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The Internet has evolved in three directions over the past decades. First, content has 

evolved from relatively low-bandwidth content static text and web pages to high-

bandwidth content multimedia which results in a significant and growing amount 

of bandwidth demand. Second, its usage has explosively globalized. Third, Internet 

access nature has changed from fixed access through desktop computers to a 

mobile access via smart phones and tablets. As a result, the principles of the 

Internet design are no longer suitable for current and future applications (e.g., 

mission-critical and time-critical applications). Network resources management is a 

key success for the future Internet. 

 

 

Furthermore, in the last decade hosts have equipped with multiple interfaces. 

Clearly, that led to the desire of applying load sharing to utilize all paths 

simultaneously to enhance application payload timeliness, and improve resilient to 

problems on a particular path. 

 

 

Readily apparent, Transport layer is the only layer that realizes a path congestion 

control and flow control. In addition, a Transport layer that realizes multi-homing 

does not require modifying the applications or changing the Network layer 

protocol. The Stream Control Transmission Protocol (SCTP) is an emerging multi-

homing general purpose Transport layer protocol. An extension of SCTP denoted 

as Concurrent Multipath Transfer Stream Control Transmission Protocol (CMT-

SCTP) realizes load sharing functionality. This protocol works well for symmetric 

paths. But, in reality symmetric paths are unlikely in networks such as Internet. 

More, multi-homing offers link failure tolerance at Network layer by using 

different access technologies simultaneously to connect through. Different access 

technologies clearly imply highly asymmetric paths. CMT-SCTP over asymmetric 

paths does not work that neatly. 
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In this thesis, phenomena affects CMT-SCTP in asymmetric paths are 

demonstrated. A comprehensive analysis to understand its nature is presented. 

Mechanisms that promote CMT-SCTP performance are implemented and 

evaluated in simulation in order to show their effectiveness. In particular, a 

combination of multiple mechanisms is vital to make CMT-SCTP works more 

neatly under a wide range of network and system parameters. 

 

 

Intrinsically, retransmission strategy controls retransmission behavior when a 

sender fails to receive acknowledgements for sent data due to reorder, lost or 

corrupted packets. An efficient retransmission strategy would help to vitiate buffer 

blocking. A new retransmission strategy denoted as Rtx-HYBRIDMETRIC takes 

into account path’s loss rate and delay is explored. The simulation results show that 

Rtx-HYBRIDMETRIC retransmission strategy performs well for both failure and 

non-failure scenarios in a real configuration. In addition, Taxonomy for SCTP 

retransmission strategies is developed. 

 

 

More, an accurate ROUND TRIP TIME (RTT) is crucial since it is the core of the 

RTO. The RTO must be correctly set to achieve good performance. Interestingly, 

CMT-SCTP efficiency is improved by delayed acknowledgement despite 

additional delay is introduced. However, delayed acknowledgement may lead to 

inaccurate RTT on asymmetric paths. A new strategy called as Immediate SACK 

RTT samples (IS-RTT) is developed for accurate RTT on asymmetric paths. The 

simulation results show that IS-RTT strategy can significantly optimize the RTT 

estimation on asymmetric paths. 

 

 

Finally, CMT buffer split strategy holds equipoise distribution of buffer space 

among asymmetric paths. It reveals tradeoff between giving individual path 

application payload throughput guarantees and maximizing application payload 

throughput. A new strategy denoted as Quick Response Delayed 

Acknowledgement for CMT (QR-DAC) is integrated with buffer split strategy. The 

simulation results show that application payload throughput in a real configuration 

is optimized over asymmetric paths loss rate. 
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Dalam beberapa dekad ini, Internet dan kandungannya telah berkembang pesat 

kepada 3 hala tuju. Yang pertama, daripada laman web yang static dan berasaskan 

teks yang menggunakan jalur lebar yang rendah kepada aplikasi web yang 

mengandungi ciri multimedia. Maka, ia memerlukan jalur lebar yang tinggi untuk 

menampung perubahan ini. Yang kedua, penggunaan internet pada masa sekarang 

telah berkembang pesat secara global. Ketiga, kaedah untuk mengakses internet 

telah berubah, daripada akses tetap menerusi penggunaan komputer peribadi 

kepada akses secara mudah alih menerusi telefon pintar ataupun tablet. 

Perkembangan pesat ini menunjukkan bahawa rekabentuk internet pada masa 

sekarang adalah tidak sesuai untuk aplikasi terkini dan juga masa hadapan. 

(Sebagai contoh, untuk aplikasi misi-kritikal dan kritikal-masa). Maka, pengurusan 

sumber rangkaian adalah satu kunci utama untuk kemajuan internet pada masa 

hadapan. 

 

 

Tambahan pula, dalam dekad yang lalu, setiap hos rangkaian telah dilengkapi 

dengan pelbagai antara muka. Jelas sekali, ia membawa kepada hasrat bagi 

memohon perkongsian beban untuk menggunakan semua laluan serentak dengan 

tujuan meningkatkan peluang muatan aplikasi dan juga daya tahan untuk masalah 

di atas laluan yang tertentu. 

 

 

Secara jelasnya, lapisan pengangkutan adalah satu-satunya lapisan yang 

melaksanakan kawalan kesesakan jalan dan aliran. Di samping itu, lapisan 

pengangkutan ini, yang melaksanakan berbilang homing (multi-homing), tidak 

memerlukan pengubahsuaian aplikasi ataupun penukaran protokol pada lapisan 

rangkaian. Stream Control Transmission Protocol (SCTP) adalah protokol 

berbilang homing (multi-homing) yang baru, terbit daripada lapisan umum 
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pengangkutan. Pengembangan SCTP ditandakan sebagai Concurrent Multipath 

Transfer Stream Control Transmission Protocol (CMT-SCTP) yang melaksanakan 

fungsi perkongsian beban. Protokol ini berfungsi dengan baik untuk laluan simetri. 

Walaubagaimanapun, realitinya laluan simetri tidak mungkin berlaku dalam 

rangkaian seperti Internet. Tambahan pula, teknik berbilang homing ini 

menawarkan pautan toleransi sesar (fault tolerance) di lapisan rangkaian dengan 

menggunakan teknologi akses yang berbeza pada masa yang sama untuk 

peyambungan rangkaian. Teknologi akses yang berbeza jelas menandakan adanya 

laluan asimetri. Tetapi, protokol CMT-SCTP tidak berfungsi yang kemas dalam 

laluan asimetri. 

 

 

Dalam tesis ini, fenomena kesan CMT-SCTP dalam laluan asimetri ditunjukkan. 

Satu analisis yang menyeluruh untuk memahami ciri-cirinya dibentangkan. 

Mekanisme yang menggalakkan prestasi CMT-SCTP dilaksanakan dan dinilai 

dalam simulasi untuk menunjukkan keberkesanannya Secara khususnya, gabungan 

pelbagai mekanisme penting bagi menjadikan CMT-SCTP bekerja lebih kemas di 

bawah pelbagai rangkaian dan parameter system ditunjukkan. 

 

 

Strategi penghantaran semula mengawal perilaku penghantaran semula apabila 

pengirim yang tidak menerima pemakluman bagi data yang dihantar kerana 

penyusunan semula paket yang hilang atau rosak. Strategi penghantaran semula 

yang cekap akan membantu untuk membatalkan penghalang penimbal. Strategi 

penghantaran semula baru ditandakan sebagai HybridMetric, yang 

mempertimbangkan kadar kehilangan laluan dan perlengahan. Keputusan simulasi 

menunjukkan bahawa strategi penghantaran semula HybridMetric, Berjaya 

menunjukkan prestasi yang baik untuk kedua-dua keadaan iaitu; kegagalan dan 

bukan-kegagalan dalam konfigurasi sebenar. Selain itu, taksonomi dua pembalikan 

untuk penghantaran semula strategi SCTP telah dibangunkan. 

 

 

Selain itu, nilai ROUND TRIP TIME (RTT)  tepat adalah penting kerana ia adalah 

teras kepada RTO. RTO mesti ditetapkan dengan betul untuk mencapai prestasi 

yang baik. Menariknya, kecekapan CMT-SCTP bertambah baik apabila 

pemakluman perlengahan pengakuan ditangguhkan walaupun tambahan 

perlengahan diperkenalkan. Walau bagaimanapun, pemakluman perlengahan boleh 

menyebabkan nilai RTT yang tidak tepat dalam laluan asimetri. Satu strategi baru 

yang dinamakan Immediate SACK RTT sampel (IS-RTT) dibangunkan untuk 

mendapatkan RTT yang lebih tepat dalam laluan asimetri. Keputusan simulasi 

menunjukkan bahawa strategi IS-RTT secara ketara boleh meningkatkan anggaran 

RTT di laluan asimetri. 

 

 

Akhir sekali, strategi perpecahan penimbal CMT mempertahankan pengedaran 

keseimbangan ruang penimbal antara laluan asimetri. Ia menunjukkan 

keseimbangan antara jaminan pemberian laluan pemprosesan individu dan 

memaksimumkan daya pemprosesan beban aplikasi. Strategi baru dinamakan 

sebagai Quick Response Delayed Acknowledgement untuk CMT (QR-DAC) 
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disepadukan dengan strategi pemisahan penimbal. Keputusan simulasi 

menunjukkan bahawa daya pemprosesan aplikasi dalam konfigurasi sebenar 

meningkat sedikit. 

. 
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CHAPTER 1 

1 INTRODUCTION 

This chapter identifies potential problems of this thesis, describes the motivation, 

states the scope, defines the objectives, introduces research significant and finally 

shortly introduces its outlines. 

1.1 Overview 

The Internet has evolved in three directions over the past decades. First, content has 

evolved from relatively low-bandwidth content static text and web pages to high-

bandwidth content multimedia which results in a significant and growing amount 

of bandwidth demand. Second, its usage has explosively globalized. Third, Internet 

access nature has changed from fixed access through desktop computers to a 

mobile access through smart phones and tablets. As a result, the principles of the 

Internet design are no longer suitable for current and future applications (e.g., 

mission-critical and time-critical applications). Network resources management is a 

key success for the future Internet (Kende, 2012). 

Mission-critical applications over the Internet (e.g., e-health, e-commerce and 

emergency services) should eliminate Single Point Of Failure (SPOF) to provide 

uninterrupted service during failures. Application layer and Session layer solutions 

take care of handling server failure scenario via server redundancy like Reliable 

Server Pooling (RSerPool) described by (Lei et al., 2008; Dreibholz and Rathgeb, 

2009). However, a Transport layer that support multi-homing could provide a very 

seamless resolution of network failures, which is a more likely failure scenario. 

Transport layer allows multi-homed endpoints to be accessible by redirected traffic 

to a peer alternate IP address (assuming the end-to-end paths do not share the same 

failed link) transparently from the applications or user. The problem of link 

changeover is solved by abstraction in the Transport layer. Furthermore, in mobile 

sessions where Multipath Transport (MPT) can significantly decrease handover 

latencies by redirecting flow density to other alternate paths during mobility events 

(Ahmad et al., 2012). Transport layer is the only layer that realizes a path 

congestion control and flow control. In addition, a Transport layer that realizes 

multi-homing does not require modifying the applications or changing the Network 

layer protocol (i.e. IPv4/IPv6).  

On the other hand, time-critical applications over the Internet (e.g., high 

performance video streaming, video conferencing, and Internet Protocol Television 

(IPTV)) and the existence of multiple paths leads to the desire of applying load 

sharing as suggested by (Dong et al., 2007) to utilize all paths simultaneously in 

order to improve application payload throughput (Natarajan et al., 2006; Natarajan 

et al., 2006; Natarajan et al., 2007). The basic idea is that if the applications are 

able to simultaneously use more than one path through different networks, then 

 

http://en.wikipedia.org/wiki/Handover
http://en.wikipedia.org/wiki/Transport_layer
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they will be able to aggregate capacity across multiple paths and more resilient to 

problems on particular paths. For example, it is possible to shift traffic away from 

failed or congested paths in favor of uncongested paths to provide seamless 

handling surges in traffic. 

1.2 Problem Statement 

In the early days of Internet, endpoints were single-homed (i.e., can be addressed 

by single IP address) due to Network Interface Cards (NIC) high cost. Today, 

endpoints are multi-homed (i.e., can be addressed by multiple Network layer 

addresses (Braden, 1989). Wireless devices may use multiple access technologies 

such as wireless LANs (e.g., Wi-Fi) and cellular networks (e.g., CDMA, GSM).For 

instance, Apple’s iPhone comes standard with Wi-Fi and cellular technologies (e.g., 

GSM or CDMA). Multiple active interfaces connected to different networks imply 

coexist of multiple paths between multi-homed endpoints.  

The Stream Control Transmission Protocol (SCTP) (Stewart et al., 2000; AL Caro 

et al., 2003) is a reliable Transport layer protocol defined by Internet Engineering 

Task Force (IETF)  which natively supports multi-homing for redundancy purpose. 

The Protocol Engineering Laboratory (PEL), University of Delaware has proposed 

an extension of SCTP denoted as Concurrent Multipath Transfer (CMT) realizes 

the load sharing functionality by simply modifying the SCTP sender to transmit 

new application payload to all IP peer addresses (Iyengar et al., 2005; Iyengar et al., 

2006). At first glance, CMT-SCTP seems quite simple and straightforward. 

However, load sharing produces a set of potential challenges over symmetric paths 

(e.g., unnecessary fast retransmissions, crippled congestion window growth, 

superfluous network traffic, buffer blocking and TCP-friendliness) which adds 

protocol overhead (Jungmaier and Rathgeb, 2006; Wallace and Shami, 2012). 

Initially, CMT-SCTP performance over asymmetric paths revealed some of the 

application payload throughput degradation. Even worse, certain scenarios with a 

CMT-SCTP application payload throughput even lower than standard SCTP 

application payload throughput (Dreibholz et al., 2010). For instance, buffer 

blocking may deteriorate transmission on all paths or even may cause interrupt 

transmission due to the asymmetric paths and reasonably small buffer size used by 

CMT-SCTP association. The deployment of CMT-SCTP on the Internet will 

exacerbate challenges due to standard protocol designed towards symmetric paths 

(i.e. roughly have similar bandwidth, delay and loss rate) (Qiao et al., 2007). But, 

in reality, symmetric paths are unlikely in networks such as Internet. Moreover, 

multi-homing offers fault tolerance at Network layer by using different access 

technologies (e.g., ADSL and UMTS). Different access technologies clearly imply 

highly asymmetric paths. On the other hand, in any realistic configuration, the size 

of buffer must be reasonably small due to memory constraint requirements (e.g. the 

default buffer size setup of FreeBSD released 8.2 kernel SCTP is 233,016 bytes) 

(Rüngeler, 2009). As a challenge in this situation, asymmetric paths and small 

buffer size causes CMT-SCTP performance degradation. 
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The following points are represented the thesis problem statement. 

 The buffer blocking is more likely to occur during courses of timeout 

recovery. Moreover, a larger timeout recovery period due to exponential 

backoff (i.e., back-to-back timeouts) results in an even higher 

probability to block the CMT-SCTP sender. Therefore reducing the 

number of timeouts and/or the number of back-to-back timeout will 

vitiate the buffer blocking phenomenon. 

 CMT-SCTP applies Delayed Acknowledgement for CMT (DAC) to 

save storage and processing at routers on the return path despite 

additional delay is introduced (Iyengar et al., 2006). But, delayed 

acknowledgement leads to inaccurate RTT estimation in asymmetric 

paths. 

 Delayed Acknowledgement for CMT overly conservative behavior 

causes a real DATA chunk loss recovery triggered by the SACKs would 

be delayed. That is, the loss is detected after at six more chunks have 

been sent due to DAC. Using standard SCTP behavior, it would have 

been detected after only three chunks. 

1.3 Objectives 

The main objectives of this work are to develop solutions for the revealed 

challenges of the CMT-SCTP in asymmetric paths and limited buffer size 

configuration (i.e., a realistic configuration scenario). 

1. To propose a new retransmission strategy based on retransmission 

strategies (Caro Jr et al., 2006) takes into account path loss rate and 

delay in order to vitiate further application payload throughput 

degradation. 

2. To propose a new strategy for more accurate RTT estimation in 

asymmetric paths for CMT-SCTP. 

3. To propose a new delayed acknowledgement integrated with buffer split 

strategy to promote the application payload throughput by vitiating 

some of the buffer blocking. 

1.4 Motivation 

SCTP has remarkable advanced features over TCP. The main features of SCTP are 

multi-homing, multi-streaming, partial ordered delivery and resistance to Denial Of 

Service (DOS) attacks among the others. Consequently, SCTP can replace TCP as 

a general Transport layer protocol (Dreibholz and Rathgeb, 2008). While (Iyengar 

et al., 2006) has only evaluated CMT-SCTP in symmetric paths setups (i.e., use 

paths have nearly the same bandwidth, delay and loss rate). However, symmetric 

paths cannot be assured for networks like the Internet. 
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However, operate in a multipath environment is not trivial and several potential 

issues could result from several actions that can be taken to handle normal data 

transmission, chunk loss recovery, failover management, and path recovery. The 

research on challenges and solutions for further vitiate of the application payload 

throughput degradation has become a very actively discussed topic. 

1.5 Scope 

The theme of this thesis discusses CMT-SCTP optimizing strategies in asymmetric 

paths and limited buffer configuration. We note that these considerations apply to 

multipath transfer at other protocols as well (e.g., Multipath TCP MPTCP which 

denotes a multipath transfers extension for the TCP protocol (Handley et al., 2011). 

We use SCTP due to its relative maturity (Caro Jr et al., 2006) and our focus on 

Transport layer protocols that exploits endpoint multi-homing feature for 

simultaneous data transfer application payload across multiple paths in a multi-

homed association. In addition, SCTP provides TCP-like reliability, congestion, 

and flow-controlled data transfer to applications (Natarajan et al., 2006).  

In this work, we operate under the strong assumption that DATA chunks are 

transmitted over asymmetric paths and the buffer size is limited and disjoint or at 

least do not share the same bottlenecked paths. 

1.6 Contributions 

The main contributions of this work are; of course; to evaluate CMT-SCTP 

optimizing strategies in asymmetric paths environment and limited buffer 

configuration to improve its performance behavior. 

The main contributions of this work are as follows: 

1. A new retransmission strategy; namely Rtx-HYBRIDMETRIC 

retransmission strategy; based on retransmission strategy Rtx-CWND to 

mitigate some of the buffer blocking in order to vitiate further 

application payload throughput degradation. 

2.  A new strategy; namely Immediate SACK RTT Samples (IS-RTT); for 

more accurate RTT estimation on asymmetric paths for CMT-SCTP. 

3. A new delayed acknowledgement strategy denoted as Quick Response 

DAC (QR-DAC) in order to further enhance CMT-SCTP application 

payload throughput. 

In addition to the main contributions listed above, we have introduced Taxonomy 

for MPT retransmission strategies. More, our taxonomy consists of two 

classification schemes: one that classifies retransmission strategies with respect to 

retransmission path designation and the other classifies them with respect to their 

decision-based scheme to select retransmission path. 
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1.7 Research Significance 

The deployment of CMT-SCTP on the Internet will exacerbate challenges due to 

standard protocol designed towards symmetric paths. The significance of this work 

stems from optimizing CMT-SCTP performance in a realistic configuration. 

1.8 Thesis Organization 

The rest of this thesis is organized as follows:  

Chapter 2 describes the most important ways to multi-homed an endpoint. More, it 

presents an overview of load sharing approaches on different layers of the network 

stack; in particular Transport layer. In addition, Chapter 2 illustrates CMT-SCTP 

basic design and deployment challenges. Finally, Chapter 2 presents the “state of 

the art” of CMT-SCTP optimizing strategies literatures review. 

Chapter 3 introduces commonly used research methodologies to understand and 

investigate network performance. It also briefly illustrates network simulator NS-2 

and its CMT-SCTP model. More, it presents the framework of this thesis and 

explores the stages in detail. General experiment setup, topology, performance 

metrics and their evolution methods, CMT-SCTP model validation are presented in 

this chapter. 

Chapter 4 presents an overview of SCTP retransmission strategies. Taxonomy for 

SCTP retransmission strategies is presented in this chapter. It also introduces a new 

smart retransmission strategy Rtx-HYBRIDMETRIC for further promote 

application payload throughput over asymmetric. The performance of a new 

strategy is demonstrated in this chapter. 

Chapter 5 introduces CMT-SCTP RTT estimation technique. More, delayed 

acknowledgement for CMT-SCTP adversely affects RTT accuracy is illustrated in 

this chapter. It also introduces Immediate SACK round trip time samples IS-RTTY 

strategy for more accurate RTT on asymmetric paths. Performance of IS-RTT is 

demonstrated in Chapter 5. 

Chapter 6 explores nitty-gritty details of the “state of the art” buffer split strategy. 

It also introduces Quick Response DAC QR-DAC further optimizes CMT-SCTP 

application payload throughput in line with buffer split. The performance of QR-

DAC is evaluated using simulations in this chapter. 

Finally, Chapter 7 summarizes the key results and an outlook to future study. 
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