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Software development life cycle maintenance has been advocated as the critical 

part that consumes more time and resources. To understand the magnitude of the 

task to maintain the software product, software metrics have been used to make 

quantification based on their respective software features. To predict software 

maintainace, the proper metrics need to be selected to avoid the duplication or the 

outlying of the potential metrics. This is because on one hand, the individual 

metrics deals with only a single feature of the object-oriented systems, while on the 

other hand; the suites either contain duplicate metrics of the same goal or lack 

some important metrics that match the common attributes in the software products. 

The latest effort to solve this selection problem is the development of the metrics 

selection model that uses genetic algorithm (GA). However, the process failed to 

state clearly the encoding strategy in its initial stage.  

This thesis clarifies the issue using the objective method to develop the GA metric 

selection model for predicting the maintainability of object-oriented systems. The 

study proposes the use of software metric thresholds in the classification process 

during the GA representation. The software metric thresholds were used as 

indication for identifying unsafe design in software engineering. To evaluate this 

technique, an experiment was conducted on two geospatial systems developed 

using Java programming language where the Chidamber and Kemerer (CK) 

metrics were used. The proposed technique was also compared to the ranking 

results from the experts. The comparison results obtained when compared with 

those of Principal Component Analysis and the complete software metric suite 

were very promising. Moreover, the three techniques show significant differences 

in both treatments when compared using analysis of variance. 
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Penyelenggaraan dalam kitaraan hayat pembangunan perisian telah dikenal pasti 

sebagai bahagian yang kritikal yang menggunakan lebih banyak masa dan sumber. 

Untuk memahami peri pentingnya tugas penyelenggaraan  produk perisian, metrik 

perisian telah digunakan untuk membuat pengiraan berdasarkan ciri-ciri relatif 

perisian. Untuk meramalkan kebolehsengaraan perisian, metrik yang sesuai 

perlulah dipilih untuk mengelakkan pertindihan atau mengelakkan metrik yang 

berpotensi daripada tersingkir. Perkara ini adalah kerana di satu pihak, setiap 

metrik terlibat dengan hanya satu ciri daripada sistem berorientasikan objek, 

manakala di pihak yang lain pula, kumpulan metriks tersebut sama ada 

mengandungi metrik pendua dengan matlamat yang sama ataupun ia kekurangan 

beberapa metrik penting yang sepadan dengan sifat-sifat umum bagi produk-

produk perisian. Usaha terkini untuk menyelesaikan masalah pemilihan ini ialah 

pembangunan model pemilihan metrik yang menggunakan teknik algoritma genetic 

(GA). Walau bagaimanapun, teknik tersebut gagal menyatakan dengan jelas 

strategi pengekodan di peringkat awal proses tersebut.   

Tesis ini memperkenalkan satu cara untuk menjelaskan isu ini menggunakan 

kaedah objektif untuk membangunkan model pilihan metrik GA untuk meramalkan 

penyelenggaraan sistem berorientasikan objek. Kajian ini mencadangkan 

penggunaan threshold metrik perisian dalam proses klasifikasi semasa perwakilan 

GA. Threshold metrik perisian digunakan sebagai sistem penggera untuk mengenal 

pasti reka bentuk yang tidak selamat dalam kejuruteraan perisian. Untuk menilai 

teknik ini, eksperimen telah dijalankan ke atas dua sistem geospatial yang telah 

dibangunkan dengan menggunakan bahasa pengaturcaraan Java, di mana metrik 

Chidamber dan Kemerer (CK) digunakan. Model ini juga telah dibandingkan 

dengan keputusan perarafan dari pakar-pakar. Keputusan yang diperolehi amat 

memberangsangkan apabila dibandingkan dengan Analisis Komponen Utama dan 

perisian kumpulan metrik metrik yang lengkap. Selain itu, ketiga-tiga teknik 

menunjukkan perbezaan yang ketara dalam kedua-dua rawatan apabila mereka 

dibanding menggunakan analisis varians. 
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This chapter explores the method of selecting software metrics to predict the 

degree of object-oriented software maintainability and related issues. The chapter 

begins with the background of the information concerning the maintenance phase 

for software, followed by the explanation on software measurements. The chapter 

also gives a list of contributions of this study, followed by an outline of the 

remaining chapters of the thesis. The research main argument here is that software 

metrics thresholds might be a useful categorisation strategy for evolutionary 

computation techniques.  

As any other engineering measurements, software metrics have become necessary 

tools for developing quality software products through understanding different 

quality objectives. The importance of quantifying the quality attributes in software 

engineering has been identified by Galin (2004) as the baseline for planning and 

predicting the quality of software for its improvement. Galin points out that 

“software development methods and measurements are two important allies to 

ensure that the quality of the software product is fulfilled”. Fenton and Pfleeger 

(1997) go further to describe the best software developers and practitioners as those 

who use metrics to prove the quality of the software they design before releasing it

for public use. Fenton and Pfleeger add that “this practice is used as a means of 

minimizing defects.”  

In his recent book ttiled Why the Program Fails, Zeller (2009) insists on measuring 

the software products. He finds that there is no software that contains zero defects, 

and the results of these defects are the source of increasing software costs. Many 

writers, Douce and Layzell, 1997, for example, have claimed that “much of those 

costs occur during the maintenance phase of the software development life cycle. 

About 50% to 70% of time and resources are estimated to be used in the 

maintenance phase of software development process.” In solving the problems of 

cost, efforts, and time during software maintenance, it is according to Fenton and 

Neil, 1999, crucial to understand the extent of the handling of the software prior to 

its adoption. To Fenton and Neil, this can also help practitioners understand the

quality of software products based on their quality attributes, which are used in 

quality modelling to identify the post-release fault proneness.  

The nature of any software products, especially those developed using object-

oriented concepts is that the code is in fact designed using more than one design 

attribute. For example, developers use different properties like inheritance, 

coupling, cohesion and other object-oriented features in the same software product. 

This approach is similar to the philosophy behind the development of the software 
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metrics, whereby one software metric measures only one attribute. Consequently, it

implies that there is a duplication of some metrics, through which more than one 

metric can be used to measure the same attribute. Therefore, to predict one quality 

attribute requires several metrics. Then, they need to combine the magnitude, 

which is essential to predict the constituent software product features.  

Software metrics suite was the first attempt to counter the problem of software 

metrics classification (software metrics selection). Boehm (1975) and Chidamber 

and Kemerer (1994) were the first researchers to introduce the so-called metric 

suites, and later followed by other researchers like Abreu and Melo (1996), Elish 

and Al-Khiaty (2013) and many more. The suites faced the problem of rigidity, 

which pushed practitioners either to reduce software metrics to remove redundant 

metrics or to add more metrics to accommodate the missing ones. Michura et al. 

(2013), for example, made an extension of CK metric suite to conform to his 

requirements.  

In this case where where there are dozens of metrics which can be used to measure 

one particular software quality attribute, there is a need to have in place mechanism 

that will help practitioners select software metrics that only suite measurement 

goals. Wang et al. (2011), suggest the elimination of the number of software 

metrics that are available for the particular measurement property. In their study, 

they reduced 98% of the metrics they collected for measuring the quality of 

software product. Their conclusion is that “the average of three software metrics is 

good enough to predict the quality of software. Thus, the selection of few suitable 

metrics out of dozens metrics is recommended to increase performance and to 

avoid redundant measurement. Therefore, the question that is raised here is how to 

obtain those few suitable software metrics for predicting the quality of a particular 

software product, out of dozens of metrics.  

The evolution computational intelligence approach, as search-based strategies 

solves the problems associated with metrics suites. The approaches for selecting 

the best group of software metrics for predicting the quality of software proved to 

be promising. Vivanco (2010) uses genetic algorithms as a search-based strategy to 

solve the mentioned problems. His representation methods of encoding does not 

states clearly in his model while literature insists on using real data in encoding the 

chromosome. As by Baggen et al. (2012), insist the use of automatic and rea-world 

data can build the culture of trust for the final model that it has considered the 

quality decision on the development of that model. 

This study used software metrics threshold (benchmark) ranking strategy in 

encoding the chromosome to propose the Genetic Algorithm software metrics 

selection model for predicting object-oriented software maintainability. The use of 

software metrics thresholds facilitates the performance and improves the accuracy 

of the model. 
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The selection of the appropriate software metrics in predicting the quality of 

software is one of the crucial tasks in software engineering paradigm. The problem 

is more complicated in the availability of dozens of metrics and the inability of 

proposed groups of software metrics called suites. These collections of metrics 

failed to give clear and trusted software metrics classification goals for predicting 

the quality of software due to variability of attributes and features from one 

software product to another. As Altidor and his colegue in 2009 suggested that “the 

issue has forced some practitioners to make some modification to satisfy their 

needs” as Gray, 2008; Michura, 2013, argue. In that regard, there is therefore a

need for the practitioners to propose models that can just select list of software 

metrics for particular software product.  

Evolutionary computation, which is used in exhaustive selection problems, is the 

latest and hard effort employed in software metrics selection. Vivanco, (2010), uses 

genetic algorithms as a search-based strategy to solve the problem of rigidity 

identified in software metric suites. Although promising results were obtained, the 

representation method of encoding was not clearly stated.

The aim of this study is to propose the Genetic Algorithm (GA) software metrics 

selection model to predict object-oriented software maintainability. In this case, 

software metrics thresholds were proposed at the presentation phase of the GA. 

Because of the sensitivity of the availability of software metric thresholds and other 

challenges, study used the Chidamber and Kemmerer (CK) metrics suite as the 

representative for the object-oriented maintainability metrics. The results were 

validated and compared with real maintainability data ranked by experts in order to 

gain more confidence on proposed solution. The proposed model intends to help 

practitioners in selecting the most appropriate metrics according to the attributes in 

particular software, which will then facilitate faster and more accurate adoption of 

the maintainable software. Out of dozens of software, practitioners will be able to 

select only the appropriate list of metricts for particular software, which is then 

used for predicting the maintainability of that software.  

2=9 	���('$��>���!�#*��

To understand the problem explained above, the reseserch has been guided by the 

following questions: 

1. Which software metrics are suitable to measure the object-oriented 

software maintainability based on their available thresholds in 

assumption that software product structure differ from one product to 

product? 
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To answer question (1) the review of related work has been conducted together the 

most appropriate list of software metrics that can be used to predict maintainability 

of particular object-oriented software products. 

2. What are the thresholds for the software metrics identified in the first 

research question (1)?

Another two reviews were conducted to gather information on the most appropriate 

software metrics that can be used to predict the maintainability of particular object-

oriented software products and to identify their thresholds (benchmark). Results 

were based on theoretical and experimental validation process in the related 

literatures. 

2=: 	���('$����?�$!�+���

The objective of this research is to propose GA-based software metrics selection 

model to predict object-oriented software maintainability.  

In achieving this main objective, the study proposes the following sub-objectives: 

1. To standardardise software metrics thresholds values for the six metrics 

in Chidamber and Kemmerer (CK) suite to determine the acceptance 

values.  

2. To generate objective thresholds (benchmark) encoding strategy for the 

representation phase in the GA.  

3. To implement GA-based software metrics selection model to predict 

maintainability of object-oriented software. 

2=; �$#/��(*"��� �!(!�#*��#&�!���	���('$���

This research proposed the software metrics selection model using evolutionary 

algorithm method. GA, which is one of the evolution strategies, is used to classify 

the software metrics in predicting maintainability of object-oriented software 

systems. The object-oriented software system is software technology, which 

involves many measurable features in software engineering. Geographical 

Information Software (GIS)-based software was used as case studies. Two 

geospatial software systems have been used to provide the researcher the chance to 

compare the software metrics selection performances within the same development 

context. This extends confidence prior to using software products that have been 

developed using another technology. Moreover, the geospatial software used was 

developed using open-source software technology. Apart from universal 

advantages of open-source technology, open access privillage of source code 

makes it easier to generate software metrics values.   
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The use of software metrics thresholds (benchmark) in metrics selection model has 

the intuitional impacts in software engineering. Having used the software metrics 

thresholds, the study has successfully developed the software metrics selection 

model, which facilitates the selection of most effective software metrics in 

predicting maintainability to accomplish the adoption of the quality software. The 

use of the threshold prediction model seems to be a promising input in the software 

engineering paradigm. This encoding strategy has employed the practical use of 

empirical data that has also shown the great achievement in model performance. 

Therefore, this new introduced technique supports evolutionary algorithms 

representation encodings process. In addition, the use of GA as a search technique 

has put in the philosophy of traditional evolution from biology into the software 

metrics paradigm using software metrics thresholds.  

In addition, upon knowing the maintainability efforts for particular softwares,

software practitioners will probably be informed about technical and business 

aspects of the software product to be adopted. Practitioners who work as software 

maintainer will easily review the performance of the software product to ensure 

that the quality criteria have been met.  For organizations, Baggen et al. (2012),

indicate that “the maintainability models might guide the maintainers in organizing 

a better way of maintaining the resources”. As for the individual practitioners, they 

will probably make wiser decisions in adopting the suitable software product that is 

easily maintained based on available resources.  

Moreover, the model can be used by the organisations to evaluate their existing 

software system to see whether it conforms to the dynamic quality standards from 

time to time due to error correction or incorporation of the new requirements. 

2=< �'.(*�6(!�#*�#&�!����������

The next chapter discusses the previous related literature on software maintenance, 

software metrics, software metrics threshold and evolutionary algorithms 

techniques. Chapter 3 discusses methodology used during the research phases.

Chapter 4 discusses the preliminary results and provides a discussion on the 

software metrics thresholds encoding strategy. Chapter 5 presents the proposed 

models and their validation process. Chapter 6 presents the study findings and 

discussions. Finally, Chapter 7 concludes the research. 
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