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The Two Stage Least Squares (2SLS) method is the commonly used method to 

estimate the parameters of the Simultaneous Equation Regression Model (SEM). 

This method employs the Ordinary Least Squares (OLS) method twice. Firstly, the 

endogenous X variable is estimated by the OLS and secondly the parameters of the 

SEM are again estimated using the OLS.  

 

 

It is now evident that the OLS method is easily affected by outliers. Consequently 

the 2SLS estimates are less efficient in the presence of outliers. Hence robust 

estimation methods such as the 2SMM, 2SGM6, 2SMMGM6 and 2SGM6MM are 

formulated to remedy this problem. These methods employ two robust methods in 

the first and in the second stages. The findings signify that the 2SGM6MM provides 

the most efficient results compared to other methods.  

 

 

Since the distributions of the proposed methods are intractable, robust bootstraps 

methods are developed to estimate the standard errors of the estimates. The findings 

indicate that the 2SGM6MM bootstraps standard errors of the estimates are the 

smallest compared to other estimates.    

 

 

The identification of high leverage points (HLPs) is very crucial because it is 

responsible for the drastic change in the parameter estimates of various regression 

models.  Nonetheless, thus far no research has been done to detect HLPs in SEM.  

Hence, the Diagnostic Robust Generalized Potential (DRGP), Generalized Potential 

(GP) and Hat Matrix (𝑤𝑖𝑖) are incorporated with OLS, MM and the GM6 estimator 

in the development of diagnostic measures for the identification of HLPs in SEM.  

The results of the study show that the DRGPSEM based on the GM6 estimator is the 

most successful method in the detection of HLPs compared to other methods in this 

study.  
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Disember 2016 
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Fakulti      :  Sains 
 

 

Kaedah Kuasa Dua Terkecil Dua Peringkat (2SLS) adalah kaedah yang biasa 

digunakan untuk menganggarkan parameter Model Regresi Persamaan Serentak 

(SEM). Kaedah ini menggunakan kaedah Kuasa Dua Terkecil Biasa (OLS) dua 

kali.  Pertama, pembolehubah  endogen X  dianggarkan dengan OLS dan pada kali 

keduanya parameter SEM sekali lagi dianggar menggunakan OLS. 

 

 

Kini adalah jelas bahawa kaedah OLS ini mudah dipengaruhi oleh titik terpencil. 

Akibatnya anggaran 2SLS adalah kurang cekap dengan kehadiran titik 

terpencil. Oleh itu kaedah anggaran teguh seperti 2SMM, 2SGM6, 2SMMGM6 dan 

2SGM6MM digubal untuk membetulkan masalah ini. Kaedah ini menggunakan dua 

kaedah teguh di peringkat pertama dan kedua. Dapatan menandakan bahawa 

2SGM6MM memberikan hasil yang paling cekap berbanding dengan kaedah lain. 

 

 

Oleh kerana taburan bagi kaedah yang dicadangkan sukar ditentukan, teguh 

dibangunkan untuk menganggarkan ralat piawai anggaran. Dapatan kajian 

menunjukkan bahawa anggaran ralat piawai bootstrap 2SGM6MM adalah yang 

paling kecil berbanding anggaran lain. 

 

 

Pengenalpastian titik tuasan tinggi (HLP) adalah sangat penting kerana 

ia bertanggungjawab menyebabkan perubahan drastik anggaran parameter bagi 

pelbagai  model regresi. Walau bagaimanapun, setakat ini tidak ada kajian yang 

dilakukan untuk mengesan HLP di dalam SEM. Oleh itu, Potensi Teritlak Teguh 

Berdiagnostik (DRGP), Potensi Teritlak (GP) dan Matriks Topi   (𝑤𝑖𝑖) digabungkan 

dengan OLS, MM dan penganggar GM6 di dalam membangunkan ukuran diagnostik 

untuk mengenal pasti HLP di dalam SEM. Keputusan kajian menunjukkan bahawa 

DRGPSEM berdasarkan penganggar GM6 adalah kaedah yang paling berjaya 

daripada yang lain dalam pengesanan HLP berbanding kaedah lain dalam kajian ini. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Background and Purposes  

Regression analyses are very essential for examining the operative associations 

between many variables, such that the dependent or response variables are 

predictable from single or multiple predictors or descriptive variables (Kutner et al., 

2005). Regression analyses involve model construction, parameters approximations 

(estimates) and predictions. Of the known methods, the ordinary least-squares 

method (OLS), represents the most widespread and prevalent estimating criteria. The 

structure of OLS is grounded on the minimisation of the sums of squared deviations, 

particularly when the errors distribution are normal. The OLS estimators are the 

best-case linear non-biased estimating rules, or BLUE. Technically, OLS estimators 

present the least variances of all potential linear measures. Thus, of all the neutral 

estimating rules, the OLS generates the smallest variances in estimation schemes so 

long as regular assumptions about their error terms are not contravened. As well, the 

maximum likelihood estimators or MLE equal the OLS estimator, given these 

preconditions. The OLS method can generate erratic estimates if assumptions about 

error normality do not hold (Ryan, 1997). With violations in any one of the 

assumptions, the OLS method will exhibit high sensitivity and thus lesser reliability 

as a means of parameters estimation. Moreover, the OLS estimating rules do not 

operate robustly against outlying data and exhibit an exceptionally low breakdown 

point equal to 1/n, whereby n equals the sampling size (Maronna, 1976). 

Some statisticians are unaware of the violations of normality assumptions about error 

terms that may be caused by at least one observed divergence, i.e. outliers. It was 

claimed by Belsley et al., (1980) that observational significance is highest in 

observations which alone or in copious combination have the greatest effect on the 

calculated values of diverse estimates. Barnett and Lewis (1994) pointed out that 

outlier is a data point observed to be significantly distanced from the majority in a 

dataset.   

Many outlier types manifest as problems in regressions. An observation is assessed 

as a residual outlier to the degree it fails to be accommodated in a best-fit regression. 

This explains why data points which corresponds to a sizeable residuals are 

considered as residual outliers. Outliers can take place in three directions. Rosseeuw 

and Zomeren (1990) defined an outlier category in the X-direction, which is referred 

to as high leverage point (HLP). In regression analyses, it is usually necessary to 

identify HLPs, as an observation far-removed from the bulk of independent variables 

that has more effect on a model’s fitting. HLPs are not only distant from the bulk of 

predictors; rather, these also diverge appreciably from regression lines (Belsley et 

al.,(1980) Hocking and Pendelton, (1983) and Rousseeow and Leroy, (1987)). 

Another outlier category appears in the Y-direction or the vertical outlier, an 
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outlying data point with a sizable squared residual from fitting. The third outlier type 

appears in both X- and Y-directions concurrently. 

Prior to remedy the outliers, it must be ascertained that the dataset is actually subject 

to the problem. Effective detections of outliers may result in effective remedies. The 

majority of outlier detection techniques are grounded on OLS procedures which 

exhibit great sensitivity to outlying observations. In any case, a single outlier is 

sufficient to breakdown an OLS estimation (Rousseeuw and Leroy, 1987). 

As implied, simultaneous equation models or SEM is a schematic category centred 

on procedurally generated datasets which are dependent on several interactive 

equations jointly creating on observations. 

In contrast to single-equation model, where dependent or variables (y) functionally 

vary with independent or variables (x), additional variables (y)  operate as 

independent variables in SEM computations. These added variables are mutually and 

concurrently established by the system’s equations. 

These models are subject to the non-independent behaviours of certain descriptive 

variables which appear endogenously in other equations and the error terms, 

resulting in biases and discrepancies in the estimating. Thus, statistical practitioners 

tend to employ reduced forms wherein such internally caused variables occur as 

functions of pre-determined variables. These incorporate both exogenous and 

lagged-endogenous variables which are independent of random errors. There exist 

effective methods for achieving consistent estimation of the system’s coefficients. 

The most frequently employed is the Instrumental Variables approach, or IV. With 

the availability of many instrumental variables, these are merged through first-stage 

regressions and then re-utilised in the second-stage regressions, in a technique 

known as two-stage least-squares, or 2SLS (else TSLS). However, in the event of a 

non-normal error, these would be unproductive. The use of estimated parameter sets 

in subsequent phases (Gao et al., 2008) only worsens the problem. We have an on-

going need to discover estimation procedures of greater robustness and reliability for 

simultaneous equation models (Mishra, 2008). 

1.2 Significance and Purpose of the Study 

Simultaneous equation models are among the most useful econometric models. For 

estimating the coefficient in these models, the two-stage least-squares technique 

(2SLS) is traditionally employed as it is readily computed. But the existence of 

single or numerous outsized outliers in datasets can undermine 2SLS estimations. 

Several authors claimed that atypical data points normally comprise 1–10% of actual 

datasets (Hampel et al., 1986; Wilcox, 2005). The presence of HLPs in observations 

impact 2SLS estimates more seriously than outlying y-variable data points. 

Simultaneous regression estimators consequently exhibit breakdowns when outliers 
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are present, as just one outlier is sufficient to undermine estimates (Rousseeuw and 

Leroy, 1987). 

Unfortunately, to date, not much work has been focus on the parameter estimations 

of simultaneous equation model in the presence of outliers.  The 2SLS method is the 

most widely used method to estimate the parameters of the SEM.  In the 2SLS 

method,   the   OLS method is used to estimate the endogenous X variable and then 

again the OLS is used to estimate the parameters of the models. It is now evident that 

the OLS is very sensitive to outliers and produces very poor result.  To remedy this 

problem (Insha  Allah (2006), Hassan (2012), Ahmed et al., (2013) propose to use 

the 2SM whereby the M estimator is employed to estimate the endogenous X 

variable and then again the M estimator is used to estimate the parameters of the 

SEM.  However, the M estimator has shortcoming in which it  has very low 

breakdown point and not robust against HLPs.  Therefore, to acquire effective 

parametric estimates, we suggest employing efficient robust methods in obtaining 

the estimates for the parameters of SEM. Pena and Yohai, (1995) stated that HLP 

occurrences account for outlying data points being swamped and masked in 

simultaneous regressions. Since HLPs have a drastic effect on the parameter 

estimates, their effect need to be reduced.   The Generalized – M estimator (GM6) is 

very efficient in reducing the effect of HLPs. In this respect we incorporated the 

GM6 estimator to  firstly estimate the endogenous X variable.  Subsequently we 

suggest using the high–breakdown and high efficiency MM estimator to estimate the 

parameters of the SEM. No such   attempt has been done and we anticipate that it 

will give good results.  Additionally, we suggest to investigate a variety of 

combination of robust methods such as 2SMM, 2GM6, 2SMMGM6, 2 SGM6MM 

for the estimations of parameters in the first and the second stage.  

 It is now evident that HLPs greatly   influence the parameter estimations of SEM. 

Thus the detections of HLPs are important. The use of Hadi s’ potential  (Hadi,( 

1992)) can assist in detecting single leverage points, but the method is ineffective in 

recognising multiple HLPs as a result of swamping and masking effect  (Rousseeuw 

and Leroy, (1987); Ruppert and Simpson, (1990); Imon, (1996); Imon, (2005), 

Habshah et al., (2009)). 

Prior to remediation against HLPs, it must be determined if the dataset is actually 

subject to the problem. Effective detections of HLPs can result in effective remedies. 

The majority of detection methods for HLPs are based on OLS techniques that 

exhibit great sensitivity to HLPs. Imon (1996) proposed the generalised potential 

approach, or GP, for diagnosing and identifying multiple HLPs. The conceptual 

advantage of generalised potentials is in the extension of a single-case deletion to a 

group-case deletion. However, Habshah et al. (2009) showed that the GP method is 

not highly viable in detecting HLPs owing to its inefficiency in selecting for the 

initialised base sub-set, which is still subject to masking influences. Habshah et al., 

(2009) developed the diagnostic robust generalised potentials methods, or DRGP, to 

resolve the issue, which has been proven to be very effective in diagnosing for 

HLPs.  
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To the best of our knowledge, no work has been focussed on the detection of HLPs 

in SEM. To close this gap in the literature, we attempt to develop technique of 

identification of HLPs in SEM.   The propose method first requires estimating the 

endogenous variable X by using GM6 estimator and  then adopt the DRGP of 

Habshah et al. (2009) to detect HLPs. 

1.3 Research Objectives 

The primary purpose of this study is to examine the outliers’ problem in 

simultaneous regression models. Classical techniques of diagnosis of HLPs, and 

estimation of the model parameters are usually based on ordinary least-squares 

(OLS) estimates, even though the approach is not resilient in handling outliers’ 

problem. Thus, it is vital to improve the classical estimation procedures to be more 

robust in the presence of outlying data.  In this research, we only focussed on two 

simultaneous equations model. Towards these ends, the primary goals of our 

investigation are presented in the following: 

1- To develop a new method of estimating the common independent variable 

(endogenous X variable) in SEM. 

2- To propose new estimation method for estimating the parameters of the 

simultaneous equations models in the presence of outliers. 

3- To develop robust bootstraps technique to estimate the standard errors of 

the proposed robust estimates in Sem. 

4-  To develop a new method of identifying high leverage points in 

simultaneous equation model.  

 

 

1.4 Thesis Outline 

In line with the objectives and scope of this research, the subjects of the thesis are 

arranged in six sections. After the introduction, the various sections are ordered such 

that research goals are clearly presented in the outlined sequence. 

Chapter Two. This segment presents a concise survey of the literature on the least-

squares estimation technique and the issues of violating its causal assumptions, e.g. 

departures of normality and the problematic existence of outliers. The nature of 

outlying data, HLPs, and their diagnosis are covered. In addition, the fundamental 

concepts of reliable regression analyses as well as certain robust estimation criteria 

are similarly discussed, along with explanations of efficiencies, breakdown points, 

and bounded influences. The impacts and estimation and diagnostic procedures are 

likewise emphasised. At the end of the section, concise appraisals of reliable 

methods for detecting outliers and estimating for simultaneous regressions equation 

are offered. 
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Chapter Three. In this segment, we suggest reliable robust two-stage techniques for 

parameter estimations of SEM in the presence of HLPs.  Monte Carlo simulation 

study and real data are used to evaluate the performances of various two-stage 

procedures.  The robust bootstrap standard errors of the parameter estimates are 

exhibited. 

Chapter Four. In this segment, the detection of HLPs methods based on OLS, MM 

and GM6 of the SEM are discussed. The proposed methods are DRGP, GP and 𝑤𝑖𝑖  
which is based on the OLS, MM and GM6 estimates respectively. Certain real 

datasets and a Monte Carlo simulation study are used to evaluate the performance of 

our recommended approaches.   

Finally, Chapter Five.  This chapter provides a summary and detailed discussion of 

the results, contributions, and recommendations for further research. 
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