

5 A NEW REAL CODED GENETIC ALGORITHM 

5.1 Introduction 57 

5.2 Background 57 

5.3 Fundamental Issues in Rayleigh Crossover-Scale Truncated 

Pareto Mutation 

58 

5.3.1 Chromosome Representation 60 

5.3.2 Scale Truncated Pareto Mutation 60 

5.3.3 Rayleigh Crossover 62 

5.3.4 Selection 65 

5.3.5 Initialization, Evaluation and Termination 65 

5.4 Parameter Setting for Rayleigh Crossover-Scale Truncated 

Pareto Mutation 

66 

5.5 Summary 66 

 

 

6 RESULTS AND DISCUSSION 

6.1 Introduction 67 

6.2 Final Parameter Settings for Laplace Crossover-Scale Truncated 

Pareto Mutation 

67 

6.2.1 Orthogonal Array Chart 67 

6.2.2 Signal to Noise Ratio 67 

6.3 Performance Analysis for the Comparative Mutators 70 

6.3.1 Average Number of Function Evaluation and Success 

Rate 

71 

6.3.2 Average Error, Mean and Standard Deviation 72 

6.4 Final Parameter Settings for Rayleigh Crossover-Scale 

Truncated Pareto Mutation 

74 

6.4.1 Orthogonal Array Chart 74 

6.4.2 Signal to Noise Ratio 74 

6.5 Performance Analysis for the Comparative Crossovers 76 

6.5.1 Average Number of Function Evaluation and Success 

Rate 

76 

6.5.2 Average Error, Mean and Standard Deviation  78 

6.6 Performance Analysis for Rayleigh Crossover-Scale Truncated 

Pareto Mutation on First Conformational Search Application 

Problem 

80 

6.6.1 Average Number of Function Evaluation and Success 

Rate 

81 

6.7 Performance Analysis for Rayleigh Crossover-Scale Truncated 

Pareto Mutation on Second Conformational Search Application 

Problem 

84 

6.7.1 Average Number of Function Evaluation and Success 

Rate 

84 

6.8 Summary 86 

 

 

 

 



© C
OPYRIG

HT U
PM

xiii 
 

7 CONCLUSION AND FUTURE WORK 

7.1 Introduction 88 

7.2 Conclusions 89 

7.3 Future work 90 

 

 

REFERENCES 92 

APPENDICES 107 

BIODATA OF STUDENT 121 

LIST OF PUBLICATIONS 122 

 

  



© C
OPYRIG

HT U
PM

xiv 
 

LIST OF TABLES 

 

 

Table  Page 

 
1.1  Six Categories of Optimization Algorithms 

 

2 

2.1  Nature-Inspired versus Non-Nature Inspired Metaheuristic 

Algorithms 

 

10 

2.2  Fundamental Properties of Metaheuristics 

 

11 

2.3  Classical Genetic Algorithm Implementation 

 

14 

2.4  List of Some Prevalent Mutation Operators 

 

17 

2.5  List of Some Well Known Crossover Operators 

 

20 

3.1  Why Are Some Problems Difficult to Solve? 

 

29 

4.1  Research Phases 

 

40 

4.2  Test Environment Factors 

 

50 

4.3  Numerous Modules of the System Architecture 

 

51 

4.4  The Level of Design Factors Used in This Study 

 

53 

5.1  Computational Steps of Rayleigh Crossover-Scale Truncated 

Pareto   Mutation 

 

58 

5.2  Summary of Operators Used in This Study 

 

65 

6.1  Final Parameter Settings for the Comparative Mutators 

 

70 

6.2 Average Error, Mean and Standard Deviation Obtained by the  

Comparative Mutators 

 

73 

6.3 Final Parameter Setting for the Comparative Crossovers 

 

76 

6.4 Average Error, Mean and Standard Deviation Obtained by the 

Comparative Crossovers 

 

79 

6.5 Global Minimum Values for the Energy Function Used in This 

Study 

 

80 

 



© C
OPYRIG

HT U
PM

xv 
 

6.6 Final Parameter Setting for the Comparative Algorithms Used in 

First Conformational Search Application Problem  

80 

 

6.7 

 

Final Parameter Setting for the Comparative Algorithms Used in 

Second Conformational Search Application Problem  

 

 

84 

7.1 Recommendation for Future Research 

 

91 

B1 Mean Values Obtained by Laplace Crossover-Scale Truncated 

Pareto Mutation 

 

117 

B2 Signal to Noise Ratio Obtained by Laplace Crossover-Scale 

Truncated Pareto Mutation 

 

118 

B3 Ideal Parameter Values Obtained by Laplace Crossover-Scale 

Truncated Pareto Mutation  

 

118 

C1 Average Number of Function Evaluation and Success Rate 

Obtained by the Comparative Mutators  

 

119 

D1 Mean Values Obtained by Rayleigh Crossover-Scale Truncated 

Pareto Mutation 

 

120 

D2 Signal to Noise Ratio Obtained by Rayleigh Crossover-Scale 

Truncated Pareto Mutation 

 

121 

D3 Ideal Parameter Values Obtained by Rayleigh Crossover-Scale 

Truncated Pareto Mutation  

 

121 

E1 Average Number of Function Evaluation and Success Rate 

Obtained by the Comparative Crossovers 

 

122 

F1 Average Number of Function Evaluation and Success Rate 

Obtained by the Comparative Algorithms for the First 

Conformational Search Application Problem 

 

123 

G1 Average Number of Function Evaluation and Success Rate 

Obtained by the Comparative Algorithms for the Second 

Conformational Search Application Problem 

 

124 

 
  



© C
OPYRIG

HT U
PM

xvi 
 

LIST OF FIGURES 

 

 
Figure  Page 

 
2.1  Evolutionary Algorithms 

 

12 

2.2  Action Interval for Two Genes (Ca and Cb) 

 

16 

3.1 Population-Based Incremental Learning Algorithms 

 

32 

3.2   Optimization as a Markov Chain 

 

33 

3.3 Simulated Annealing Algorithms 

 

34 

3.4 Bees Algorithms 

 

36 

3.5 Simple Tabu Search Algorithms 

 

37 

4.1 Pseudoethane Molecule 

 

47 

4.2 Potential Energy of Pseudoethane Molecule 

 

48 

4.3 MATLAB 2012b Command Window 

 

52 

5.1 Flowchart of Rayleigh Crossover-Scale Truncated Pareto 

Mutation 

 

59 

5.2 Pseudocode of Rayleigh Crossover-Scale Truncated Pareto 

Mutation 

 

60 

5.3 A Real-Valued Chromosome Representation  

 

60 

6.1 Ideal Parameter Values Obtained by Laplace Crossover-Scale 

Truncated Pareto Mutation 

 

69 

6.2 Average Number of Function Evaluation Obtained by the 

Comparative Mutators 

 

71 

6.3 Success Rate Obtained by the Comparative Mutators 

 

72 

6.4 Average Error Obtained by the Comparative Mutators 

 

73 

6.5 Ideal Parameter Values Obtained by Rayleigh Crossover-Scale 

Truncated Pareto Mutation 

 

75 

6.6 Average Number of Function Evaluation Obtained by the 

Comparative Crossovers 

77 



© C
OPYRIG

HT U
PM

xvii 
 

6.7 Success Rate Obtained by the Comparative Crossovers 

 

78 

6.8 Average Error Obtained by the Comparative Crossovers 

 

79 

6.9 Average Number of Function Evaluation Obtained by the 

Comparative Algorithms in the First Conformational Search 

Application Problem 

 

82 

6.10 Success Rate Obtained by the Comparative Algorithms in the First  

Conformational Search Application Problem  

 

83 

6.11 Average Number of Function Evaluation Obtained by the 

Comparative Algorithms in the Second Conformational Search 

Application Problem  

 

85 

6.12 Success Rate Obtained by the Comparative Algorithms in the 

Second Conformational Search Application Problem  

 

86 

A1 Final Parameter Settings for Laplace Crossover-Scale Truncated 

Pareto Mutation 

 

111 

A2 Performance Analysis for the Comparative Mutators  

 

112 

A3 Final Parameter Settings for Rayleigh Crossover-Scale Truncated 

Pareto Mutator 

 

113 

A4 Performance Analysis for the Comparative Crossovers 

 

114 

A5 Performance Analysis for Rayleigh Crossover-Scale Truncated 

Pareto Mutation and the Comparative Algorithms on the First 

Conformational Search Application Problem 

 

115 

A6 Performance Analysis for Rayleigh Crossover-Scale Truncated 

Pareto Mutation and the Comparative Algorithms on the Second 

Conformational Search Application Problem 

 

116 

 
  



© C
OPYRIG

HT U
PM

xviii 
 

LIST OF ABBREVIATIONS 

 

 

ADM Adaptive Directed Mutation 

 

AE Average Error 

 

AFE Average Number of Function Evaluation 

 

BA Bees Algorithms 

 

BCGA Binary Encoding Genetic Algorithms 

 

BGAM Breeder GA Mutation 

 

CMA-ES Covariance Matrix Adaptation Evolution Strategy 

 

COP Combinatorial Optimization Problem 

 

CPU Central Processing Unit 

 

CS Conformational Search 

 

EA Evolutionary Algorithms 

 

F1 Test Function Number 1 

 

F2 Test Function Number 2 

 

F3 Test Function Number 3 

 

F4 Test Function Number 4 

 

F5 Test Function Number 5 

 

F6 Test Function Number 6 

 

F7 Test Function Number 7 

 

F8 Test Function Number 8 

 

F9 Test Function Number 9 

 

F10 Test Function Number 10 

 

GA Genetic Algorithm 

 

 



© C
OPYRIG

HT U
PM

xix 
 

GAOT Genetic Algorithm Optimization Toolbox 

 

GSTM Greedy Sub Tour Mutation 

 

HYB Stage Hybrid with Full Simplex 

 

LLM Log Logistic Mutation 

 

LM Logarithmic Mutation  

 

LX Laplace Crossover 

 

MI-LXPM Mixed Integer Laplace Crossover-Power Mutation 

 

MM Muhlenbein’s Mutation  

 

MNUM Multi Non-Uniform Mutation 

 

MPTM Makinen, Periaux and Toivanen Mutation  

 

NP Non-Deterministic Polynomial 

 

NUM Non-Uniform Mutation 

 

oHYB Simplex as Operator Hybrid  

 

OS Operating System 

 

P Polynomial 

 

PBIL Population Based Incremental Learning Algorithms 

 

PCA Principal Component Analysis Mutation  

 

PCX Parent Centric Crossover  

 

PLM Polynomial Mutation  

 

PM Power Mutation 

 

Pm Mutation Rate 

 

PoD Pointed Directed Mutation 

 

Ps Population Size 

 

Pc Crossover Probability 

 

QSAR Quantitative Structure Activity Relationship  



© C
OPYRIG

HT U
PM

xx 
 

 

RCGA Real Coded Genetic Algorithm 

 

rHYB Stage Hybrid with a Reduced Simplex 

 

RX Rayleigh Crossover 

 

RX-STPM Rayleigh Crossover-Scaled Truncated Pareto Mutation 

  

S/N Signal to Noise Ratio 

 

SA Simulated Annealing 

 

SBX Simulated Binary Crossover 

 

SPX Simplex Crossover  

 

SR Success Rate 

 

SS Systematic Search 

 

STPM Scaled Truncated Pareto Mutation 

 

TS Tabu Search 

 

Ts Tournament Size 

 

UNDX Unimodal Normal Distribution Crossover 

  

WX Weibull Crossover 

 

 

 
 



© C
OPYRIG

HT U
PM

 

 
 

CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 Background of Studies 

 

 

Global optimizations encompass issues, which arise in the financial, economic and 

engineering world.  The solution to these problems involves countless variables, 

which are bound to a massive search parameter, dynamic environments and real-

time performance restraints.  Therefore, many studies have been aimed at looking 

for the optimum set of variables, which best fulfills the goals involved within said 

constraints.  

 

 

This research is aimed at finding the global optimal solutions for conformational 

search (CS) which are mathematically represented as a continuous global 

optimization problem.  CS is a term familiar to those in the field of applied 

mathematics and computational chemistry.  In CS, the variables are the torsion 

angles or coordinates that are used to represent the conformation of the molecule 

(e.g. polypeptide chain).  The objective function value is the potential energy 

function.  By varying the values of the variables, the global minimum value of the 

objective function can be achieved; that is to locate the most stable conformation of 

a molecule with the minimum potential energy.     

 

 

A global optimization problem can be formulated as: 

 

given f : ℜn
→ ℜ a continuous function and S ⊂ ℜn

, find its global minimum f* = 

min { f (x): x ∈ S} and the set X* of all global minimizers X*(f) = {x* ∈ S: f(x*) = 

f*}   (Lavor et al. 2004).   

 

 

Table 1.1 depicts the six categories of optimization algorithms.  The table 

demonstrates that these six categories and their branches need not be mutually 

exclusive.         
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 Table 1.1: Six Categories of Optimization Algorithms  

 (Haupt et al. 2004) 

 

Category Optimization Algorithms 

1 Function  Trial and error 

2 Single variable Multiple variables 

3 Static Dynamic 

4 Discrete Continuous 

5 Constrained Unconstrained 

6 Random Minimum seeking 

 

 

Premature convergence, the no free lunch theorem, over fitting, and over 

simplification are among the underlying issues of optimization problems.  That 

said, a major setback that is constantly present is that the algorithm is ambiguous in 

determining whether the proposed best solution is positioned on a local or global 

optimum.  Therefore, for the last three decades, a lot of research has been fixed on 

finding the global optimal solution of nonlinear optimization problems.  Weise 

(Weise et al. 2009) demonstrates the challenge in finding the optimal resolutions to 

overcome these problems.     

 

 

Metaheuristic methods (nature or non-nature inspired) are the most sought after 

optimization algorithms.  With one or more solutions in the beginning, this method 

follows with a more iterative approach to optimize the search in promising areas 

away from local solutions.  This method is often employed in circumstances where 

the exact solution methods are unfeasible within a limited time frame.  

 

 

One of the most popular metaheuristic algorithms advocated by Holland in the 

1960s is the Genetic algorithm (GA) (Holland 1975).  Being nature-inspired, it 

works mostly on different sophisticated computational glitches.  Subsequently, in 

the early 90’s, a new model, that is the real coded genetic algorithms (RCGA) was 

brought into light (Herrera et al. 1998).  It incorporates real number vector 

representation of chromosomes and the RCGA can be easily tweaked to fit the 

optimization of problems in a continuous domain owing to the fact that the 

representations of the solutions are close to the natural formulation i.e. the 

genotype (coding) and the phenotype (search space) are very much alike. 

 

 

However, the problems of slow and premature convergence to suboptimal solution 

remain an existing struggle that GA is facing.  Due to lower diversity in a 

population, it becomes challenging to locally exploit the solutions.  In order to 

resolve these issues, the focus is now on reaching equilibrium between the 

explorative and exploitative features of GA.  Therefore, the search process can be 

prompted to produce suitable GA solutions (Yuan et al. 2010). 
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Although optimization algorithms with higher degree of exploitation may have 

higher convergence speed, the challenge lies in locating the optimal solution and 

chances are it may not get past a local optimum.  On the other hand, algorithms 

that favor exploration over exploitation might consume more time in locating the 

global optimum, that is, coincidentally, due to its less sophisticated candidate 

solutions.  Both features of GA are categorized based on the crossover and 

mutation operator, crossover probability (Pc), mutation rate (Pm), tournament size 

(Ts) and population size (Ps), all of which poses existing challenge to the current 

studies in GA.  So the quality of GA solution and the computational time is 

governed by a fitting scheme of operators and parameter setting.    

 

 

1.2 Problem Statement 

 

 

The implementation of real chromosomes encoding stems from the limitations of 

binary encoding (Deep et al. 2007a).  In RCGA, a chromosome length is a vector 

of floating point numbers to the problem; thus, each gene represents a variable of 

the problem.  Through data gathered from the literature, the many pros of RCGAs 

have been made apparent over Binary Coding GA (BCGA) particularly in terms of 

optimizing numerical functions (Deb et al. 2014, Sawyerr et al. 2014).  Therefore, 

the express purpose of this study is aimed at refining the growth in RCGAs instead 

of BCGAs.   

 

 

The key focus of this study is narrowed down to the design of genetic operators.  It 

is important to note that the success of exploration and exploitation in GA 

significantly depends on the efficient crossover and mutation search operators.  It 

also depends on the appropriate coordination among the operators (Elsayed et al. 

2014).  These genetic operators will exchange information between the peaks and 

hinders the search from winding up at a local optimum.  Over the years, there have 

been notable efforts in fine-tuning the existing operators by the evolutionary 

computation community.  

 

 

The main search operator in GA is the crossover operator which equally as 

significant as mutation, selection and coding in GA.  The crossover operator 

functions primarily in the survey of information that is accessible through the 

search space, which inadvertently improves the behavior of the GA.  A lot of 

RCGA efforts are channeled toward designing new crossover operators to heighten 

the performance of function optimization (Chuang et al. 2015).   

 

 

On another note, mutation is a secondary operator.  It functions to alter the genes of 

the offspring.  A mutator will diversify the existing population and this 

inadvertently allows GAs to exploit promising areas of the search space thus 

avoiding local solutions (Korejo et al. 2010).  Some of the mutation operators are 

designed to explicitly overcome certain types of issues over others (Gong et al. 

2015).   
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The performance among all the comparative of GA operators are easily validated 

and compared through unbiased test problems from the literature, which are 

diverse in properties in terms of complexity and modality.             

 

 

Apart from that, the parameter settings of the GA is yet another key focus of this 

study.  Significant attention has been shed in light of this to achieve exploration 

and exploitation in GA.  The tuning methods involve increasing the algorithm 

performance or decreasing the effort.  Since GA parameters can be divided into 

several levels, there are almost an infinite numbers of possibilities.   

 

 

Therefore, this research proposes the ideal operators with appropriate parameters 

and mechanisms to overcome global optimization problems such as CS, which are 

extremely challenging due to the volume of the search space.  In this case, CS 

occurs when the total number of possible conformations grows exponentially with 

the total number of degrees of freedom (usually the dihedral angles).  It had been 

confirmed that CS belongs to the category of NP-hard (non-deterministic 

polynomial time) problem.  Such complexity requires an equally long amount of 

time to achieve resolution.  This phenomenon is thus known as the 'combinatorial 

explosion' (Leach 2007). 

 

 

On the downside, the conventional experimental design is tedious due to the fact 

that the large number of experiments increases proportionally with the number of 

process parameters.  These parameters are most likely to influence the performance 

of a studied system. To rectify that flaw, Genichi Taguchi (Taguchi 1962) 

presented an efficient and systematic approach called the Taguchi method to iron 

out the existing issues present in the conventional experimental design.  Hence, this 

study incorporates the Taguchi method in the proposed operators. 

 

 

1.3 Objectives 

 

 

The main objective of this research is to propose new RCGA operators in the 

search for the optimum solution for continuous global optimization problems along 

with CS problems.  The following details are identified to achieve the main 

objective of this study: 

 

 To propose a mutation operator to exploit good solutions further in order to reach 

the optimum solution. 

 

 To propose a crossover operator to perform a rapid and thorough discovery 

 examination of the search space in order to speed up the exploration process. 

 

 To propose a generic GA by combining the proposed crossover and mutator to 

 achieve a good balance between exploration and exploitation.    
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 To apply the newly defined GA in the global minimization of a molecular 

 potential energy function and finding stable conformations of small  molecules.  

 

 

1.4 Scope of the Study 

 

This study focuses primarily on new genetic operators to achieve a balance 

between exploration and exploitation strategies in GA in order to solve global 

optimization problems.  The two main tools used in the Taguchi method were 

incorporated in the proposed approach to study all the decision variables involved 

simultaneously and to measure the quality of solution. 

 

 

The two proposed genetic operators were tested separately on a data set of ten 

standard global optimization test problems with varying properties and type of 

difficulty levels.  The test set comprised five non-scalable problems and five 

scalable problems.  The findings gathered from the proposed crossover and 

mutation operators were compared separately with other GA operators using 

different probability distributions namely the Laplace distribution, Log Logistic 

distribution and Power distribution.  The effect of the two proposed operators were 

also tested on two CS application problems.  For validity purposes, we adopted the 

method of analysis that is similar to previous related work to analyze the effect of 

the newly proposed genetic operators on the GA performance. 

 

 

1.5 Research Contribution 

 

 

This study substantially contributes in defining a new generational RCGA, which 

maintains a good balance between exploration and exploitation strategies while 

manufacturing the optimum GA solutions.  The following highlights the strength of 

the proposed genetic operators:  

 

 

The Pareto distribution employed in the new mutation operator has been altered to 

include a scale to the bounded Pareto.  The scale limits the influence of the 

mutation on the offspring created by the crossover.  To supplement that, the 

truncated Pareto distribution, which always has finite moments, is applied and a 

modulus is added into the distribution to eliminate the possible imaginary number.  

Therefore, the new mutator is named Scale Truncated Pareto Mutation (STPM).  

STPM facilitates the algorithm in generating new solutions from existing ones.  It 

not only improves but also combines the traits of the currently known solution(s).  

This process can expedite the convergence giving a greater impact on the diversity 

of the populations. 
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In the new crossover operator, a Log is introduced to set the boundary of the 

Rayleigh distribution. A modulus is also included to select only the positive values 

of the Rayleigh distribution numbers.  This operator produces two offspring 

solutions from two parents.  Each offspring solution would inherit favorable 

elements from both parents.  The new parent-centric approach crossover has a 

higher probability in generating the offspring solutions near each of the parents.  

This crossover operator exhibited self-adaptation features through the generation of 

additional diversity beginning from the current one.  In other words, the operator 

seeks new solutions within an unexplored search space and this will inadvertently 

enhance the competence of GA performance.  

 

 

1.6 Organization of Thesis 

 

 

This thesis is structured in a way that it complies with the standard structure of 

thesis and dissertation of University Putra Malaysia.  The thesis consists of seven 

chapters, which are organized as follow: 

 

 

Chapter 1 is the introductory chapter, which includes the background, problems, 

objectives, scope and contributions of the study.  This chapter outlines some 

fundamental information on the importance of this study and the outcomes of the 

research. 

 

 

Chapter 2 reviews the theoretical foundation on the related topics about 

algorithms.  The chapter begins with the introduction of combinatorial optimization 

and the role of algorithms starting from the big family of stochastic approaches 

followed by metaheuristic techniques, evolutionary methods and finally GA in 

solving these problems and related issues.  

 

 

Chapter 3 explains the computational methods and computational steps for CS.  

This chapter also provides various algorithmic approaches that have been applied 

to various common CS problems over the last few decades.  It covers an overview 

of five popularly used metaheuristic approaches and five other techniques with 

their respective mechanisms on solving all kind of CS problems.  

 

 

Chapter 4 discusses the research methodology of this study.  It covers the 

descriptions of ten benchmark datasets, two CS application problems, the relevant 

experimental procedures and detailed experimentation evaluations.  It begins with 

the four major research phases, which cover the proposed algorithms, and the 

experimentation conducted to compare the performance among the algorithms. 
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Chapter 5 outlines the major contribution of the work.  This chapter introduces an 

overview of a novel RCGA model called Rayleigh Crossover-Scale Truncated 

Pareto Mutator (RX-STPM) capable of solving two CS problems.  Apart from that, 

the design and analysis of GA parameters using the Taguchi approach are also 

introduced in this chapter.     

 

 

Chapter 6 discusses the computational results obtained from the proposed GA 

approach in Chapter 5 based on experiments performed on the ten benchmark test 

problems and two CS application problems.  The discussions are presented in six 

different parts.  The first four parts examine the results obtained from the final-

parameter-tuning and performance analyses for the proposed RX crossover and 

STPM mutator operators over a set of ten benchmark global optimization test 

problems.  Subsequently, the last two parts confers the results of the performance 

analysis in the minimization of a simplified molecular model and stable 

conformations of pseudoethane over the proposed RX-STPM algorithm. 

 

 

Last but not least, Chapter 7 concludes the core findings of the study and several 

recommendations are suggested for possible future research in various aspects of 

GA and CS problems.  
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