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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of
the requirement for the degree of Doctor of Philosophy

ITERATIVE METHODS FOR SOLVING SPLIT COMMON FIXED
POINT PROBLEMS IN HILBERT SPACES

By

LAWAN BULAMA MOHAMMED

December 2016

Chair: Professor Adem Kılıçman, PhD
Faculty: Science

The split common fixed point problems (SCFPP) attracted and continued to attract the
attention of many researchers; this is due to its applications in many branches of math-
ematics both pure and applied. Further, SCFPP provides us with a unified structure to
study large number of nonlinear mappings. Our interest here is to apply these map-
pings to propose some algorithms for solving split common fixed point problems and
its variant forms, in the end, we prove the convergence results of these algorithms.

In other words, we construct parallel and cyclic algorithms for solving the split com-
mon fixed point problems for strictly pseudocontractive mappings and prove the conver-
gence results of these algorithms. We also suggest some iterative methods for solving
the split common fixed point problems for the class of total quasi asymptotically nonex-
pansive mappings and prove the convergence results of the proposed algorithms. As a
special case of this split common fixed point problems, we consider the split feasibility
problem and prove its convergence results.

To solve the split common fixed point problems, one needs to estimate the norm of
the bounded linear operator. To determine the norm of this bounded linear operator
is a tough task. In this regard, we consider an algorithm for solving such a problem
which does not need any prior information on the norm of the bounded linear operator
and establish the convergence results of the proposed algorithm. These were done by
considering the class of demicontractive mappings.

We also formulate and analyse algorithms for solving the split common fixed point
equality problems for the class of finite family of quasi-nonexpansive mappings. Fur-
thermore, we propose another problem namely split feasibility and fixed point equality
problems and suggest some new iterative methods and prove their convergence results
for the class of quasi-nonexpansive mappings.

i



© C
OPYRIG

HT U
PM

Finally, as a special case of the split feasibility and fixed point equality problems, we
consider the split feasibility and fixed point problems and propose Ishikawa-type extra-
gradients algorithms for solving these split feasibility and fixed point problems for the
class of quasi-nonexpansive mappings in Hilbert spaces. In the end, we prove the con-
vergence results of the proposed algorithms.

Results proved in this thesis continue to hold for different types of problems, such as;
convex feasibility problem, split feasibility problem and multiple-set split feasibility
problems. For more details, see Chapter 3 Corollaries 3.4.1, 3.4.2, 3.4.3 and 3.4.4.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Doktor Falsafah

KAEDAH LELARAN UNTUK MENYELESAIKAN MASALAH TITIK
TETAP PISAH SEPUNYA DALAM RUANG HILBERT

Oleh

LAWAN BULAMA MOHAMMED

Disember 2016

Pengerusi: Profesor Adem Kılıçman, PhD
Fakulti: Sains

Masalah titik tetap sepunya yang terpisah (SCFPP) menarik minat pengkaji, dahulu dan
akan datang, kerana aspek gunaanya dalam cabang matematik tulen dan matematik gu-
naan. Selanjutuya, SCFPP memberikan struktur yang sepadu untuk kajian pemetaan
bukan linear dengan nombor yang besar. Tumpuan kami di sini ialah untuk menggu-
nakan pemetaan tersebut berkaitan algoritma penyelesaian masalah titik tetap sepunya
yang terpisah dan bentuk variannya, dan kami buktikan keputusan penumpuan algo-
ritma berkenaan.

Dalam kata lain, kami bina algoritma selari dan berkala dalam penyelesaian masalah
titik tetap sepunya yang terpisah untuk pemetaan psedukecutan dan membuktikan
keputusan penumpuan algoritma tersebut. Kami turut mencadangkan kaedah lelaran
untuk penyelesaian masalah titik tetap sepunya yang terpisah bagi kelas pemetaan
bukan mengembang yang berkuasi total asimptot, dan membuktikan keputusan penu-
mpuan algoritma. Sebagai kes khusus masalah titik tetap sepunya, kami pertimbangkan
masalah terpisah yang tersaur serta membuktikan keputusan penumpuan.

Untuk menyelesaikan masalah titik tetap sepunya, kita diperlukan untuk menganggar
norma peng-operasi linear yang terbatas. Menetukan norma pengoperasi linear ter-
batas, merupakan usaha yang sukar. Dalam hubungan ini, kami mempertimbangkan
algoritma bagi penyelesaian masalah yang tidak memerlukan maklumat awalan di atas
norma pengoperasi linear serta membukti keputusan penumpuan yang dicadangkan.
Hal ini dilakukan dengan pertimbangan kelas pemetaan demikecutan. Kami merumus
dan menganalisis algoritma penyelesesian masalah kesamaan titik tetap sepunya bagi
kelas tak terhingga untuk keluarga pemetaan quasi - bukankembangan yang terhingga.
Seterusnya kami cadangkan masalah lain, iaitu masalah tersaur terpisah dan titik tetap
kesamaan serta mencadangkan kaedah letaran yang baru dan membuktikan keputusan
sifat penumpuannya bagi kelas pemetaan quasi-bukan kembangan. Akhirnya, kami
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pertimbangkan untuk kes khusus masalah pemisahan tersaur dan kesamaan titik tetap,
masalah pemisahan tersaur dan titak tetap kesamaan dan cadangkan algoritma jenis-
Ishikawa kecerunan lebih untuk menyelesaikan masalah pemisahan tersaur dan masalah
titik tetap untuk keluarga pemetaan quasi-bukan kembangan dalam ruang Hilbert.
Akhirnya, kami buktikan keputusan penumpuan algoritma yang dicadangkan.

Keputusan yang dibuktikan di dalam tesis ini boleh digunakan untuk beberapa jenis
masalah yang berbeza, seperti; masalah boleh laksana cembung, masalah boleh laksana
pisah, dan masalah boleh laksana pisah set-berganda. Untuk lebih mendalam, lihat Bab
3 Korolari 3.4.1, 3.4.2, 3.4.3 and 3.4.4.
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CHAPTER 1

INTRODUCTION

1.1 Background

Functional analysis is an abstract branch of mathematics that originated from classi-
cal analysis. The impetus came from; linear algebra, problems related to ordinary
and partial differential equations, calculus of variations, approximation theory, inte-
gral equations, and so on. Functional analysis can be defined as the study of certain
topological-algebraic structures and of the methods by which the knowledge of these
structures can be applied to analytic problems (Rudin (1973)).

Fixed point theory (FPT) is one of the most powerful and fruitful tools of modern
mathematics and may be considered a core subject of nonlinear analysis. It has been
a nourishing area of research for many mathematicians. The origins of the theory,
which date to the later part of the nineteenth century, rest in the use of successive
approximations to establish the existence and uniqueness of the solutions, particularly
to differential equations, for example, see Arino et al. (1984); Yamamoto (1998); Taleb
and Hanebaly (2000); Nieto and Rodrı́guez-López (2005); Pathak et al. (2007); Sestelo
and Pouso (2015) and references therein.

The classical importance of fixed point theory in functional analysis is due to its use-
fulness in the theory of ordinary and partial differential equations. The existence or
construction of a solution to a differential equation often reduces to the existence or
location of a fixed point for an operator defined on a subset of a space of functions.
Fixed point theory had also been used to determine the existence of periodic solutions
for functional differential equations when solutions are already known to exist, for ex-
ample, see Chow (1974); Grimmer (1979); Torres (2003); Kiss and Lessard (2012) and
references therein.

Related to the FPT, we have the split common fixed point problems (SCFPP). The
SCFPP was introduced and studied by Censor and Segal (2009b) as a generalization of
many existing problems in nonlinear sciences, both pure and applied. Moreover, Cen-
sor and Segal (2009b) had shown that the problem of fixed point, convex feasibility,
multiple-set split feasibility, split feasibility and much more can be studied more con-
veniently as SCFPP. The results and conclusions that are true for the SCFPP continue
to hold for these problems, and it shows the significance and range of applicability
of the SCFPP. One of the important applications of SCFPP can be seen in intensity
modulation radiation therapy (IMRT), for more details, see Censor et al. (2006).

This research work falls within the general area of “Nonlinear Functional Analysis”,
an area with the vast amount of applicability in the recent years, as such becoming
the object of an increasing amount of study. We focus on an important topic within
this area “Iterative Methods for Solving Split Common Fixed Point Problems in
Hilbert Spaces.”

1
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In this regard, we discuss the SCFPP and its variant forms. We show that already known
problems are special cases of the split common fixed point problems (SCFPP). We use
approximation methods to suggest different iterative algorithms for solving SCFPP and
its variant forms. In the end, we give the convergence results of these algorithms.

1.2 Problem Formulations

Mathematically, the convex feasibility problem (CFP) consist as finding a vector x∗

such that

x∗ ∈
N⋂

i=1
Ci, (1.1)

where Ci, i = 1,2,3, ...,N are closed and convex subset of H1.

The multiple set split feasibilty problems (MSSFP) was introduced by Censor et al.
(2005), and is formulated as:

Find x∗ ∈
N⋂

i=1
Ci such that Ax∗ ∈

M⋂
j=1

Q j, (1.2)

where Ci, i = 1,2,3, ...,N and Q j, j = 1,2,3, ...,M are closed convex subset of H1 and
H2, respectively, and A : H1→ H2 is a bounded linear operator.

If M = N = 1, Equation (1.2) reduces to

find x∗ ∈C such that Ax∗ ∈ Q. (1.3)

Equation (1.3) is known as the split feasibility problem (SFP).

Since every nonempty closed convex subset of Hilbert space is a fixed point of its
associating projection, then, Problem (1.1) and (1.2) becomes:

x∗ ∈
N⋂

i=1
Fix(Ti), and (1.4)

x∗ ∈
N⋂

i=1
Fix(Ti) such that Ax∗ ∈

M⋂
j=1

Fix(U j). (1.5)

Equation (1.4) and (1.5) are called common fixed point problem (CFPP) and split com-
mon fixed point problem (SCFPP), respectively, where Ti : H1 → H1 (i = 1,2,3,...,N)
and U j : H2→ H2 (j= 1,2,3,...,M) are some nonlinear operators.

2
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1.3 Objectives of the Thesis

The main objectives are:

• To construct parallel and cyclic algorithms for solving the split common fixed
point problems and prove the convergence results of the proposed algorithms.

• To propose iterative algorithms for solving the split common fixed point prob-
lems for total quasi asymptotically nonexpansive mappings and prove the con-
vergence results of these algorithms.

• To study the split feasibility problems for total quasi asymptotically nonexpan-
sive mappings in Hilbert spaces. To discuss the solutions to these problems, we
will suggest some algorithms and prove the convergence results of these algo-
rithms.

• To propose Ishikawa-type extra-gradient algorithms for solving the split feasibil-
ity and fixed point problems for quasi-nonexpansive mappings in Hilbert spaces
and prove the convergence results of the proposed algorithms.

• To propose the split feasibility and fixed point equality problems (SFFPEP) and
split common fixed point equality problems (SCFPEP). To discuss the solutions
to these problems, we will suggest some algorithms and study their convergence
for the class of quasi-nonexpansive mappings.

1.4 Scope and Limitation

1.4.1 Scope

This research work will focus on an approximation of the split common fixed point
problems for the class of; quasi-nonexpansive mappings, strictly pseudocontractive
mappings, demicontractive mappings and total quasi-asymptotically nonexpansive
mappings. Also to consider these mappings and suggest some algorithms for solv-
ing split common fixed point problems and its variant forms. At the end to give the
weak and strong convergence results of the proposed algorithms.

1.4.2 Limitation

This research work is theoretically in nature, and will focus mainly on an approximation
of the split common fixed point problems and its variant forms in the general content
of Hilbert spaces.

3
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1.5 Thesis Outlines

This thesis organizes as follows:

In Chapter 1, we give the background of the research, objectives, scope and limitation,
outlines of the thesis, fundamental concepts and preliminary results from the literature.
Furthermore, we include some useful properties of Hilbert space and also consider use-
ful properties of different classes of nonlinear mappings. These properties are utilized
in the proof of the main results of this thesis.

Chapter 2 gives an overview of the split common fixed point problems and its variant
forms.

In Chapter 3, we study parallel and cyclic algorithms for solving the split common fixed
point problems for the finite family of strictly pseudocontractive mappings in Hilbert
spaces and prove the weak and strong convergence theorems of these algorithms. Also,
we give some special cases of our suggested methods.

In Chapter 4, we study the SCFPP for total quasi asymptotically nonexpansive
mappings in Hilbert spaces, this class of mapping generalizes the class of quasi-
nonexpansive and asymptotically quasi-nonexpansive mappings. To discuss the so-
lution of this type of mapping, we suggest some iterative algorithms and discuss the
convergence of these algorithms. Furthermore, we consider an algorithm for solving
the split common fixed point problems which does not need any prior information on
the norm of the bounded linear operator and establish the convergence results of the
proposed algorithm. These were done by considering the class of demicontractive map-
pings. In the end, we give some special cases of our suggested methods.

In Chapter 5, we study the split feasibility problem for total quasi asymptotically non-
expansive mappings in Hilbert spaces. To discuss the solutions of this problem, we
suggest some algorithms and prove their convergence results. In the end, we give some
special cases of our suggested methods

In Chapter 6, we study Ishikawa-type extra-gradient algorithms for solving split fea-
sibility and fixed point problems for quasi-nonexpansive mappings in Hilbert spaces.
Under some mild conditions imposed on the parameters and operators involved, we
prove the convergence results of the proposed algorithms.

Chapter 7 deal with the following problems:

• Split feasibility and fixed point equality problems (SFFPEP);

• Split common fixed point equality problems (SCFPEP).

We study these problems for the class of quasi-nonexpansive mappings. Furthermore,
we suggest new iterative algorithms and study their convergence results for the pro-
posed problems. Finally, we give some special cases of our proposed methods.

4
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Finally, in Chapter 8, we give the summary and conclusion of our research work. Some
future works are also presented to provide a future research direction.

1.6 Basic Concepts and Definitions

1.6.1 Introduction

In this section, we give some definitions and basic results. We start from the definition
of vector space and end with some results from Hilbert spaces. Those results that are
commonly used in all the chapters are given in this section, and those results that are
relevant to a particular chapter are provided at the beginning of each chapter. In short,
this section works as a foundation for the structure of this thesis.

1.6.2 Vector Spaces

Vector spaces play a vital role in many branches of mathematics. In fact, in various
practical (and theoretical) problems we have a set V whose elements may be vectors
in three-dimensional space, or sequences of numbers, or functions, and these elements
can be added and multiplied by constants (numbers) in a natural way, the result being
again an element of V. Such concrete situations suggest the concept of a vector space as
defined below. The definition will involve a general field F, but in functional analysis,
F will be R or C. The elements of F are called scalars, while in this thesis they will be
real or complex numbers.

Definition 1.1 A vector space over a field F is a nonempty set denoted by V together
with addition (+) and scalar multiplication (.) satisfies the following conditions:

(i) x+y=y+x, for all x,y ∈V ;

(ii) x+(y+w)=(x+y)+w, for all x,y,w ∈V ;

(iii) there exists a vector denoted by θ such that x+θ = x, for all x ∈V ;

(iv) for all x ∈V , there exists a unique vector denoted by (-x) such that x+(−x) = θ ;

(v) α.(β .x) = (α.β ).x, for all α,β ∈ F and x ∈V ;

(vi) α.(x+ y) = α.x+α.y, for all x,y ∈V and α ∈ F;

(vii) (α +β ).x = α.x+β .x, for all α,β ∈ F and x ∈V ;

(viii) there exists 1 ∈ F such that 1.x = x, ∀x ∈V.

Remark 1.1 From now we will drop the dot (.) in the scalar multiplication and denote
α.β as αβ .
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Let v1,v2,v3, ...,vn ∈ V and α1,α2,α3, ...,αn be scalars. Consider the equation:

α1v1 +α2v2 +α3v3 + ...+αnvn = 0. (1.6)

Trivially, α1 = α2 = α3 = ... = αn = 0 solves Equation (1.6). If it is possible to have
the solution of Equation (1.6) with at least one of the αi′s non zero, then the vectors
v1,v2,v3, ...,vn are called Linearly Dependent otherwise they are called Linearly In-
dependent.

If M ⊆V consist of a linearly independent set of vectors; we say that M is a linearly
independent set.

Definition 1.2 Span of M (SpanM) is defined as the set of all linear combination
of M, i.e., SpanM = {α1v1 +α2v2 +α3v3 + ...,v1,v2,v3, ... ∈ V, where α1,α2, ... are
scalars}.

Definition 1.3 Let M⊆V. M is said to be basis for the space V, if

(i) M is a linearly independent set,

(ii) SpanM = V.

Definition 1.4 Let V be a vector space, the dimension of V (dimV) is the number of
vectors of the basis of V. V is of finite dimension if its dimension is finite. Otherwise,
it is said to be of infinite dimensional space.

Definition 1.5 Let C be a subset of V. C is said to be convex, if for all x,y ∈ C, γ ∈
[0,1], (1− γ)x+ γy ∈C. In general, for all x1,x2,x3, ...,xn ∈C and for γ j ≥ 0 such that
∑

n
j=1 γ j = 1, the combination ∑

n
j=1 γ jx j ∈C is called the convex combination.

Definition 1.6 A mapping T : V1→V2 is said to be linear, if ∀u,v∈V1 and α,β scalars,

T (αu+βv) = αT (u)+βT (v).

Limits (of convergent sequences), differentiation and integration, are examples of a
linear map.

Remark 1.2 If in Definition 1.6, the linear space V2 is replaced by a scalar field F, then
the linear map T is called linear functional on V1.
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1.6.3 Hilbert Space and its Properties

Definition 1.7 Let Y be a linear space. An inner product on Y is a function 〈., .〉 :
Y ×Y → F such that the following conditions are satisfies:

(i) 〈y,y〉 ≥ 0 ∀y ∈ Y ;

(ii) 〈y,y〉= 0 iff y = 0, ∀y ∈ Y ;

(iii) 〈y,z〉=〈z,y〉, ∀y,z ∈ Y, where the “bar” indicates the complex conjugation;

(iv) 〈αx+βy,z〉= α 〈x,z〉+β 〈y,z〉 , for all x,y,z ∈ Y and α,β ∈ C.

Remark 1.3 The pair (Y,〈., .〉) is called an inner product space. We shall simply write
Y for the inner product space (Y,〈., .〉) when the inner product 〈., .〉 is known. Further-
more, if Y is a real vector space, then condition (iii) above reduces to 〈x,z〉 = 〈z,x〉
(Symmetry).

Definition 1.8 Let Y be a linear space over F (R or C). A norm on Y is a real-valued
function ‖.‖ : Y → R such that the following conditions are satisfies:

(i) ‖x‖ ≥ 0, ∀x ∈ Y ;

(ii) ‖x‖= 0 iff x = 0, ∀x ∈ Y ;

(iii) ‖αx‖= |α|‖x‖, ∀x ∈ Y and α ∈ R;

(iv) ‖x+ z‖ ≤ ‖x‖+‖z‖ , ∀x,z ∈ Y.

Remark 1.4 A linear space Y with a norm defined on it i.e., (Y,‖.‖) is called a normed
linear space. If Y is a normed linear space, the norm ‖.‖ always induces a metric d on
Y given by d(z,x) = ‖z− x‖ for each x,z ∈ Y, with this, (Y,d) become a metric space.
For a quick review of metric space the reader may consult Dunford et al. (1971).

Lemma 1.1 Let Y be an inner product space. For arbitrary x,z ∈ Y,

| 〈x,z〉 |2 ≤ 〈x,x〉〈z,z〉 . (1.7)

If x and z are linearly dependent, then Equation (1.7) reduces to

| 〈x,z〉 |2 = 〈x,x〉〈z,z〉 .

This lemma is known as Cauchy-Schwartz Inequality. For more details about the proof,
one is referred to Chidume (2006).
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Lemma 1.2 A mapping ‖.‖ : Y → R defined by

‖x‖=
√
〈x,x〉,∀x ∈ Y

is a norm on Y.

Remark 1.5 As the consequence of Lemma 1.2, Equation (1.7) reduces to the follow-
ing inequality:

| 〈x,z〉 | ≤ ‖x‖‖z‖ ,∀x,z ∈ Y.

Definition 1.9 A sequence {yn} in a normed linear space Y is said to converge to y∈Y,
if ∀ε > 0, there exists Nε ∈ N, such that ‖yn− y‖ < ε , ∀n ≥ Nε . The vector y ∈ Y is
called the limit of the sequence {yn} and is written as lim

n→∞
yn = y or yn→ y, as n→ ∞.

Definition 1.10 A sequence {yn} in a normed linear space Y is said to converge weakly
to y ∈ Y, if for all h ∈ Y ∗ such that lim

n→∞
h(yn) = h(y), where Y ∗ denote the dual space

of Y .

Next, we give some results regards to the weak convergence of a sequence. For more
details about the proof, see Chidume (2006).

Lemma 1.3 Let {yn} ⊆ E (Banach space). Then the following results are satisfies:

(i) yn ⇀ y⇔ h(yn)→ h(y) for each h ∈ E∗;

(ii) yn→ y⇒ yn ⇀ y;

(iii) yn ⇀ y⇒ {yn} is bounded and

‖y‖ ≤ liminf
n→∞

‖yn‖ ;

(iv) yn ⇀ y (in E), hn→ h (in E∗)⇒ hn(yn)→ h(y) ( in R).

Remark 1.6 Lemma 1.3 (ii) Shows that strong convergence implies weak conver-
gence. However, the converse may not necessarily be true, that is, in an infinite di-
mensional space, weak convergence does not always imply strong convergence, while
they are the same if the dimension is finite. For the example of weak convergence which
is not strong convergence, see Chidume (2006) and the references therein.

Definition 1.11 Let C be a subset of H. A sequence {yn} in H is said to be Fejer
monotone, if

‖yn+1− z‖ ≤ ‖yn− z‖ ,∀n≥ 1,z ∈C.

8
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Definition 1.12 A sequence {yn} in a normed linear space Y is said to be Cauchy, if
∀ε > 0, ∃Nε ∈ N such that ‖yn− ym‖< ε, ∀n,m≥ Nε .

Definition 1.13 A normed linear space Y is said to be complete if and only if every
Cauchy sequence in Y converges.

Remark 1.7 With respect to the norm defined in Lemma 1.2, we can define the Cauchy
sequence in an inner product space Y . A sequence {yn} in Y is said to be Cauchy if and
only if 〈yn− ym,yn− ym〉1/2 := ‖yn− ym‖→ 0 as n,m→ ∞.

Definition 1.14 An inner product space Y is said to be complete if and only if every
Cauchy sequence converges.

Definition 1.15 A complete inner product space is called a Hilbert Space and that of
normed linear space is known as a Banach Space.

1.6.4 Bounded Linear Map and its Properties

Definition 1.16 Let T : H→H be a linear map. T is said to be bounded, if there exists
a constant M ≥ 0 such that

‖Ty‖ ≤M ‖y‖ ,∀y ∈ H.

Next, we give some results of a linear map that are continuous. For more details about
the proof, see Chidume (2006).

Lemma 1.4 Let X and Y be normed linear spaces and T : X → Y be a linear operator.
Then the following results are equivalent:

(i) T is continuous;

(ii) T is continuous at the origin i.e., if {xn} is a sequence in X such that

lim
n→∞

xn = 0, then lim
n→∞

T xn = 0 in Y ;

(iii) T is Lipschitz, i.e., in the sense that there exists M ≥ 0 such that

‖T x‖ ≤M ‖x‖ ,∀x ∈ X ;

(iv) T (∆) is bounded
(

in the sense that there exists M ≥ 0 such that ‖T x‖ ≤ M for

all x ∈ ∆, where ∆ := {x ∈ X : ‖x‖ ≤ 1}
)

.
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Remark 1.8 In the light of Lemma 1.4, we have that a linear map T : X→Y is contin-
uous iff it is bounded.

Definition 1.17 Let A : H→H be a bounded linear map. Define a mapping A∗ : H→H
by

〈Ay,z〉= 〈y,A∗z〉 ,∀y,z ∈ H.

The mapping A∗ is called the adjoint of A.

The following results are fundamental for the adjoint operator on Hilbert space. For the
proof, see Chidume (2006).

Lemma 1.5 Let A : H → H be a bounded linear map with its adjoint A∗. Then the
following hold:

(i) (A∗)∗ = A;

(ii) ‖A‖= ‖A∗‖ ;

(iii) ‖AA∗‖= ‖A‖2 .

1.6.5 Some Nonlinear Operators

Let T : H → H be a map. A point x ∈ H is called a fixed point of T provided T x = x.
We denote the set of fixed point of T by Fix(T ), that is

Fix(T ) = {x ∈ H : T x = x}.

The Fix(T ) is closed and convex, for more details, see Goebel and Kirk (1990).

T is said to be η−strongly monotone, if there exists a constant η > 0 such that

〈T x−Ty,x− y〉 ≥ η ‖x− y‖ ,∀x,y ∈ H,

and it is said to be contraction, if

‖T x−T z‖ ≤ k‖x− z‖ ,∀x,z ∈ H, (1.8)

where k ∈ (0,1).

10
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Remark 1.9 If T : H → H is a contraction mapping with coefficient k ∈ (0,1), then
(I−T ) is (1− k)−strongly monotone, that is

〈(I−T )w− (I−T )z, w− z〉 ≥ (1− k)‖w− z‖2 ,∀w,z ∈ H.

Proof:

〈(I−T )w− (I−T )z, w− z〉 = 〈 w− z, w− z〉+ 〈T z−Tw, w− z〉
= 〈 w− z, w− z〉−〈Tw−T z, w− z〉 . (1.9)

On the other hand,

〈Tw−T z, w− z〉 ≤ ‖Tw−T z‖‖w− z‖
≤ k‖w− z‖ , since f is a contraction mapping. (1.10)

By (1.9) and (1.10), we deduce that

〈(I−T )w− (I−T )z, w− z〉 ≥ (1− k)‖w− z‖2 .

And the proof completed.

Equation (1.8) reduces to the following equation as k = 1.

‖T x−T z‖ ≤ ‖x− z‖ ,∀x,z ∈ H.

This is known as nonexpansive mapping. As a generalization of nonexpansive mapping,
we have asymptotically nonexpansive (see Goebel and Kirk (1972)), this mapping is
defined as:

‖T nx−T nz‖ ≤ kn ‖x− z‖ ,∀n≥ 1 and x,z ∈ H,

where kn ⊂ [1,∞) such that lim
n→∞

kn = 1.

The map T is said to be total asymptotically nonexpansive (see Alber et al. (2006)),
if

‖T nx−T nz‖2 ≤ ‖x− z‖2 + vnη(‖x− z‖)+µn,∀n≥ 1 and x,z ∈ H.

where {vn} and {µn} are sequences in [0,∞) such that lim
n→∞

vn = 0, lim
n→∞

µn = 0, and

η : ℜ+→ℜ+ is a strictly increasing continuous function with η(0) = 0. This class of
mapping generalizes the class of nonexpansive and asymptotically nonexpansive map-
pings (for more details see Chidume and Ofoedu (2007, 2009) and references therein).
And it is said to be (k,{µn},{ξn},φ)- total asymptotically strict pseudocontraction, if
there exists a constant k ∈ [0,1), µn ⊂ [0,∞), ξn ⊂ [0,∞) with µn→ 0 and ξn→ 0 as
n→ ∞, and continuous strictly increasing function φ : [0,∞)→ [0,∞) with φ(0) = 0
such that

‖T nx−T ny‖2 ≤ ‖x− y‖2 + k‖(I−T n)x− (I−T n)y‖2 +µnφ(‖x− y‖)+ξn,∀x,y ∈ H.
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T is said to be strictly pseudocontractive (see Browder and Petryshyn (1967)), if

‖T x−T z‖2 ≤ ‖x− z‖2 + k‖(I−T )x− (I−T )z‖2 ,∀x,z ∈ H,

where k ∈ [0,1). And it is said to pseudocontractive if

‖T x−T z‖2 ≤ ‖x− z‖2 +‖(I−T )x− (I−T )z‖2 ,∀x,z ∈ H.

It is obvious that all nonexpansive mappings and strictly pseudocontractive mappings
are pseudocontractive mappings but the converse does not hold.

T is said to be quasi-nonexpansive (see Diaz and Metcalf (1967)), if Fix(T ) 6= /0 and

‖T x− z‖ ≤ ‖x− z‖, ∀x ∈ H and z ∈ Fix(T ).

This is equivalent to

2〈x−T x,z−T x〉 ≤ ‖T x− x‖2 ,∀x ∈ H and z ∈ Fix(T ). (1.11)

Remark 1.10 Every nonexpansive mapping with Fix(T ) 6= /0 is a quasi-nonexpansive;
however, the converse may not necessarily be true. Thus, the class of quasi- nonexpan-
sive mapping generalizes the class of nonexpansive mapping.

The following is an example of a quasi-nonexpansive mapping which is not nonexpan-
sive mapping, for more details, see He and Du (2012) and references therein.

Example 1.1 Let H = R, defined T : Q := [0,∞)→ R by

Ty =
y2 +2
1+ y

for all y ∈ Q.

T is said to be k−demicontractive, if

‖Ty− z‖ ≤ ‖y− z‖+ k‖Ty− z‖ ,∀y ∈ H and z ∈ Fix(T ), (1.12)

where k ∈ [0,1). Trivially, the class of demicontractive mapping generalizes the class
of quasi-nonexpansive mapping for k ≥ 0.

The following is an example of a demicontractive mapping which is not quasi-
nonexpansive mapping, for more details, see Chidume et al. (2015) and references
therein.

Example 1.2 Define a map T : l2→ l2 by

T (x1,x2,x3, ...) =−
5
2
(x1,x2,x3, ...), for arbitrary vector (x1,x2,x3, ...) ∈ l2.
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Remark 1.11 If k =−1, Equation (1.12) reduces to

‖Ty− z‖ ≤ ‖y− z‖−‖Ty− y‖ ,∀y ∈ H and z ∈ Fix(T ).

This is known as firmly quasi-nonexpansive mapping. Every strictly pseudocontrac-
tive mapping with Fix(T ) 6= /0 is a demicontractive mapping; however, the converse
may not necessarily be true. Thus, the class of demicontractive mapping is more gen-
eral than the class of strictly pseudocontractive mapping.

The following is an example of demicontractive mapping which is not strictly pseu-
docontractive mapping, for more details, see Browder and Petryshyn (1967) and refer-
ences therein.

Example 1.3 Let C = [−1,1] be a sub set of a real Hilbert space H. Define T on C by

T (x) =
{ 2

3 xsin(1
x ), if x 6= 0,

0, x = 0.

Clearly, 0 is the only fixed point of T. For x ∈C, we have

|T x−0|2 = |T x|2

=

∣∣∣∣23xsin(
1
x
)

∣∣∣∣2
≤

∣∣∣∣2x
3

∣∣∣∣2
≤ |x|2

≤ |x−0|2 + k|T x− x|2, for any k < 1.

Thus, T is demicontractive mapping. Next, we see that T is not strictly pseudocontrac-
tive mapping. Let x = 2

π
and z = 2

3π
, then |T x−T z|2 = 256

81π2 . However,

|x− z|2 + |(I−T )x− (I−T )z|2 = 160
81π2 .

T is said to be asymptotically quasi-nonexpansive, if Fix(T ) 6= /0 such that for each
n≥ 1,

‖T nx− z‖2 ≤ tn ‖x− z‖2 ,∀z ∈ Fix(T ) and x ∈ H,

where {tn} ⊆ [1,∞) with lim
n→∞

tn = 1. It is clear from this definition that every asymp-

totically nonexpansive mapping with Fix(T ) 6= /0 is asymptotically quasi-nonexpansive
mapping.
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Also T is said to be ({rn},{kn},η)-total quasi-asymptotically nonexpansive map-
ping, if

‖T ny− z‖2 ≤ ‖y− z‖2 + rnη(‖y− z‖)
+ kn,∀n≥ 1,z ∈ Fix(T ) and y ∈ H, (1.13)

where {rn},{kn} are sequences in [0,∞) such that lim
n→∞

rn = 0, lim
n→∞

kn = 0 and η :

ℜ+ → ℜ+ is a strictly continuous function with η(0) = 0. This class of mapping,
generalizes the class of; quasi-nonexpansive, asymptotically quasi-nonexpansive and
total asymptotically nonexpansive mapping.

T is said to be K-Lipschitzian, if

‖Ty−T z‖ ≤ K ‖y− z‖ ,∀y,z ∈ H.

It is said to be uniformly K-Lipschitzian, if

‖T ny−T nz‖ ≤ K ‖y− z‖ ,∀y,z ∈ H.

Definition 1.18 A mapping T : H→ H is said to be class−τ operator, if

〈z−Ty,y−Ty〉 ≤ 0,∀z ∈ Fix(T ) and y ∈ H.

It is important to note that, class−τ operator is also called directed operator, see Za-
knoon (2003) and Censor and Segal (2009b), separating operator, see Cegielski (2010)
or cutter operator, see Cegielski and Censor (2011) and references therein.

Definition 1.19 A self mapping T on H1 is said to be semi-compact if for any bounded
sequence {xn} ⊂H with (I−T )xn converges strongly to 0, there exists a sub-sequence
say {xnk} of {xn} such that {xnk} converges strongly to x.

Definition 1.20 A self mapping T on C is said to be demiclosed, if for any sequence
{yn} in C such that yn ⇀ y and if the sequence Tyn→ z, then Ty = z.

Remark 1.12 In Definition 1.20, if z = 0, the zero vector in C, then T is called demi-
closed at zero, for more details, see Moudafi (2011) and references therein.

Lemma 1.6 (Goebel and Kirk (1990)) If a self mapping T on C is a nonexpansive
mapping, then T is demiclosed at zero.

Lemma 1.7 (Acedo and Xu (2007)) If a self mapping T on C is a k−strictly pseudo-
contractive, then (T − I) is demiclosed at zero.
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Lemma 1.8 Let C be a subset of H1, and PC be a metric projection from H1 onto C.
Then ∀y ∈C and x ∈ H1,

‖x−PC(x)‖ ≤ ‖y− x‖−‖y−PC(x)‖ .

For the proof of this lemma, see Li and He (2015) and references therein.

Lemma 1.9 For each x,y ∈ H1, the following results hold.

(i) ‖x+ y‖2 = ‖x‖2 +2〈x,y〉+‖y‖2 ,

(ii) ‖αx+(1−α)y‖2 = α ‖x‖2 +(1−α)‖y‖2−α(1−α)‖x− y‖2, ∀ α ∈ [0,1].

For the proof of this lemma, see Acedo and Xu (2007) and references therein.

Lemma 1.10 Let {an} be a sequence of nonnegative real number such that

an+1 ≤ (1− γn)an +σn,n≥ 0,

where γn is a sequence in (0,1) and σn is a sequence of real number such that;

(i) lim
n→∞

γn = 0 and ∑γn = ∞;

(ii) lim
n→∞

σn
γn ≤ 0 or ∑ |σn|< ∞. Then lim

n→∞
an = 0.

For the proof, see Xu (2002).

Lemma 1.11 Let {xn},{yn},{zn} be sequences of nonnegative real numbers satisfying

xn+1 ≤ (1+ zn)xn + yn.

If ∑zn < ∞ and ∑yn < ∞, then lim
n→∞

xn exist.

For the proof of this lemma, see Xu (1993).

Lemma 1.12 Let {xn} be a Fejer monotone with respect to C, then the following are
satisfied:

(i) xn ⇀ x∗ ∈C if and only if ωω ⊂C;

(ii) {PCxn} converges strongly to some vector in C;

(iii) if xn ⇀ x∗ ∈C, then x∗ = lim
n→∞

PCxn.

For the proof, see Bauschke and Borwein (1996).
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1.7 Summary

In this chapter, we discussed the background of the research study, the objectives of
the research are given, and we briefly gave the outlines of the thesis and also provided
some preliminary definitions and basic results which are very useful in understanding
the study area of the research.
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