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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of 

the requirement for the Degree of Doctor of Philosophy 

TWO STEP RUNGE-KUTTA-NYSTRӦM METHOD FOR SOLVING SECOND-

ORDER ORDINARY DIFFERENTIAL EQUATIONS 

By 

LATIFAH BINTI MD ARIFFIN 

December 2016 

Chairman: Professor Dato’ Mohamed Bin Suleiman, PhD 

Faculty: Science 

In this research, methods that will be able to solve the second order initial value 

problem (IVP) directly are developed. These methods are in the scheme of a multi-step 

method which is known as the two-step method. The two-step method has an advantage 

as it can estimate the solution with less function evaluations compared to the one-step 

method. The selection of step size is also important in obtaining more accurate and 

efficient results. Smaller step sizes will produce a more accurate result, but it lengthens 

the execution time.  

Two-Step Runge-Kutta (TSRK) method were derived to solve first-order Ordinary 

Differential Equations (ODE). The order conditions of TSRK method were obtained by 

using Taylor series expansion. The explicit TSRK method was derived and its stability 

were investigated. It was then analyzed experimentally. The numerical results obtained 

were analyzed by making comparisons with the existing methods in terms of maximum 

global error, number of steps taken and function evaluations. 

The explicit Two-Step Runge-Kutta-Nyström (TSRKN) method was derived with 

reference to the technique of deriving the TSRK method. The order conditions of 

TSRKN method were also obtained by using Taylor series expansion. The strategies in 

choosing the free parameters were also discussed. The stability of the methods derived 

were also investigated. The explicit TSRKN method was then analyzed experimentally 

and comparisons of the numerical results obtained were made with the existing 

methods in terms of maximum global error, number of steps taken and function 

evaluations.  

Next, we discussed the derivation of an embedded pair of the TSRKN (ETSRKN) 

methods for solving second order ODE. Variable step size codes were developed and 

numerical results were compared with the existing methods in terms of maximum 
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global error, number of steps taken and function evaluations. The ETSRKN were then 

used to solve second-order Fuzzy Differential Equation (FDE). We observe that 

ETSRKN gives better accuracy at the end point of fuzzy interval compared to other 

existing methods.   

In conclusion, the methods developed in this thesis are able to solve the system of 

second-order differential equation (DE) which consists of ODE and FDE directly. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk Ijazah Doktor Falsafah 

KAEDAH RUNGE-KUTTA-NYSTRӦM DUA LANGKAH BAGI 

MENYELESAIKAN PERSAMAAN PEMBEZAAN BIASA PERINGKAT DUA 

Oleh 

LATIFAH BINTI MD ARIFFIN 

Disember 2016 

Pengerusi: Profesor Dato’ Mohamed Bin Suleiman, PhD 

Fakulti: Sains 

Di dalam kajian ini, kaedah yang boleh menyelesaikan masalah nilai awal secara terus 

dibangunkan. Kaedah ini adalah di dalam skim multi-langkah di mana ia dikenali 

sebagai kaedah dua-langkah. Kaedah dua-langkah mempunyai kelebihan di mana ia 

boleh menganggar penyelesaian dengan kurang penilaian fungsi berbanding dengan 

kaedah satu-langkah. Pemilihan saiz langkah juga penting bagi memperolehi keputusan 

yang lebih jitu dan efisyen. Saiz langkah yang kecil akan menghasilkan keputusan yang 

lebih jitu, tetapi ia akan memanjangkan tempoh masa pelaksanaan. 

Kaedah Runge-Kutta Dua Langkah (RKDL) diterbitkan bagi menyelesaikan Persamaan 

Pembezaan Biasa (PPB) peringkat satu. Syarat peringkat bagi kaedah RKDL tak 

tersirat diperolehi dengan menggunakan kembangan siri Taylor. Kaedah RKDL tak 

tersirat diterbitkan dan kestabilannya dikaji. Ia kemudiannya dianalisa secara 

eksperimen. Keputusan berangka yang diperolehi dianalisa dengan membuat 

perbandingan bersama kaedah-kaedah  sedia ada berdasarkan kepada ralat global 

maksimum, bilangan langkah dan penilaian fungsi. 

Kaedah Runge-Kutta-Nyström Dua Langkah (RKNDL) tak tersirat diterbitkan 

mengikut teknik seperti penerbitan kaedah RKDL. Syarat peringkat bagi kaedah 

RKNDL juga diperolehi dengan menggunakan kembangan siri Taylor. Strategi 

pemilihan parameter bebas juga dibincangkan. Kestabilan kaedah-kaedah ini juga 

dikaji. Kaedah RKNDL tak tersirat ini kemudiannya dianalisa secara eksperimen dan 

perbandingan dilakukan bersama kaedah-kaedah sedia ada berdasarkan kepada ralat 

global maksimum, bilangan langkah dan penilaian fungsi.  

Seterusnya kami membincangkan penerbitan kaedah Benaman RKNDL (BRKNDL) 

bagi menyelesaikan PPB peringkat dua. Kod langkah berubah dibangunkan dan 

keputusan berangka dibandingkan dengan kaedah-kaedah sedia ada berdasarkan kepada 

ralat global maksimum, bilangan langkah dan penilaian fungsi. Kaedah BRKNDL ini 
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kemudiannya digunakan untuk menyelesaikan Persamaan Pembezaan Kabur (PPK). 

Kami mendapati bahawa kaedah BRKNDL memberi kejituan yang lebih baik pada titik 

hujung selang kabur berbanding dengan kaedah-kaedah sedia ada. 

Kesimpulannya, kaedah-kaedah yang diterbitkan di dalam tesis ini dapat 

menyelesaikan sistem persamaan pembezaan (PP) yang merangkumi PPB dan PPK 

peringkat dua secara terus. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Introduction 

 

Many problems in engineering and science can be formulated in terms of differential 

equations. These problems arise in mechanical and electrical systems, celestial and 

orbital mechanics, molecular dynamics, seismology and many other engineering 

problems. A differential equation is defined as an equation that involves a relation 

between an unknown function with one or more of its derivatives. Basically, a 

differential equation involving only ordinary derivatives with respect to single 

independent variable is called Ordinary Differential Equation (ODE). Meanwhile, a 

differential equation involving partial derivatives with respect to more than one 

independent variable is called Partial Differential Equation (PDE). Furthermore, ODE 

may be classified as either initial-value problem (IVP) or boundary-value problem 

(BVP). 

 

 

The most discussed IVP are in class of the first and second order. These problems can 

be solved analytically when they are linear. However, very few nonlinear problems can 

be solved analytically. Thus, one must rely on numerical scheme to solve these 

problems. Methods for solving IVP numerically are classified into two schemes, which 

are the one-step method and the multi-step method. Many numerical one-step methods 

have been developed such as Euler method, Runge-Kutta (RK) method and Taylor 

series method where these methods are used to solve the first order IVP directly. These 

methods are also being used to solve the second order IVP indirectly by reducing it to 

the first order equations system. Even though this approach is easy to implement but it 

will enlarge the equation system and will increase the cost for the process.  

 

 

1.2 Objectives of the Thesis 

 

 

The main objective of this thesis is to develop a two-step Runge-Kutta-Nyström 

(TSRKN) method with a constant step-size and a variable step-size for solving special 

second-order IVP directly. The objectives can be accomplished by: 

1. Develop the order conditions for two-step Runge-Kutta (TSRK) by using Taylor 

series expansion, derive the TSRK method and implement the method to solve 

first order IVP using constant step-size code; 

2. Develop the order conditions for TSRKN  by using Taylor series expansion, 

derive the TSRKN method and implement the method to solve special second 

order IVP using constant step-size code; 

3. Investigate the stability and convergence of the derived TSRK and TSRKN 

methods; 
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4. Derive the embedded two-step Runge-Kutta-Nyström (ETSRKN) method and 

implement the method to solve special second order IVP using variable step-size 

code; 

5. Solve second order fuzzy differential equations (FDE) by using ETSRKN method 

that had been derived previously to show the ability of the method to solve other 

type of DEs. 

 

 

1.3 Outline of the Thesis 

 

 

In Chapter 1, a brief introduction on differential equations and the application of 

numerical methods for solving different types of differential equations are given. 

 

 

In Chapter 2, a brief introduction to IVP and Taylor series expansion were given. Then 

earlier researches related to TSRK and TSRKN methods for solving first order ODE 

and, second order ODE and FDE were provided. The stability properties for these 

methods were also presented. Some basic definitions and theorems related to the 

subject were also given. FDE and FIVP were discussed at the end of this chapter. 

 

 

In Chapter 3, we start with the development of the order conditions from order one up 

to order four for TSRK method by using Taylor series expansion. Based on the order 

conditions obtained, we derived the two-stage third-order TSRK explicit method. The 

strategies of choosing the free parameters of the method for developing a more accurate 

computed solution are also discussed. The convergence of the method is proven and the 

stability regions of the method are presented. To illustrate the efficiency of the method, 

a number of tested problem are validated and the numerical results are compared with 

existing RK method of the same order derived by Dormand (1996) and Butcher (1987). 

Stability interval for all methods will also be presented. 

 

 

Chapter 4 will discuss the development of order conditions from order one up to order 

four for TSRKN method by using Taylor series expansion. A two-stage third-order and 

three-stage fourth-order explicit TSRKN method were derived using the same strategy 

as found in Chapter 3. Several problems are solved and their numerical results are 

compared with the existing RK method of the same order. For existing RK method of 

order three, comparisons are made with methods derived by Butcher (1987) and van 

der Houwen and Sommeijer (1987). Likewise, comparisons are made with RK method 

of order four derived by Lambert (1991) and RKN method of order four derived by van 

der Houwen and Sommeijer (1987). Stability interval for all methods will also be 

presented. 

 

 

For variable step-size, the development of an embedded pair for explicit TSRKN 

(ETSRKN) methods based on formulas derived in Chapter 4 are discussed in Chapter 

5. The choices of free parameters in obtaining the optimized pair are also discussed. 

Special second-order IVP are solved including oscillating problems. Numerical results 

and their performances are presented. For the new ETSRKN 3(2) pair, comparisons are 

made with an existing embedded RK 3(2) pair derived by Dormand (1996). 
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Meanwhile, for the new ETSRKN 4(3) pair, comparisons are made with an existing 

embedded RK 4(3) pair derived by Butcher (1987) and Fehlberg (1970). The ETSRKN 

4(3) pair method then is adapted for solving second-order fuzzy differential equations. 

Two fuzzy problems are solved and their numerical results are compared with the 

existing embedded RK method.  

 

Finally, the summary of the whole thesis, conclusions and future research are given in 

Chapter 6. 

 

 

1.4 Motivation and Contribution of the Thesis 

 

 

Many differential equations which appear in practice are systems of second order IVP. 

This system can be reduced into first order differential equations of doubled dimension. 

In this study we are focusing on solving the second order IVP directly. Our proposed 

method able to solve the second order problems directly that is TSRKN method. We 

focus only on the explicit type of method. In addition to the implementation of the 

method, accuracy and stability are two other factors used for judging the efficacy of the 

methods.  

 

1.5 Scope of the Thesis 

 

 

This study concentrate on the development of new coefficient and efficient codes that 

are based on explicit TSRKN methods for numerical solution of IVP. These methods 

will then be used for solving system of second order ODEs directly for both constant 

and variable step size mode. The properties of this method will be analyzed in terms of 

order, consistence and convergence. Our main motivation is to reduce the number of 

steps taken in solving second order IVP directly by using this method as well as to 

reduce the number of function evaluations where it will ensure cost efficiency.  
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