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By 

 

LIM SIEW MOOI 

 

February 2016 

 

 

Chairman:     Associate Professor Md Nasir Sulaiman, PhD 

 

Faculty:         Computer Science and Information Technology 

 

 

This study is primarily aimed at investigating two issues in genetic algorithm (GA) 

and one issue in conformational search (CS) problems.  First and foremost, this 

study examines the proposed crossover and mutation operators on the problems of 

slow convergence and premature convergence to suboptimal solution.  Second of 

all, this study operates within experimental design with Taguchi method to 

discover the optimal design factors for the two proposed genetic operators.  On the 

other hand, the CS issue focuses on the effects of the combination of the two 

proposed genetic operators on two CS problems.  

 

 

Past studies have revealed that GAs are one of the most prevalently used stochastic 

search techniques to date.  The strength of the algorithm lies in the fact that it 

assists the evolution of a population of individuals who would thrive in the survival 

of the fittest towards the next generation.  GA has been employed in resolving 

many complex combinatorial optimization problems such as CS problems.   

 

 

However, the lack of diversity in a population and the difficulty to locally exploit 

the solutions within a population creates a setback for GA.  Apart from that, its 

tuning variables are tricky, as it requires intricate setting properties.  On another 

note, the drawback in CS is in locating the most stable conformation of a molecule 

with the minimum potential energy based on a mathematical function.  The number 

of local minima grows exponentially with molecular size and this makes it that 

more difficult to arrive at a solution.  As such, this research is aimed at resolving 

the issues mentioned.       
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The rationale behind developing algorithms using real encoding of chromosome 

representations is the limitations of binary encoding.  In relation to this, Real 

Coded GA (RCGA) refers to GAs which incorporate real number vector 

representations of chromosomes.  Because the representations of the solutions are 

similar to the natural formulation, RCGA gets better-customized to the 

optimization of problems in a continuous domain.  Throughout the years, there has 

been a shift in focus on constructing new crossover and mutation operators to 

improve the performance of GA in function optimization.   

 

 

GA operators employ two main strategies; that is, exploration and exploitation to 

locate the optimum solutions.  This research employed a new generational GA 

based on a combination of the proposed Rayleigh Crossover (RX) and proposed 

Scale Truncated Pareto Mutation (STPM) called RX-STPM.  It is applied in 

optimization problems like CS.  While RX displays self-adaptive behavior and 

possesses exploration capabilities, STPM thrive in its exploitation features.  Hence, 

RX-STPM becomes an optimal equilibrium between exploration and exploitation 

strategies in leading the system towards global optima.  The explorative and 

exploitative features of the proposed GA are regulated by substantial crossover 

probability and mutation rate set up using the Taguchi method.  Aside from that, 

tournament selections with proper tournament sizes, used in the design of the 

proposed operators, also led to strong exploration potentials.  

 

 

As you will see in this study, the performance of all RCGAs is contrasted to the 

standard criteria used in GA literature, which involves accuracy (judged by average 

error, mean and standard deviation of the objective function values), efficiency and 

reliability (judged by success rate and average number of function evaluation).  RX 

and STPM operators were separately tested on a dataset of ten benchmark global 

optimization problems according to the specified experimental procedure.  The 

numerical findings gathered from performance evaluations for RX and STPM were 

promising and they have shown significantly better results in comparison to the 

other crossover and mutation operators found in the literature. 

 

 

An accurate combination of GA operators is pivotal in securing effective resolution 

to the problem.  In this study, the GA was analyzed on a few operators.  The 

numerical results obtained from the performance evaluation indicated that the RX 

crossover is the most fitting pair to the STPM mutator in competently solving two 

CS problems i.e. minimizing a molecular potential energy function and finding the 

most stable conformation of pseudoethane through a molecular model, which 

involves a realistic energy function. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk Ijazah Doktor Falsafah 

 

 

PENGENDALI CROSSOVER DAN MUTASI ALGORITMA GENETIK 

KOD NYATA UNTUK MASALAH OPTIMUM SEJAGAT 

 

 

Oleh 

 

LIM SIEW MOOI 

 

Februari 2016 

 

 

Pengerusi:     Profesor Madya Md Nasir Sulaiman, PhD  

 

Fakulti:         Sains Komputer dan Teknologi Maklumat 

 

 

Tujuan kajian ini adalah untuk meneliti dua isu dalam algoritma genetik (GA) serta 

satu isu penting melibatkan masalah carian konformasi (CS).  Isu GA Pertama: 

Kajian ini meneliti pengendali crossover dan mutasi yang dicadangkan ke atas 

masalah penumpuan perlahan dan penumpuan pra-matang untuk penyelesaian 

suboptimal.  Isu GA Kedua: Reka bentuk kajian ini adalah berasaskan kaedah 

Taguchi dalam mencari faktor-faktor reka bentuk optimum bagi kedua-dua 

pengendali genetik yang dicadangkan.  Isu CS ditumpukan kepada kesan 

Algoritma Genetik Kod Nyata (RCGA) dengan menggabungkan dua pengendali 

genetik yang dicadangkan ke atas dua masalah CS. 

 

 

GA merupakan salah satu teknik carian stokastik yang paling umum digunakan. 

Algoritma ini mengevolusi populasi individu yang bakal berkesinambungan dalam 

kehidupan dengan tujuan untuk menghala ke generasi akan datang.  Berdasarkan 

kajian lepas, GA telah digunakan dalam menyelesaikan banyak masalah 

pengoptimuman kombinatorik yang sukar seperti masalah CS.  Namun begitu, GA 

juga mempunyai kelemahan tersendiri disebabkan oleh kekurangan dalam 

kepelbagaian populasi dan kesulitan dalam mengeksploitasi penyelesaian dalam 

populasi.   

 

 

Selain itu, sifat tetapan rumit dalam pembolehubah penalaan juga menambah 

cabaran.  Kelemahan dalam CS adalah dalam pencarian pengesahan molekul yang 

paling stabil dengan menggunakan tenaga keupayaan yang minimum berdasarkan 

fungsi matematik.  Bilangan tempatan minima berkembang sejajar dengan saiz 

molekul dan ini merupakan satu cabaran.  Oleh yang demikian, kajian ini bertujuan 

untuk menyelesaikan isu-isu yang dinyatakan. 
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Faktor-faktor utama untuk membina algoritma menggunakan pengekodan sebenar 

kromosom representasi adalah bagi mengatasi batasan pengekodan perduaan.  

RCGA merupakan GA yang menggabungkan perwakilan vektor nombor nyata 

kromosom. Similariti antara representasi penyelesaian kepada formulasi semulajadi 

membolehkan RCGA diubahsuai untuk masalah pengoptimuman dalam domain 

yang berterusan.  Baru-baru ini, kita dapat perhatikan bahawa tumpuan pada 

pembinaan pengendali crossover dan mutasi baru telah beralih untuk meningkatkan 

prestasi GA dalam fungsi pengoptimuman.   

 

 

Pengendali GA menggunakan dua strategi utama; iaitu eksplorasi dan eksploitasi 

untuk mencari penyelesaian yang optimum.  Oleh yang demikian, kajian ini telah 

melahirkan satu GA generasi baru dengan mengabungkan cadangan Rayleigh 

Crossover (RX) dan Scale Truncated Pareto Mutation (STPM) iaitu RX-STPM 

bagi menyelesaikan masalah pengoptimuman seperti CS.  RX  mempunyai sifat 

penyesuaian sendiri serta keupayaan eksplorasi, manakala STPM juga 

menonjolkan ciri-ciri eksploitasi.  Oleh itu, RX-STPM dikatakan mampu 

mengekalkan keseimbangan yang baik antara strategi eksplorasi dan eksploitasi 

kearah sistem optima sejagat.  Ciri-ciri penerokaan dan mengeksploitasi GA yang 

dicadangkan adalah dikawal oleh kebarangkalian crossover dan mutasi yang 

ditubuhkan dengan menggunakan kaedah Taguchi.  Selain itu, pilihan berdasarkan 

pertandingan (dengan saiz pertandingan yang sesuai) bakal menaikkan potensi 

eksplorasi. 

 

 

Berpandukan laporan dalam kajian ini, prestasi kesemua RCGA diukur-banding 

mengikut kriteria standard yang digunakan dalam kesusasteraan GA, iaitu 

ketepatan (dinilai dengan kesilapan skor, min dan sisihan piawai nilai fungsi 

objektif), kecekapan dan kebolehpercayaan (dinilai dengan kadar kejayaan dan 

nombor purata penilaian fungsi).  Pengendali RX dan STPM yang dicadangkan 

telah diuji secara berasingan ke atas sepuluh dataset masalah pengoptimuman 

sejagat mengikut prosedur eksperimen yang dinyatakan.  Hasil kajian yang 

dikumpul dari penilaian prestasi mengesyorkan bahawa RX dan STPM berpotensi 

dan ianya telah menghasilkan keputusan yang lebih baik berbanding dengan 

pengendali crossover dan mutasi lain yang ditemui dalam kesusasteraan . 

 

 

Gabungan pengendali GA yang tepat adalah amat penting dalam mengecapi 

penyelesaian yang berkesan untuk kesemua masalah GA.  Dalam kajian ini,  GA 

telah dianalisis dengan mengunakan beberapa pengendali.  Keputusan statistikal 

yang diperolehi daripada penilaian prestasi membuktikan bahawa pengendali RX 

dan STPM merupakan pasangan yang paling sesuai bagi menyelesaikan dua 

masalah CS.  Ini dicapai dengan mengurangkan satu fungsi tenaga keupayaan 

molekul dan mencari pengesahan yang paling stabil untuk molekul pseudoethane 

melalui model molekul yang melibatkan fungsi tenaga realistik. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 Background of Studies 

 

 

Global optimizations encompass issues, which arise in the financial, economic and 

engineering world.  The solution to these problems involves countless variables, 

which are bound to a massive search parameter, dynamic environments and real-

time performance restraints.  Therefore, many studies have been aimed at looking 

for the optimum set of variables, which best fulfills the goals involved within said 

constraints.  

 

 

This research is aimed at finding the global optimal solutions for conformational 

search (CS) which are mathematically represented as a continuous global 

optimization problem.  CS is a term familiar to those in the field of applied 

mathematics and computational chemistry.  In CS, the variables are the torsion 

angles or coordinates that are used to represent the conformation of the molecule 

(e.g. polypeptide chain).  The objective function value is the potential energy 

function.  By varying the values of the variables, the global minimum value of the 

objective function can be achieved; that is to locate the most stable conformation of 

a molecule with the minimum potential energy.     

 

 

A global optimization problem can be formulated as: 

 

given f : ℜn
→ ℜ a continuous function and S ⊂ ℜn

, find its global minimum f* = 

min { f (x): x ∈ S} and the set X* of all global minimizers X*(f) = {x* ∈ S: f(x*) = 

f*}   (Lavor et al. 2004).   

 

 

Table 1.1 depicts the six categories of optimization algorithms.  The table 

demonstrates that these six categories and their branches need not be mutually 

exclusive.         
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 Table 1.1: Six Categories of Optimization Algorithms  

 (Haupt et al. 2004) 

 

Category Optimization Algorithms 

1 Function  Trial and error 

2 Single variable Multiple variables 

3 Static Dynamic 

4 Discrete Continuous 

5 Constrained Unconstrained 

6 Random Minimum seeking 

 

 

Premature convergence, the no free lunch theorem, over fitting, and over 

simplification are among the underlying issues of optimization problems.  That 

said, a major setback that is constantly present is that the algorithm is ambiguous in 

determining whether the proposed best solution is positioned on a local or global 

optimum.  Therefore, for the last three decades, a lot of research has been fixed on 

finding the global optimal solution of nonlinear optimization problems.  Weise 

(Weise et al. 2009) demonstrates the challenge in finding the optimal resolutions to 

overcome these problems.     

 

 

Metaheuristic methods (nature or non-nature inspired) are the most sought after 

optimization algorithms.  With one or more solutions in the beginning, this method 

follows with a more iterative approach to optimize the search in promising areas 

away from local solutions.  This method is often employed in circumstances where 

the exact solution methods are unfeasible within a limited time frame.  

 

 

One of the most popular metaheuristic algorithms advocated by Holland in the 

1960s is the Genetic algorithm (GA) (Holland 1975).  Being nature-inspired, it 

works mostly on different sophisticated computational glitches.  Subsequently, in 

the early 90’s, a new model, that is the real coded genetic algorithms (RCGA) was 

brought into light (Herrera et al. 1998).  It incorporates real number vector 

representation of chromosomes and the RCGA can be easily tweaked to fit the 

optimization of problems in a continuous domain owing to the fact that the 

representations of the solutions are close to the natural formulation i.e. the 

genotype (coding) and the phenotype (search space) are very much alike. 

 

 

However, the problems of slow and premature convergence to suboptimal solution 

remain an existing struggle that GA is facing.  Due to lower diversity in a 

population, it becomes challenging to locally exploit the solutions.  In order to 

resolve these issues, the focus is now on reaching equilibrium between the 

explorative and exploitative features of GA.  Therefore, the search process can be 

prompted to produce suitable GA solutions (Yuan et al. 2010). 
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Although optimization algorithms with higher degree of exploitation may have 

higher convergence speed, the challenge lies in locating the optimal solution and 

chances are it may not get past a local optimum.  On the other hand, algorithms 

that favor exploration over exploitation might consume more time in locating the 

global optimum, that is, coincidentally, due to its less sophisticated candidate 

solutions.  Both features of GA are categorized based on the crossover and 

mutation operator, crossover probability (Pc), mutation rate (Pm), tournament size 

(Ts) and population size (Ps), all of which poses existing challenge to the current 

studies in GA.  So the quality of GA solution and the computational time is 

governed by a fitting scheme of operators and parameter setting.    

 

 

1.2 Problem Statement 

 

 

The implementation of real chromosomes encoding stems from the limitations of 

binary encoding (Deep et al. 2007a).  In RCGA, a chromosome length is a vector 

of floating point numbers to the problem; thus, each gene represents a variable of 

the problem.  Through data gathered from the literature, the many pros of RCGAs 

have been made apparent over Binary Coding GA (BCGA) particularly in terms of 

optimizing numerical functions (Deb et al. 2014, Sawyerr et al. 2014).  Therefore, 

the express purpose of this study is aimed at refining the growth in RCGAs instead 

of BCGAs.   

 

 

The key focus of this study is narrowed down to the design of genetic operators.  It 

is important to note that the success of exploration and exploitation in GA 

significantly depends on the efficient crossover and mutation search operators.  It 

also depends on the appropriate coordination among the operators (Elsayed et al. 

2014).  These genetic operators will exchange information between the peaks and 

hinders the search from winding up at a local optimum.  Over the years, there have 

been notable efforts in fine-tuning the existing operators by the evolutionary 

computation community.  

 

 

The main search operator in GA is the crossover operator which equally as 

significant as mutation, selection and coding in GA.  The crossover operator 

functions primarily in the survey of information that is accessible through the 

search space, which inadvertently improves the behavior of the GA.  A lot of 

RCGA efforts are channeled toward designing new crossover operators to heighten 

the performance of function optimization (Chuang et al. 2015).   

 

 

On another note, mutation is a secondary operator.  It functions to alter the genes of 

the offspring.  A mutator will diversify the existing population and this 

inadvertently allows GAs to exploit promising areas of the search space thus 

avoiding local solutions (Korejo et al. 2010).  Some of the mutation operators are 

designed to explicitly overcome certain types of issues over others (Gong et al. 

2015).   
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The performance among all the comparative of GA operators are easily validated 

and compared through unbiased test problems from the literature, which are 

diverse in properties in terms of complexity and modality.             

 

 

Apart from that, the parameter settings of the GA is yet another key focus of this 

study.  Significant attention has been shed in light of this to achieve exploration 

and exploitation in GA.  The tuning methods involve increasing the algorithm 

performance or decreasing the effort.  Since GA parameters can be divided into 

several levels, there are almost an infinite numbers of possibilities.   

 

 

Therefore, this research proposes the ideal operators with appropriate parameters 

and mechanisms to overcome global optimization problems such as CS, which are 

extremely challenging due to the volume of the search space.  In this case, CS 

occurs when the total number of possible conformations grows exponentially with 

the total number of degrees of freedom (usually the dihedral angles).  It had been 

confirmed that CS belongs to the category of NP-hard (non-deterministic 

polynomial time) problem.  Such complexity requires an equally long amount of 

time to achieve resolution.  This phenomenon is thus known as the 'combinatorial 

explosion' (Leach 2007). 

 

 

On the downside, the conventional experimental design is tedious due to the fact 

that the large number of experiments increases proportionally with the number of 

process parameters.  These parameters are most likely to influence the performance 

of a studied system. To rectify that flaw, Genichi Taguchi (Taguchi 1962) 

presented an efficient and systematic approach called the Taguchi method to iron 

out the existing issues present in the conventional experimental design.  Hence, this 

study incorporates the Taguchi method in the proposed operators. 

 

 

1.3 Objectives 

 

 

The main objective of this research is to propose new RCGA operators in the 

search for the optimum solution for continuous global optimization problems along 

with CS problems.  The following details are identified to achieve the main 

objective of this study: 

 

 To propose a mutation operator to exploit good solutions further in order to reach 

the optimum solution. 

 

 To propose a crossover operator to perform a rapid and thorough discovery 

 examination of the search space in order to speed up the exploration process. 

 

 To propose a generic GA by combining the proposed crossover and mutator to 

 achieve a good balance between exploration and exploitation.    
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 To apply the newly defined GA in the global minimization of a molecular 

 potential energy function and finding stable conformations of small  molecules.  

 

 

1.4 Scope of the Study 

 

This study focuses primarily on new genetic operators to achieve a balance 

between exploration and exploitation strategies in GA in order to solve global 

optimization problems.  The two main tools used in the Taguchi method were 

incorporated in the proposed approach to study all the decision variables involved 

simultaneously and to measure the quality of solution. 

 

 

The two proposed genetic operators were tested separately on a data set of ten 

standard global optimization test problems with varying properties and type of 

difficulty levels.  The test set comprised five non-scalable problems and five 

scalable problems.  The findings gathered from the proposed crossover and 

mutation operators were compared separately with other GA operators using 

different probability distributions namely the Laplace distribution, Log Logistic 

distribution and Power distribution.  The effect of the two proposed operators were 

also tested on two CS application problems.  For validity purposes, we adopted the 

method of analysis that is similar to previous related work to analyze the effect of 

the newly proposed genetic operators on the GA performance. 

 

 

1.5 Research Contribution 

 

 

This study substantially contributes in defining a new generational RCGA, which 

maintains a good balance between exploration and exploitation strategies while 

manufacturing the optimum GA solutions.  The following highlights the strength of 

the proposed genetic operators:  

 

 

The Pareto distribution employed in the new mutation operator has been altered to 

include a scale to the bounded Pareto.  The scale limits the influence of the 

mutation on the offspring created by the crossover.  To supplement that, the 

truncated Pareto distribution, which always has finite moments, is applied and a 

modulus is added into the distribution to eliminate the possible imaginary number.  

Therefore, the new mutator is named Scale Truncated Pareto Mutation (STPM).  

STPM facilitates the algorithm in generating new solutions from existing ones.  It 

not only improves but also combines the traits of the currently known solution(s).  

This process can expedite the convergence giving a greater impact on the diversity 

of the populations. 
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In the new crossover operator, a Log is introduced to set the boundary of the 

Rayleigh distribution. A modulus is also included to select only the positive values 

of the Rayleigh distribution numbers.  This operator produces two offspring 

solutions from two parents.  Each offspring solution would inherit favorable 

elements from both parents.  The new parent-centric approach crossover has a 

higher probability in generating the offspring solutions near each of the parents.  

This crossover operator exhibited self-adaptation features through the generation of 

additional diversity beginning from the current one.  In other words, the operator 

seeks new solutions within an unexplored search space and this will inadvertently 

enhance the competence of GA performance.  

 

 

1.6 Organization of Thesis 

 

 

This thesis is structured in a way that it complies with the standard structure of 

thesis and dissertation of University Putra Malaysia.  The thesis consists of seven 

chapters, which are organized as follow: 

 

 

Chapter 1 is the introductory chapter, which includes the background, problems, 

objectives, scope and contributions of the study.  This chapter outlines some 

fundamental information on the importance of this study and the outcomes of the 

research. 

 

 

Chapter 2 reviews the theoretical foundation on the related topics about 

algorithms.  The chapter begins with the introduction of combinatorial optimization 

and the role of algorithms starting from the big family of stochastic approaches 

followed by metaheuristic techniques, evolutionary methods and finally GA in 

solving these problems and related issues.  

 

 

Chapter 3 explains the computational methods and computational steps for CS.  

This chapter also provides various algorithmic approaches that have been applied 

to various common CS problems over the last few decades.  It covers an overview 

of five popularly used metaheuristic approaches and five other techniques with 

their respective mechanisms on solving all kind of CS problems.  

 

 

Chapter 4 discusses the research methodology of this study.  It covers the 

descriptions of ten benchmark datasets, two CS application problems, the relevant 

experimental procedures and detailed experimentation evaluations.  It begins with 

the four major research phases, which cover the proposed algorithms, and the 

experimentation conducted to compare the performance among the algorithms. 
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Chapter 5 outlines the major contribution of the work.  This chapter introduces an 

overview of a novel RCGA model called Rayleigh Crossover-Scale Truncated 

Pareto Mutator (RX-STPM) capable of solving two CS problems.  Apart from that, 

the design and analysis of GA parameters using the Taguchi approach are also 

introduced in this chapter.     

 

 

Chapter 6 discusses the computational results obtained from the proposed GA 

approach in Chapter 5 based on experiments performed on the ten benchmark test 

problems and two CS application problems.  The discussions are presented in six 

different parts.  The first four parts examine the results obtained from the final-

parameter-tuning and performance analyses for the proposed RX crossover and 

STPM mutator operators over a set of ten benchmark global optimization test 

problems.  Subsequently, the last two parts confers the results of the performance 

analysis in the minimization of a simplified molecular model and stable 

conformations of pseudoethane over the proposed RX-STPM algorithm. 

 

 

Last but not least, Chapter 7 concludes the core findings of the study and several 

recommendations are suggested for possible future research in various aspects of 

GA and CS problems.  
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