

UNIVERSITI PUTRA MALAYSIA

SOFTWARE METRICS SELECTION MODEL FOR PREDICTING
MAINTAINABILITY OF OBJECT-ORIENTED SOFTWARE USING

GENETIC ALGORITHMS

ABUBAKAR DIWANI BAKAR

FSKTM 2016 8

© C
OP

UPM

i

�

������	
��
�	�
���
�

��������
����	��	
��
�����
����������������������

���	�
��
��������	
�������

�
�
��
�����	������

�
�
�
�
�
�
�
�
�

By

�
�������	������������	�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�

�
���������� �!!�"�!#�!����$�##%�#&��'("�(!���!�"���)��*�+�'��!����!'(��(%(,��()�
�*���%&�% �*!�#&�!���	�-��'� �*!��&#'�!�����.'���#&��#$!#'�#&����%#�#/�,�

�
�

�('$��0123

© C
OP

UPM

ii

���	�����

All material contained within the thesis, including without limitation text, logos,

icons, photographs and all other artwork, is copyright material of Universiti Putra

Malaysia unless otherwise stated. Use may be made of any material contained

within the thesis for non-commercial purposes from the copyright holder.

Commercial use of material may only be made with the express, prior, written

permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia� �

© C
OP

UPM

iii

�
��
������

This thesis is dedicated to my ever caring parents my late father Diwani Bakar, my

mother Amina Kassim Omar Al-bahsany, Abeida Ahmed Alawy Al-baalawy and

my late uncle Said Ali Yussuf Al-baalawy, and to my progeny Abdulsalaam,

Amina, Said Aisha, Ilhaam, Zuwena and Abeida.

© C
OP

UPM

i

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment

of the requirement for the degree of Doctor of Philosophy

������	
��
�	�
���
�

��������
����	��	
��
�����
����������������������

���	�
��
��������	
�������

�
�
��
�����	������
�

By

�������	������������	�
�

�('$��0123�
�
�

�(�' (*� 4�� �����(5('���%!(*)�����
�($�%!,� 4��
/�!�'��$��*$��(*"��*&#' (!�#*���$�*#%#.,�

Software development life cycle maintenance has been advocated as the critical

part that consumes more time and resources. To understand the magnitude of the

task to maintain the software product, software metrics have been used to make

quantification based on their respective software features. To predict software

maintainace, the proper metrics need to be selected to avoid the duplication or the

outlying of the potential metrics. This is because on one hand, the individual

metrics deals with only a single feature of the object-oriented systems, while on the

other hand; the suites either contain duplicate metrics of the same goal or lack

some important metrics that match the common attributes in the software products.

The latest effort to solve this selection problem is the development of the metrics

selection model that uses genetic algorithm (GA). However, the process failed to

state clearly the encoding strategy in its initial stage.

This thesis clarifies the issue using the objective method to develop the GA metric

selection model for predicting the maintainability of object-oriented systems. The

study proposes the use of software metric thresholds in the classification process

during the GA representation. The software metric thresholds were used as

indication for identifying unsafe design in software engineering. To evaluate this

technique, an experiment was conducted on two geospatial systems developed

using Java programming language where the Chidamber and Kemerer (CK)

metrics were used. The proposed technique was also compared to the ranking

results from the experts. The comparison results obtained when compared with

those of Principal Component Analysis and the complete software metric suite

were very promising. Moreover, the three techniques show significant differences

in both treatments when compared using analysis of variance.

© C
OP

UPM

ii

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai

memenuhi keperluan untuk ijazah Doktor Falsafah

�
�

���
���
���������
�	����
	�������������
	�����
�
���
��
�
����	�����
	�������
	�	�
���������
��

�
��������������	��������
������
�

Oleh

�������	������������	�
�

�($�0123�
�
�

��*.�'���� 4��� �����(5('���%!(*)�����
�(5�%!�� 4�� �(�*���# /�!�'�"(*���5*#%#.���(5%� (!��

Penyelenggaraan dalam kitaraan hayat pembangunan perisian telah dikenal pasti

sebagai bahagian yang kritikal yang menggunakan lebih banyak masa dan sumber.

Untuk memahami peri pentingnya tugas penyelenggaraan produk perisian, metrik

perisian telah digunakan untuk membuat pengiraan berdasarkan ciri-ciri relatif

perisian. Untuk meramalkan kebolehsengaraan perisian, metrik yang sesuai

perlulah dipilih untuk mengelakkan pertindihan atau mengelakkan metrik yang

berpotensi daripada tersingkir. Perkara ini adalah kerana di satu pihak, setiap

metrik terlibat dengan hanya satu ciri daripada sistem berorientasikan objek,

manakala di pihak yang lain pula, kumpulan metriks tersebut sama ada

mengandungi metrik pendua dengan matlamat yang sama ataupun ia kekurangan

beberapa metrik penting yang sepadan dengan sifat-sifat umum bagi produk-

produk perisian. Usaha terkini untuk menyelesaikan masalah pemilihan ini ialah

pembangunan model pemilihan metrik yang menggunakan teknik algoritma genetic

(GA). Walau bagaimanapun, teknik tersebut gagal menyatakan dengan jelas

strategi pengekodan di peringkat awal proses tersebut.

Tesis ini memperkenalkan satu cara untuk menjelaskan isu ini menggunakan

kaedah objektif untuk membangunkan model pilihan metrik GA untuk meramalkan

penyelenggaraan sistem berorientasikan objek. Kajian ini mencadangkan

penggunaan threshold metrik perisian dalam proses klasifikasi semasa perwakilan

GA. Threshold metrik perisian digunakan sebagai sistem penggera untuk mengenal

pasti reka bentuk yang tidak selamat dalam kejuruteraan perisian. Untuk menilai

teknik ini, eksperimen telah dijalankan ke atas dua sistem geospatial yang telah

dibangunkan dengan menggunakan bahasa pengaturcaraan Java, di mana metrik

Chidamber dan Kemerer (CK) digunakan. Model ini juga telah dibandingkan

dengan keputusan perarafan dari pakar-pakar. Keputusan yang diperolehi amat

memberangsangkan apabila dibandingkan dengan Analisis Komponen Utama dan

perisian kumpulan metrik metrik yang lengkap. Selain itu, ketiga-tiga teknik

menunjukkan perbezaan yang ketara dalam kedua-dua rawatan apabila mereka

dibanding menggunakan analisis varians.

© C
OP

UPM

iii

�
�����
��
�
����

I would like to thank many people whose contribution and collaboration have made

this work a success.

First, I thank God the Almighty, for His grace to me that has always been

sufficient. HIS mercy has always kept me awake in the morning after the death,

and I have through the same been able to successfully face many challenges.

I wish also to acknowledge the good work and guidance from my supervisor,

Associate Professor Dr. Abu Bakar Md. Sultan, who provided sound and objective

intellectual advice that significantly helped me meet many challenges at all stages

of my PhD study. I would like further to acknowledge the work of other members

of my Supervisory Committee, particularly, Dr. Hazura Zulzalil and Dr. Jamilah

Din for their inavaluable contributions towards the shaping of my research from the

sctrach. Special thanks need to go to my mother Amina Kassim for her spiritual

and moral support and my children Abdulsalaam, Amina, Said, Aisha, Ilhaam and

Zuwena, for being a source of inspiration to me, and especially for their

understanding even when we are separated thousands of miles for many years.

Finally, I thank all my friends for their constructive contributions, without which,

writing of this work would be extremely difficult.

© C
OP

UPM

v

This thesis was submitted to the Senate of the Universiti Putra Malaysia and has

been accepted as fulfilment of the requirement for the degree of Master of Science.

The members of the Supervisory Committee were as follows:

�����(5('��"���%!(*)�����
Professor

Faculty of Computer Science and Information Technology

Universiti Putra Malaysia

(Chairman)

�
�(6�'(�7�%6(%�%)�����
Associate Professor

Faculty of Computer Science and Information Technology

Universiti Putra Malaysia

(Member)

�(�%(����*)�����
Senior Lecturer

Faculty of Computer Science and Information Technology

Universiti Putra Malaysia

(Member)

�������������������)�����
Professor and Dean

School of Graduate Studies

Universiti Putra Malaysia

Date:

© C
OP

UPM

vi

��$%('(!�#*��,�.'("�(!���!�"�*!��

I hereby confirm that:

� this thesis is my original work

� quotations, illustrations and citations have been duly referenced

� the thesis has not been submitted previously or comcurrently for any other

degree at any institutions

� intellectual property from the thesis and copyright of thesis are fully-owned by

Universiti Putra Malaysia, as according to the Universiti Putra Malaysia

(Research) Rules 2012;

� written permission must be owned from supervisor and deputy vice –chancellor

(Research and innovation) before thesis is published (in the form of written,

printed or in electronic form) including books, journals, modules, proceedings,

popular writings, seminar papers, manuscripts, posters, reports, lecture notes,

learning modules or any other materials as stated in the Universiti Putra

Malaysia (Research) Rules 2012;

� there is no plagiarism or data falsification/fabrication in the thesis, and

scholarly integrity is upheld as according to the Universiti Putra Malaysia

(Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra

Malaysia (Research) Rules 2012. The thesis has undergone plagiarism

detection software

Signature: Date:

Name and Matric No: Abubakar Diwani Bakari, GS29719

© C
OP

UPM

vii

��$%('(!�#*��,��� ��'��#&���/�'+��#',�
�!!���

This is to confirm that:

� the research conducted and the writing of this thesis was under our

supervision;

� supervision responsibilities as stated in the Universiti Putra Malaysia

(Graduate Studies) Rules 2003 (Revision 2012-2013) were adhered to.

�
�
�

Signature:

Name of

Chairman of

Supervisory

Committee: Professor Dr. Abu Bakar Md Sultan

Signature:

Name of

Member of

Supervisory

Committee: Associate Professor Dr. Hazura Zulzalil

Signature:

Name of

Member of

Supervisory

Committee: Dr. Jamilah Din

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

© C
OP

UPM

viii

����
����
���
����
�
�

�(.�
����	�
�� i

����	��� ii

�
�����
��
�
���� iii

���	�8��� iv

�

��	������ vi

������������
�� xi

������������	
�� xii

�����������	
8�������� xiii

�

����
	�

�
2 ���	���
����� 1

1.1 Background 1

1.2 Problem Statement 3

1.3 Research Questions 3

1.4 Research Objectives 4

1.5 Scope and Limitations of the Research 4

1.6 Contributions of the Research 5

1.7 Organization of the Thesis 5

�
0 ���
	���	
�	
8�
�� 6

2.1 Introduction 6

2.2 Software Maintenance 6

2.2.1 Definitions of Maintenance 6

2.2.2 Maintenance as Quality Attribute 7

2.2.3 Maintenance and Object-Oriented Systems 9

2.2.4 Object-Oriented Maintenance Features 10

2.3 Software Quality Assessment and Measurements 11

2.4 Analysis on Object-Oriented Maintainability Metrics 12

2.4.1 Identification of Object-Oriented Maintainability

Metrics 13

2.5 Software Metrics Prediction Models: A State of the Art 14

2.5.1 Object-Oriented Maintainability Prediction Models 17

2.5.2 Genetic Algorithms and Software Metrics as Quality

Prediction Model 18

2.6 Genetic Algorithm and Evolutionary Algorithms 18

2.6.1 Representation 20

2.6.2 Evaluation of the Fitness Solutions 21

2.6.3 Operation to Form New Solutions 21

2.7 The Need of Evolutionary Algorithms in Metrics Prediction

Model and Its Expected Results 22

2.7.1 Genetic Algorithm as Search Technique 24

2.8 Conclusion 25

�
�

© C
OP

UPM

ix

9 �
���������� 26

3.1 Introduction 26

3.2 Methods Overview 26

3.3 Reviews on Object-Oriented Software Metrics and

Thresholds 29

3.3.1 Review on Object-Oriented Software Maintainability

Metrics 29

3.3.2 Review on Metrics Thresholds for Object-Oriented

Metrics 29

3.4 Data Sets 30

3.5 Data Collection 31

3.6 Evaluation and Validation Processes 32

3.6.1 Evaluation Using Linear Discriminant Analysis 32

3.6.2 Validation of the Proposed Model 33

3.6.3 Principal Component Analysis (PCA) 34

3.6.4 CK Metrics Suite as Classification Model 35

3.7 Validation using Experts 36

3.8 Statistical Analysis 36

3.9 Conclusion 36

�
: �	
������	�� ��������� ��� ���

���	�
��
��

������	
��
�	�
���	
������� 37

4.1 Introduction 37

4.2 Object-Oriented Metric Thresholds 37

4.2.1 Analysis on Object-Oriented Software Metrics

Thresholds 38

4.3 Metric Thresholds Analysis: Chidamber and Kemerer 41

4.3.1 The Role of CK Metrics in Predicting Software

Maintainability 42

4.3.2 Proposed CK Software Metrics Thresholds 46

4.4 Software Metrics Data Representation 47

4.5 Metrics Thresholds Encoding 47

4.6 Conclusion 50

�
; �	����
�����
�� 51

5.1 Introduction 51

5.2 Proposed Model Architecture 51

5.2.1 Problem Representation 52

5.2.2 Evaluation of the Fitness Solutions 54

5.2.3 Operation to Form New Solution (Altering Step) 55

5.3 Evaluation of Proposed Metric Selection Model 56

5.4 Conclusion 58

�
3 	
�������������
������� 59

6.1 Introduction 59

6.2 Genetic Algorithm Optimization Model 59

6.2.1 Result for Genetic Algorithm 60

6.3 The Application of Principal Component Analysis 62

6.4 The Application of Metrics Suite 63

© C
OP

UPM

x

6.5 Experiment using different Subject 64

6.5.1 Genetic Algorithms Technique Using Geoserver

(Case Study 2) 64

6.5.2 Principal Component Analysis Using Geoserver 66

6.5.3 Software Metric Suite Using Geoserver 67

6.6 Validation using Experts 67

6.7 Classifier Performance using LDA – Expart Opinions 69

6.8 The Overall Results and Discussion 73

6.9 Threat to Validity 78

6.10 Conclusion 79

�
<
��
����������������	
���	�� 80

7.1 General Conclusion 80

7.1.1 The Objectives of the Model 81

7.1.2 The Context of the Model 81

7.2 Direction for Future Works 81

7.2.1 Further Experimentation on the Proposed Model 82

7.2.2 Extending and Improving the Precision of Existing

Model 82

�
	
�
	
�

�� 83

���������������
��� 96

�������������
������� 97

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

© C
OP

UPM

xi

������������
��
�
�

�(�%�� ����(.�

3.1. Proposed metric threshold 30

3.2. Similarities and differences between Geosever and Geotool 31

3.3. PCA subsets for CK metrics 34

4.1. Object-oriented software metrics thresholds 40

4.2. The proposed software metrics thresholds for the CK suite 46

4.3. Arranged metrics values from the CKJM tool 47

4.4. Arranged encoded classes based on metrics thresholds 49

5.1. Classification accuracy table for the metrics selection 57

6.1. PCA subsets for CK metrics 62

6.2. The precision and recall values for the six CK metrics 63

6.3. Groups of different principal components 66

6.4. CK metrics suite in second experiment using Geosever 67

6.5. CK Difference in rankings by inspectors for the 100 Java classes 68

6.6. Mapped results by inspectors in three different ranking level 69

6.7. Performance measurement for three different methods based on

low, medium and high levels – Geotool classes 70

6.8. Performance measurement for three different methods based on

low, medium and high levels – Geosever classes techniques 72

6.9. Selection performance measures for three different classification

techniques 75

© C
OP

UPM

xii

������������	
��

��.�'�� �� �(.��

2.1. Two major object-oriented software development life cycle 8

2.2 Effect of maintenance on initial phases of SDLC 9

2.3 The relationship between maintainability and Internal attributes of

Object Oriented Software 13

2.4 Relationships between Software Measurements Components 17

2.5 Evolutionary algorithms implementation stages 19

3.1 Research methodologies for the study 27

3.2 Review on object-oriented maintainability metrics 29

3.3 Review study for software metrics thresholds 30

3.4 CKJM tool interface 32

3.5 Model validation process 33

4.1 Encoded flowchart based on metrics thresholds 48

5.1 Software metrics selection with GA 52

5.2 Proposed GA solutions with the additional threshold encoding

strategy 53

5.3 Genes filtering to produce the Fittest Individual 54

5.4 Formation of new solution from the recombination of child gene 55

5.5 Mutation by flipping a bit in the new formulated gene 56

6.1 Metrics generated by GA when applied to Geotool software 61

6.2 Lists of metrics generated by GA using Geoserver software system 65

6.3 Classification performances for the GA model in comparison with

the other Classical approach using Geosever 73

6.4 Classification performances mean for the GA Model in comparison

with the other classical approaches 76

© C
OP

UPM

xiii

�����������	
8��������
�
�

AHF Active hiding factor

ACO Afferent Coupling

AIF Attribute inheritance factor

ANOVA Analysis of Varience

CBO Coupling between object

CC Cyclomatic complexity

CMC Class method complexity

COF Coupling factor

CK Chidamber and Kemerer

CKJM Chidamber and Kemerer Java metric

CTA Coupling through abstract data type

CTM Coupling through message passing

DIT Depth of inheritance tree

EAs Evolution Algorithms

EP Evolution programming

ES Evolution strategy

FN False Negative

FP False Positive

GA Genetic algorithm

GIS Geographic Information System

IEEE Institute of Electrical and Electronics Engineering

ISO/IEC International standard organisation/ International Electronic

Cmmission

ISO/IEEE International standard organisation/Institute of Electrical and

Electronics Engineering

LCOM Lack of cohesion metric

LDA Linear Discriminant analysis

LOC Lines of code

MEM Maintainability estimation model

MHF Method hiding factor

MIF Method inheritance factor

MOOD Model for object-oriented design

NAC Number of ancestor classes

© C
OP

UPM

xiv

NCBC Number of catch blocks per class

NDC Number of descendent class

NLM Number of attributes and methods number of local methods

NOC Number of child

NOM Number of methods

NOO Number of Operator Overridden

NORM Number of Overridden Methods

NPF Number of Public Fields

NPM Number of public method

NSM Number of Static Methods

OGC Open geospatial consortium

OOS Object-oriented systems

PC Principal Component

PCA Principal component analysis

PF Polymorphism factor

QMOOD Quality model of object-oriented design

RFC Reference for class

SAS Statistical analysis software

TN True Negative

TP True Positive

WMC Weight method per class

© C
OP

UPM

1

����
	�2�

2 ���	���
�����

2=2 �($5.'#�*"�

This chapter explores the method of selecting software metrics to predict the

degree of object-oriented software maintainability and related issues. The chapter

begins with the background of the information concerning the maintenance phase

for software, followed by the explanation on software measurements. The chapter

also gives a list of contributions of this study, followed by an outline of the

remaining chapters of the thesis. The research main argument here is that software

metrics thresholds might be a useful categorisation strategy for evolutionary

computation techniques.

As any other engineering measurements, software metrics have become necessary

tools for developing quality software products through understanding different

quality objectives. The importance of quantifying the quality attributes in software

engineering has been identified by Galin (2004) as the baseline for planning and

predicting the quality of software for its improvement. Galin points out that

“software development methods and measurements are two important allies to

ensure that the quality of the software product is fulfilled”. Fenton and Pfleeger

(1997) go further to describe the best software developers and practitioners as those

who use metrics to prove the quality of the software they design before releasing it

for public use. Fenton and Pfleeger add that “this practice is used as a means of

minimizing defects.”

In his recent book ttiled Why the Program Fails, Zeller (2009) insists on measuring

the software products. He finds that there is no software that contains zero defects,

and the results of these defects are the source of increasing software costs. Many

writers, Douce and Layzell, 1997, for example, have claimed that “much of those

costs occur during the maintenance phase of the software development life cycle.

About 50% to 70% of time and resources are estimated to be used in the

maintenance phase of software development process.” In solving the problems of

cost, efforts, and time during software maintenance, it is according to Fenton and

Neil, 1999, crucial to understand the extent of the handling of the software prior to

its adoption. To Fenton and Neil, this can also help practitioners understand the

quality of software products based on their quality attributes, which are used in

quality modelling to identify the post-release fault proneness.

The nature of any software products, especially those developed using object-

oriented concepts is that the code is in fact designed using more than one design

attribute. For example, developers use different properties like inheritance,

coupling, cohesion and other object-oriented features in the same software product.

This approach is similar to the philosophy behind the development of the software

© C
OP

UPM

2

metrics, whereby one software metric measures only one attribute. Consequently, it

implies that there is a duplication of some metrics, through which more than one

metric can be used to measure the same attribute. Therefore, to predict one quality

attribute requires several metrics. Then, they need to combine the magnitude,

which is essential to predict the constituent software product features.

Software metrics suite was the first attempt to counter the problem of software

metrics classification (software metrics selection). Boehm (1975) and Chidamber

and Kemerer (1994) were the first researchers to introduce the so-called metric

suites, and later followed by other researchers like Abreu and Melo (1996), Elish

and Al-Khiaty (2013) and many more. The suites faced the problem of rigidity,

which pushed practitioners either to reduce software metrics to remove redundant

metrics or to add more metrics to accommodate the missing ones. Michura et al.

(2013), for example, made an extension of CK metric suite to conform to his

requirements.

In this case where where there are dozens of metrics which can be used to measure

one particular software quality attribute, there is a need to have in place mechanism

that will help practitioners select software metrics that only suite measurement

goals. Wang et al. (2011), suggest the elimination of the number of software

metrics that are available for the particular measurement property. In their study,

they reduced 98% of the metrics they collected for measuring the quality of

software product. Their conclusion is that “the average of three software metrics is

good enough to predict the quality of software. Thus, the selection of few suitable

metrics out of dozens metrics is recommended to increase performance and to

avoid redundant measurement. Therefore, the question that is raised here is how to

obtain those few suitable software metrics for predicting the quality of a particular

software product, out of dozens of metrics.

The evolution computational intelligence approach, as search-based strategies

solves the problems associated with metrics suites. The approaches for selecting

the best group of software metrics for predicting the quality of software proved to

be promising. Vivanco (2010) uses genetic algorithms as a search-based strategy to

solve the mentioned problems. His representation methods of encoding does not

states clearly in his model while literature insists on using real data in encoding the

chromosome. As by Baggen et al. (2012), insist the use of automatic and rea-world

data can build the culture of trust for the final model that it has considered the

quality decision on the development of that model.

This study used software metrics threshold (benchmark) ranking strategy in

encoding the chromosome to propose the Genetic Algorithm software metrics

selection model for predicting object-oriented software maintainability. The use of

software metrics thresholds facilitates the performance and improves the accuracy

of the model.

© C
OP

UPM

3

2=0 �'#�%� ��!(!� �*!�

The selection of the appropriate software metrics in predicting the quality of

software is one of the crucial tasks in software engineering paradigm. The problem

is more complicated in the availability of dozens of metrics and the inability of

proposed groups of software metrics called suites. These collections of metrics

failed to give clear and trusted software metrics classification goals for predicting

the quality of software due to variability of attributes and features from one

software product to another. As Altidor and his colegue in 2009 suggested that “the

issue has forced some practitioners to make some modification to satisfy their

needs” as Gray, 2008; Michura, 2013, argue. In that regard, there is therefore a

need for the practitioners to propose models that can just select list of software

metrics for particular software product.

Evolutionary computation, which is used in exhaustive selection problems, is the

latest and hard effort employed in software metrics selection. Vivanco, (2010), uses

genetic algorithms as a search-based strategy to solve the problem of rigidity

identified in software metric suites. Although promising results were obtained, the

representation method of encoding was not clearly stated.

The aim of this study is to propose the Genetic Algorithm (GA) software metrics

selection model to predict object-oriented software maintainability. In this case,

software metrics thresholds were proposed at the presentation phase of the GA.

Because of the sensitivity of the availability of software metric thresholds and other

challenges, study used the Chidamber and Kemmerer (CK) metrics suite as the

representative for the object-oriented maintainability metrics. The results were

validated and compared with real maintainability data ranked by experts in order to

gain more confidence on proposed solution. The proposed model intends to help

practitioners in selecting the most appropriate metrics according to the attributes in

particular software, which will then facilitate faster and more accurate adoption of

the maintainable software. Out of dozens of software, practitioners will be able to

select only the appropriate list of metricts for particular software, which is then

used for predicting the maintainability of that software.

2=9 	���('$��>���!�#*��

To understand the problem explained above, the reseserch has been guided by the

following questions:

1. Which software metrics are suitable to measure the object-oriented

software maintainability based on their available thresholds in

assumption that software product structure differ from one product to

product?

© C
OP

UPM

4

To answer question (1) the review of related work has been conducted together the

most appropriate list of software metrics that can be used to predict maintainability

of particular object-oriented software products.

2. What are the thresholds for the software metrics identified in the first

research question (1)?

Another two reviews were conducted to gather information on the most appropriate

software metrics that can be used to predict the maintainability of particular object-

oriented software products and to identify their thresholds (benchmark). Results

were based on theoretical and experimental validation process in the related

literatures.

2=: 	���('$����?�$!�+���

The objective of this research is to propose GA-based software metrics selection

model to predict object-oriented software maintainability.

In achieving this main objective, the study proposes the following sub-objectives:

1. To standardardise software metrics thresholds values for the six metrics

in Chidamber and Kemmerer (CK) suite to determine the acceptance

values.

2. To generate objective thresholds (benchmark) encoding strategy for the

representation phase in the GA.

3. To implement GA-based software metrics selection model to predict

maintainability of object-oriented software.

2=; �$#/��(*"��� �!(!�#*��#&�!���	���('$���

This research proposed the software metrics selection model using evolutionary

algorithm method. GA, which is one of the evolution strategies, is used to classify

the software metrics in predicting maintainability of object-oriented software

systems. The object-oriented software system is software technology, which

involves many measurable features in software engineering. Geographical

Information Software (GIS)-based software was used as case studies. Two

geospatial software systems have been used to provide the researcher the chance to

compare the software metrics selection performances within the same development

context. This extends confidence prior to using software products that have been

developed using another technology. Moreover, the geospatial software used was

developed using open-source software technology. Apart from universal

advantages of open-source technology, open access privillage of source code

makes it easier to generate software metrics values.

© C
OP

UPM

5

2=3
#*!'���!�#*��#&�!���	���('$��

The use of software metrics thresholds (benchmark) in metrics selection model has

the intuitional impacts in software engineering. Having used the software metrics

thresholds, the study has successfully developed the software metrics selection

model, which facilitates the selection of most effective software metrics in

predicting maintainability to accomplish the adoption of the quality software. The

use of the threshold prediction model seems to be a promising input in the software

engineering paradigm. This encoding strategy has employed the practical use of

empirical data that has also shown the great achievement in model performance.

Therefore, this new introduced technique supports evolutionary algorithms

representation encodings process. In addition, the use of GA as a search technique

has put in the philosophy of traditional evolution from biology into the software

metrics paradigm using software metrics thresholds.

In addition, upon knowing the maintainability efforts for particular softwares,

software practitioners will probably be informed about technical and business

aspects of the software product to be adopted. Practitioners who work as software

maintainer will easily review the performance of the software product to ensure

that the quality criteria have been met. For organizations, Baggen et al. (2012),

indicate that “the maintainability models might guide the maintainers in organizing

a better way of maintaining the resources”. As for the individual practitioners, they

will probably make wiser decisions in adopting the suitable software product that is

easily maintained based on available resources.

Moreover, the model can be used by the organisations to evaluate their existing

software system to see whether it conforms to the dynamic quality standards from

time to time due to error correction or incorporation of the new requirements.

2=< �'.(*�6(!�#*�#&�!����������

The next chapter discusses the previous related literature on software maintenance,

software metrics, software metrics threshold and evolutionary algorithms

techniques. Chapter 3 discusses methodology used during the research phases.

Chapter 4 discusses the preliminary results and provides a discussion on the

software metrics thresholds encoding strategy. Chapter 5 presents the proposed

models and their validation process. Chapter 6 presents the study findings and

discussions. Finally, Chapter 7 concludes the research.

© C
OP

UPM

83

B 	
�
	
�

��

Abdi H., and Williams, L. J. (2010). Principal component analysis, Wiley
Interdisciplinary Reviews: Computational Statistics, 2, 433–459.

Abreu, F. B., and Melo, W. (1996). Evaluating the impact of object-oriented design

on software quality. Third International Symposium on Software Metrics:
From Measurement to Empirical Results (Mar 25-26, Berlin, Germany), 3,

90-99.

Abreu, F., and Carapuca, R. (1994). Object-oriented software engineering:

Measuring and controlling the development process. Proceedings of the 4th
International Conference on Software Quality, McClain, VA, USA, 3-5

October 1994.

Aggarwal, K. K., Singh, Y., Kaur, A., and Malhotra, R. (2008). Application of

artificial neural network for predicting maintainability using object oriented

metrics. World Academy of Science, Engineering and Technology, 22,

1071-1075.

Al-Badareen, A. B., Selamat, M. H., Jabar, M. A., Din, J., and Turaev, S. (2011).

The impact of software quality on maintenance process. International
Journal of Computers, 5, 183-190.

Al-Dallal, J. (2010). Mathematical validation of object-oriented class cohesion

metrics. International Journal of Computers, 4, 788-804.

Altidor, W., Khoshgoftaar, T. M., and Van Hulse, J. (2009). Empirical study on

wrapper-based feature ranking. International Conference on Tools with
Artifficial Intelligence, 2-4 November (ICTAI), 21, 75-82.

Anda, B. (2007). Assessing software system maintainability using structural

measures and expert assessments. IEEE International Conference
on Software maintenance, October 2-5 (ICSM), 204-213.

Araújo, P., Antonio, M., Travassos, G. H., and Kitchenham, B. (2005). Evolutive
maintenance: Observing object-oriented software decay. Technical Report,

COPPE/UFRJ. Keele University.

Armstrong, D. (2006). The quarks of object-oriented development,

Communications of the ACM, 49:123–128.

Bäck, T. (1996). Evolutionary algorithms in theory and practice: Evolution
strategies, evolutionary programming, genetic algorithms. New York:

Oxford University Press.

Baggen, R., Correia, J. P., Schill, K., and Visser, J. (2012). Standardized code

quality benchmarking for improving software maintainability. Software
Quality Journal, 20, 287–307.

Baker, A. L., Bieman, J. M., Fenton, N., Gustafson, D. A., Melton, A., and Whitty,

W. (1990). A philosophy for software measurement. Journal of Systems and
Software, 12, 277-281.

© C
OP

UPM

84

Bakota, T., Ferenc, R., Gyimóthy, T., Riva, C., and Xu, J. (2006). Towards

portable metrics-based models for software maintenance problems.

Proceedings of the 22nd IEEE International Conference on Software
Maintenance (ICSM’06), 2, 483-486.

Baldassarre, M. T., Bianchi, A., Caivano, D., and Visaggio, C. A. (2003). Full

reuse maintenance process for reducing software degradation. Proceedings
of the Seventh European Conference on Software Maintenance and
Reengineering, March 26-28, 7, 289-298.

Bandyopadhyay, S., and Saha, S. (2013). Unsupervised classification: Similarity
measures, classical and metaheuristic approaches, and applications. New

York: Springer.

Bansiya, J., and Davis, C. G. (2002). A hierarchical model for object-oriented

design quality assessment. IEEE Transactions on Software Engineering, 28,

4-17.

Basili, V. L., Briand, L., and Melo, W. L. (1996). A validation of object-oriented

metrics as quality indicators. IEEE Transactions Software Engineering, 22,

751-761.

Benlarbi, S., Emam, K., Goel, N., and Rai, S. (2000). Thresholds for object-

oriented measures. Proceedings of the 11th International Symposium on
Software Reliability Engineering. IEEE Computer Society, Washington,

DC, USA, (ISSRE) 11, 24-38.

Bennett, K. H., and Rajlich, V. T. (2000). Software maintenance and evolution: A

road map, Proceeding of the Conference on the Future of Software
Engineering, New York, USA, 73-87

Beyer, H. G. (2001). The theory of evolution strategies. New York: Springer.

Boehm, B. W., (1975). Software design and structuring. In E. Horowitz, (Ed.),

Practical strategies for developing large software systems. Reading, MA:

Addison-Wesley.

Bouktif, S., Kegl, B., and Sahraoui, H. (2002). Combining software quality

predictive models: An evolutionary approach. Proceedings of an
International Conference on Software Maintenance, 385-392.

Briand, L., Bunse, L., Daly, J., and Differding, C. (1997). An experimental

comparison of the maintainability of object-oriented and structured design

documents. Proceedings of International Conference on Software
Maintenance, 1-3 Oct. 1997, Bari, Italy, 130-138.

Briand, L. C. Wust, J. Daly, J. W. and Porter, D. V. (2000). Exploring the

relationships between design measures and software quality in object-

oriented systems. Journal of Systems and Software, 51, 245-275.

Carey, D. (1996). Is “Software quality” intrinsic, subjective or relational. Software
Engineering Notes, 21(1), 74-75.

Cartwright, M., and Shepperd, M. (2000). An empirical investigation of an object-

oriented software system. IEEE Transaction Software Engineering, 26,

786-796.

© C
OP

UPM

85

Cheong, R. A. (2007). Comparison between genetic algorithms and evolutionary

programming based on cutting stock problem. Engineering Letters, 14.

Chhikara, A., Chhillar, R. S., and Khatri, S. (2011). Evaluating the impact of

different types of inheritance on the object oriented software metrics.

International Journal of Enterprise Computing and Business Systems, 1, 1-

7.

Chidamber, S. R., and Kemerer, C. F. (1994). A metrics suite for object-oriented

design. IEEE Trans. Software Engineering, 20, 476-493.

Counsell, S. (2008). An analysis of faulty and fault-free C++ classes using an

object-oriented metrics suite. Innovative Techniques in Instruction
Technology, E-learning, E-assessment, and Education, 520–525. Springer

Link

D’Ambros, M. (2010). On the evolution of source code and software defects.
(Unpublished PhD thesis). Università della Svizzera Italiana.

Dagpinar, M., and Jahnke, J. H. (2003). Predicting maintainability with object-

oriented metrics – An empirical comparison. Proceedings of 10th Working
Conference on Reverse Engineering, November 13 - 17 (WCRE), 10, 155 -

164.

Daly, J., Brooks, A., Miller, J., Roper, M., and Wood, M. (1996). Evaluating

inheritance depth on the maintainability of object-oriented software.

Empirical Software Engineering, 1(2), 109-132.

Domingos, P. (2012). A few useful things to know about machine learning.

Magazine Communications of ACM, 55, 78-87.

Douce, C., and Layzell, P. J. (1997). Maintenance of object-oriented C++ software:

A protocol study. IEEE Computer Society 2nd International Workshop on
Empirical Studies of Software Maintenance, WESS 2: 115 - 119.

Dromey, R.G. (1996). Cornering the Chimera [software quality],

IEEE Software,13, 33-43.

Elish, M., and Al-Khiaty, M. (2013). A suite of metrics for quantifying historical

changes to predict future change-prone classes in object-oriented

software. Journal of Software: Evolution and Process, 25, 2013.

Fenton, N. E. (1991). Software metrics: A rigorous approach. London: Chapman

and Hall.

Fenton, N. E., and Neil, M. (1999). Software metrics: Successes, failures, and new

directions. Journal of Systems and Software, 47, 149-157.

Fenton, N. E, and Ohlsson, N. (2000). Quantitative analysis of faults and failures

in a complex software systems. IEEE Transactions on Software
Engineering, 26, 797-814.

Fenton, N. E., and Pfleeger, S. L. (1997). Software metrics: A rigorous and
practical approach (2nd ed.), London: International Thomson Computer

Press.

© C
OP

UPM

86

Ferreira, K., Bigonha, M., Bigonha, R., Mendes, L., and Almeida, H. (2012).

Identifying thresholds for object-oriented software metrics, Journal of
Systems and Software, 85, 244-257.

Fogel, L. J. (1999). Intelligence through simulated evolution: Forty years of
evolution programming. New York: Wiley-Interscience publication.

Galin, D. (2004). Software Quality Assurance: From Theory to Implimentation,

Addison Wesley.

Gao, K., Khoshgoftaar, T. M., Wang, H., and Seliya, N. 2011. Choosing software

metrics for defect prediction: An investigation on feature selection

techniques. Software: Practice and Experience Software, 41, 579-606.

Garge, R. K., Sharma, K., and Nagpal, C. (2013). Ranking of Software Engineering

Metrics by Fuzzy-based Matrix Methodology. Software Testing,
Verification and Reliability, 23: 149-168.

Garnett, J. (n.d.). GeoTools user guide. Open Source Geospatial Foundation.

Retrieved from

http://geotoolsnews.blogspot.com/2011_10_01_archive.html.

Geoserver. (2013). Geoserver user manual. Retrieved from http://docs.geoserver.

org/stable/en/ developer/

German, D.M. and Hindle, A. (2005). Measuring fine-grained change in software:

towards modification-aware change metrics, Software Metrics. 11th IEEE
International Symposium, 10-28

Goel, B. M., Bhatia, P. K. (2012). Analysis of reusability of object-oriented system

using CK metrics. International Journal of Computer Applications, 60: 32-

36.

Gray, A. R., and MacDonell, S. G. (1997). A comparison of techniques for

developing predictive models of software metrics. Information and
Software Technology, 39: 425-437

Gray, L. C. (2008). A Coupling complexity metric suite for predicting software
quality, Master thesis, California Polytechnic State University.

Guo, L., Ma, Y., Bojan, C., and Singh, H. (2004). Robust prediction of fault-

proneness by random forests. Proceedings of the 15th International
Symposium on Software Reliability Engineering (ISSRE), 417-428.

Gyimothy, T., Ferenc, R., and Siket, I. (2005). Empirical validation of object-

oriented metrics on open source software for fault prediction. IEEE
Transactions Software Engineering, 31: (10), 897–910.

Halstead, M. (1977). Elements of software science. New York: North-Holland.

Hanley, J., and McNeil, B. (1982). The meaning and use of the area under a

receiver operating characteristic (ROC) curve. Radiology, 143: 29–36.

Harrison, H., Counsell, S., and Nithi, R. (2000). Experimental assessment of the

effect of inheritance on the maintainability of object-oriented systems. The
Journal of Systems and Software, 52: 173-179.

© C
OP

UPM

87

Hassaine, S., Guéhéneuc, Y., Hamel, S., and Antoniol, G. (2012). ADvISE:

Architectural decay in software evolution. Published in Software
Maintenance and Reengineerin (CSMR), 2012 16th European Conference
on Software Maintenance and Reengineering, 27-30 March 2012, 16: 267-

276.

Hutton, L. (1998). Does OO sync with how we think? IEEE Software, 46-54.

Haupt, R. L., and Haupt, S. E. (2004). Practical genetic algorithms. New York:

John Wiley and Sons.

Heitlager, I., Kuipers, T., and Visser, J. (2007). A practical model for measuring

maintainability. Proceedings of 6th International Conference on Quality of
Information and Communications Technology, IEEE Computer Society,
Washington, DC, USA, (QUATIC), 6: 30-39.

Henderson-Sellers, B., Constantine, L., and Graham, I. M. (1996). Coupling and

cohesion: Towards a valid metrics suite for object-oriented analysis and

design. Object Oriented Systems, 3: 143-158.

Herbold, S. Grabowski, J., and Waack, S. (2010). Calculation and optimization of
thresholds for sets of software metrics. Technical Report, No. IFI-TB-2010-

01, ISSN 1611-1044.

Hitz, M., and Montazeri, B. (1996). Chidamber and Kemerer’s metrics suite: A
measurement theory perspective. IEEE TSE, 22, 267–271.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. Ann Arbor:

The University of Michigan Press.

ISO/IEC 20000-1:2011 Service management system requirements. Updated at

2011-04-12 (replacing ISO/IEC 20000-1:2005)

Johny, A. P. (2013). Predicting reliability of software using thresholds of CK

metrics. International Journal of Engineering Research and Technology, 2,

1136-1145.

Jolliffe, I. T. (1982). A note on the use of principal components in

regression. Journal of the Royal Statistical Society, Series C, 31: 300–303.

Kanmani, S., Uthariaraj, V. R., Sankaranarayanan, V., and Thambidrai, P. (2007).

Object-oriented software fault prediction using neural networks.

Information and Software Technology, 49, 483-492.

Kaur, S., Singh, S., and Kaur, H. (2013). A quantitative investigation of software

metrics thresholds values at acceptable risk level. International Journal of
Engineering Research and Technology, 2.

Khosravi, K., and Guéhéneuc, Y. (2005). On issues with software quality model.

Workshop on Quantitative Approaches in Object-Oriented Software
Engineering Glasgow, Scotland (ECOOP), 9, 70-83.

Kitchenham, B. (2010). What’s up with software metrics? A preliminary mapping
study, Journal of Systems and Software, 83: 37–51.

Kitchenham, B., Pfleeger, S. L., and Lawrence, S. (1996). Software quality: The

elusive target. IEEE Software, 13: 12-21.

© C
OP

UPM

88

Kitchenham, B., Pfleeger, L., and Fenton, N. (1995). Towards a frame-work for

software measurement validation. IEEE Transaction Software Engineering,

12: 929-944.

Knauf, R., Tsuruta, S., and Gonzalez, A. J. (2005). Overcoming human weaknesses

in validation of knowledge-based systems. Leipziger Informatik-Tage, 72:

254-263.

Kwon, I., and Lee, J. (1996). Adaptive simulated annealing genetic algorithm for

system identification. Engeneering Application Artificial lntelligence, 9:

523-532.

Lanza, M., and Marinescu, R. (2006). Object-oriented metrics in practice: Using
software metrics to characterize, evaluate, and improve the design of
object-oriented systems. Heidelberg, Germany: Springer-Verlag.

Lehman, M. M., Ramil, J. F., and Sandler, U. (2001). An Approach to Modelling

Long-term Growth Trends in Software Systems. Proceedings International
Conference on Software Maintenance, Florence, Italy, 219–28.

Li, W. (1998). Another metric suite for object-oriented programming. Journal of
Systems and Software, 44: 155-162.

Li, W., and Henry, S. (1993). Object-oriented metrics that predict maintainability.

Journal of System Software, 23: 111-112.

Lincke, R., Lundberg, J., and Löwe, W. (2008). Comparing software metrics tools.

ISSTA '08 Proceedings of the 2008 international symposium on Software
testing and analysis, 131-142.

Linda, P. E., and Chandra, E. (2010). Class break point determination using CK

metrics thresholds. Global Journal of Computer Science and Technology,

10.

Lorenz, M., and Kidd, J. (1994). Object-oriented software metrics. Englewood

Cliffs NJ: Prentice-Hall.

Luijten, B., and Visser, J. (2010). Faster defect resolution with higher technical

quality of software. International workshop on software quality and
maintainability (SQM 2010), March 15, 2010, Madrid, Spain, IEEE
Computer Society Press 4: 11-20.

Mago J., and Kaur P. (2012). Analysis of quality of the design of the object-

oriented software using fuzzy logic. IJCA Proceedings on International
Conference on Recent Advances and Future Trends in Information
Technology, iRAFIT(3), 21-25, April 2012. Published by Foundation of

Computer Science, New York, USA.

Malhotra, R., and Chang, A. (2012). Software maintainability prediction using

machine learning algorithms. Software Engineering: An International
Journal, 2: 19-36.

Malhotra, R.. Singh, N., and Singh, Y. (2011). Genetic algorithms: Concepts,

design for optimization of process controllers. Computer and Information
Science, 4: 39-54.

© C
OP

UPM

89

Mao, Y., Sahraoui, H. A., and Lounis, H. (1998). Reusability hypothesis

verification using machine learning techniques: A case study. Proceedings
of 13th IEEE International Conference on Automated Software
Engineering, 13-16 October 1998. Honolulu, HI. 13:84-93.

doi:10.1109/ASE.1998.732582

Martino, M., Hernandez, G., Fiori, M., and Fernandez, A. (2013). A new

framework for optimal classifier design. Pattern Recognition, 46, 2249-

2255.

Matthews, J. W. (1975). Epitaxial growth. New York: Academic Press.

McCabe, T. J. (1976). A complexity measure. Proceedings of the 2nd International
Conference on Software Engineering, 2: 308-320.

McCall, J. A., Richards, P. K., and Walters, G. F. (1977). Factors in software

quality, Vol. 1(2). National Technology Information Service. Springfield,

VA.

McDermid, J., and Bennett, K. H. (1999). Software engineering research in the

UK: A critical appraisal. IEE Proceedings – Software, 146: (4), 179-186.

Melanie, M. (1998). An introduction to genetic algorithms, Cambridge, MA: The

MIT Press.

Meyer, C. D. (2000). Matrix analysis and applied linear algebra. Philadelphia, PA:

Society for Industrial and Applied Mathematics.
Michalewicz, Z. (1996). Genetic algorithms + data structure = evolution programs

(3rd., rev. and ext. ed.). New York: Springer-Verlag.

Michura, J., Capretz, M. A., and Wang, S. (2013). Extension of object-oriented

metrics Suite for software maintenance. ISRN Software Engineering, 2013,

1-14.

Misra, S. C., and Bhavsar, V. C. (2003). Relationship between selected software

measures and latent bug-density: Guidelines for improving quality.

Computer Science and its Applications (ICCSA), Lectures Notes in
Computer Science (LNCS), 724-732.

Mizuno, O., and Hata, H. (2010). An empirical comparison of fault-prone module

detection approaches: Complexity metrics and text feature metrics.

Proceedings of IEEE 34th Annual Computer Software and Applications
Conference, 34, 248-249.

Nagappan, N. and Ball, T. (2005). Static analysis tools as early indicators of pre-

release defect density. In Proceedings of ICSE 2005 (27th International
Conference on Software Engineering), ACM, 580–586.

Nelson, A. L., Barlow, G. J., and Doitsidis, L. (2009). Fitness functions in

evolutionary robotics: A survey and analysis. Robotics and Autonomous
Systems, 57: 345-370.

Okike, E. (2010). A proposal for normalized lack of cohesion in method (LCOM)

metric using field experiment. IJCSI International Journal of Computer
Science Issues, 7: (4), 19-27.

© C
OP

UPM

90

Olague, H. M., Etzkorn, L. H., Gholston, S., and Quattlebaum, S. (2007). Empirical

validation of three metrics suites to predict fault-proneness of object-

oriented class development using highly iterative or agile software

development processes. IEEE Transactions Software Engineering, 33: 402-

419.

Olmo, F., and Gaudioso, E. (2008). Evaluation of recommender systems: A new

approach. Expert Systems with Applications, 35, 790–804.

Pandey, M. H., Dixit, A., and Mehrotra, D. (2012). Genetic algorithms: Concepts,

issues and a case study of grammar induction. Preceedings of the CUBE
International Information Technology Conference (CUBE), ACM, New

York, 263-271.

Park, R. E., Goethert, W. B., and Florac, W. A. (1996). Goal-driven software
measurement: A guidebook. Handbook CMU/SEI-96-HB-002.

Petridis, V., Kazarlis, S., and Bakirtzis, A. (1998). Varying fitness functions in

genetic algorithm constrained optimization: The cutting stock and unit

commitment problems. IEEE Transactions on Systems, Man, and
Cybernetics-Part B: Cybernetics, 28:(5), 629-640.

Poornima, U. S. (2011). Unified design quality metric tool for object-oriented

approach including other principles. International Journal of Computer
Applications, 26: 1-4.

Power, D. (2011). Metrics evaluation: From precision, recall and F-measure to

ROC informedness, markedness and correlations. Journal of Machine
Learning Technologies, 2: 37-63.

Rand, W., and Wilensky, U. (2006). Verification and validation through
replication: A case study using Axelrod and Hammond’s ethnocentrism
model. North American Association for Computational Social and

Organization.

Ratzinger, J. Gall, H. and Pinzger, M. (2007). Quality Assessment Based on

Attribute Series of Software Evolution. In Proceeding Working Conference
on Reverse Engineering (WCRE07), Vancouver, Canada.

Riaz, M., Mendes, E., and Tempero, E. (2009). A systematic review of software

maintainability prediction and metrics. In Proceedings of the 2009 3rd

International Symposium on Empirical Software Engineering and

Measurement (pp. 367-377). doi:10.1109/ESEM.2009.5314233

Rizvi, S. W., and Khan, R. A. (2010). Maintainability estimation model for object-

oriented software in design phase (MEMOOD). Journal of Computing,

2(4), 26-32.

Rosenberg, L. (1998). Applying and interpreting object-oriented metrics. Software
Technology Conference.

Rosenberg, L., Stapko R., and Gallo A. (1999). Object oriented metrics for

reliability. IEEE International Sysmposium on Software Metrics, 1-8.

Rothlauf, F. (2006). Representations for genetic and evolutionary algorithms (2nd

ed.). New York: Springer-Verlag.

© C
OP

UPM

91

Sahraoui, H. A., Boukadoum, M., and Lounis, H. (2001). Building quality

estimation models with fuzzy threshold values, L’objet, Edition Hermès
Sciences, 17: 535-554.

SAS Institute Inc. (2010). SAS/STAT user’s guide. Cary, NC. USA

Schröder, G., Thiele, M., and Lehner, W. (2011). Setting goals and choosing

metrics for recommender system evaluations. UCERSTI2 Workshop at the
5th ACM Conference on Recommender Systems, Chicago, October 23rd.

Shatnawi, R., Li, W., Swain, J., and Newman, T. (2010). Finding software metrics

threshold values using ROC curves, Journal Software Maintenance and
Evolution, Research and Practice, 22: 1-16.

Singh, P., Chaudhary, K., and Verma, S. (2011). An investigation of the

relationships between software metrics and defects. International Journal of
Computer Applications, 28, 13-17.

Soi, I. (1985). Software complexity: An aid to software maintainability.

Microelectronics Reliability, 25, 223-228.

Sommerville, I. (2011). Software engineering, (9th ed.). Addison Wesley.

Spinellis, D. (2005). Tool writing: A forgotten art? IEEE Software, 22: 9-11.

Subramanyam, R., and Krishnan, M. (2003). Empirical analysis of CK metrics for

object-oriented design complexity: Implications for software defects. IEEE
Transactions Software Engineering, 29: (4), 297–310.

Svitak, J. J. (2008). Genetic algorithms for optical character recognition. Ann

Arbor, MI: ProQuest LLC.

Thirugnanam, M., and Swathi, J. N. (2010). Quality metrics tool for object oriented

programming. International Journal of Computer Theory and Engineering,
2: 712-717.

Ujhazi, B., Ferenc, B., Poshyvanyk, D., and Gyimothy, T. (2010). New conceptual

coupling and cohesion metrics for object-oriented systems. Proceedings of
the 2010 10th IEEE Working Conference on Source Code Analysis and
Manipulation, Timisoara, (12-13 September 2010).

Unger, B., and Prechelt, L. (1998). The impact of inheritance depth on maitenance
tasks – Detailed description and evaluation of two experiment replications.
Technical Report 19/1998, Facultat fur Informatik, Universitaet Karlsruhe.

Vivanco, R. (2010). Improving predictive models of software quality using Search-
Based Metric Selection and Decision Trees. PhD Thesis, University of

Manitoba.

Wang, H., Khoshgoftaar, T. M., and Seliya, N. (2011). How many software metrics

should be selected for defect prediction. Proceedings of the 24th
International Florida Artificial Intelligence Research Society Conference,
24: 69-74.

Wein, L. M., Wu, J. T., and Kirnl, D. H. (2003). Validation and analysis of a

mathematical model of a replication-competent oncolytic virus for cancer

treatment: Implications for virus design and delivery. Cancer Research, 63:

(6),1317–1324.

© C
OP

UPM

92

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., and Wesslén, A.

(2012). Experimentation in software engineering. New York: Springer.

Wolpert, D. H., and Macready, W. G. (1997). No free lunch theorems for

optimization. IEEE Transactions on Evolutionary Computation, 1: (1) 67-

82.

Wu, F. (2011). Empirical validation of object-oriented metrics on NASA for fault

prediction. In H. Tan and M. Zhou (Eds.), Advances in information
technology and education (pp. 168-175). Heidelberg, Germany: Springer

Berlin Heidelberg.

Xing, F., Guo, L., and Lyu, M. R. (2005). A novel method for early software

quality prediction based on support vector machine. Proceedings of IEEE
International Symposium on Software Reliability Engineering (ISSRE),

213-222.

Zeller, A. (2009). Why programs fail: A guide to systematic debugging (2nd ed.).

Burlingotn MA: Elsevier.

Zhang, Y., Wang, K., Shaw, D., Miles, J., Parmee, I., and Kwan, A. (2006).

Representation and its impact on topological search in evolutionary

computation. Joint International Conference on Computing and Decision
making in Civil and Building Engineering, June 14-16, 2006 – Montreal,

Canada, 2359- 2368

Zhou, Y., and Leung, H. (2006). Empirical analysis of object-oriented design

metrics for predicting high and low severity faults. IEEE Tranactions on
Software Engineering, 32, 771-789.

Zimmer, R., Holte, R., and MacDonald, A. (1997). The impact of representation on

the efficacy of artificial intelligence: The case of genetic algorithms. AI and
Society, 1: 76-87.

