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High-quality CdZnSe nanocrystals with diameters ranging from 2.6 nm to 4.3 
nm were synthesized via high and low energy mechanical milling for 20 h 
and 100 h respectively. The XRD diffractograms of the milled powders 
consist of three major diffraction peaks indexed to the lattice planes (111), 
(002), (220) and (311) of the compound CdZnSe in the cubic phase 
structure. The optical spectra of the nanoparticles exhibited an onset 
absorption peak at 349 nm, with maximum absorption from 250-290 nm. The
photoluminescence (PL) spectra exhibit broad emission bands in the 
wavelength range 350-900 nm. Band emissions of 1.74 eV, 1.54 eV and 1.4 
eV at longer wavelengths were associated with the surface state defects. 
Time-resolved photoluminescence (TRPL) and photoluminescence (PL) 
spectroscopy measurements were carried out on mechanochemically alloyed 
CdZnSe nanocrystals. The TRPL emissions exhibit bi-exponential decay 
dynamics consisting of an initial fast component over a range of 0.05-0.87ns 
and a slower component (0.76-1.60 ns). The chemical nature of the 
mechanically induced paramagnetic defect centers induced during 
mechanical alloying was investigated using electron spin resonance (ESR). 
The ESR spectra display a faint signal at g~3.9 with a spin density of the 
order of ~3.34 X 104 spins/g attributed to Fe3+ introduced from the grinding 
medium. The intensity, linewidth and g-value of the dominant signal increase 
linearly with increasing milling time. The paramagnetic defect increased 
linearly from ~1 X 1020 spins/g to 7 X 1020 spins/g similarly, g-values 
increases from 1.9993(3) to 2.0026(4) and linewidth (∆BPP) from  (10.89 to 
40.27) mT. The center is believed to consist of several overlapping signals 
arising from different paramagnetic centers present in the milled sample with  
Zni-VZn predominant.  The low temperature PL analyses indicate that the 
optical transition that gave rise to the peak at high photon energy involves an 
electron trapped at donor defect and hole trapped at an acceptor in 
association with residual impurities from the grinding medium (VZn-X), where 
X represents residual impurities. The large blue shift in the energy band gap 
of the milled samples involved Burstein-Moss effects and transitions due to 
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trapped charge carriers. The high-resolution transmission electron 
microscopy (HRTEM) histogram reveals that the centre of size distribution 
was 3.50, 2.66, and 2.00 nm for samples milled for 5 h, 10 h and 20 h 
respectively. High-transmission electron microscopy (HRTEM) revealed the 
successful annihilation of such defects with continuous milling. Stoichiometric 
defect due to slow diffusion of zinc has been identified as the major source of 
defect. The most probable induced centers during mechanical milling were 
(VZn–Zni),  VZn, and VCd.
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IBRAHIM MUHAMMAD BAGUDO 

November 2016 

Pengerusi  :  Profesor Zainal Abidin Talib, PhD 
Fakulti       :  Sains 

Nanokristal CdZnSe berkualiti tinggi dengan garispusat di antara 2.6 nm dan 
4.3 nm telah disintesis dengan cara pengisaran mekanikal (secara intensif 
dan tenaga rendah) selama 20 hingga dan 100 jam. Spektrum pembelauan 
sinar-X menunjukkan bahawa CdZnSe mempunyai tiga puncak pembelauan 
utama yang berindeks pada satah hkl (111), (002), (220) dan (311) dalam 
struktur fasa kubik. Spektrum optik nanopartikel menunjukkan penyerapan 
puncak mula di 349 nm dan penyerapan maksimum di 250 -290 nm. 
Spektrum (fotolumininesens) menunjukkan jalur pemancaran yang luas
pada julat (350-900) nm panjang gelombang. Jalur pemancaran 1.74 eV, 
1.54 eV dan 1.4 eV pada gelombang yang lebih panjang dikaitkan dengan 
kecacatan keadaan permukaan. Fotoluminesens revolusi masa (TRPL) dan 
fotoluminesens (PL) spektroskopi telah dijalankan ke atas nanokristal 
CdZnSe yang dialoi secara mekanikal. Pemancaran TRPL mempamerkan 
pereputan dinamik dwi-eksponen yang terdiri daripada komponen cepat dari 
0.05 hingga 0.87ns dan komponen perlahan (0.76-1.60 ns). Sifat kimia 
kecacatan paramagnet mekanikal terjadi semasa proses pengaloian 
mekanikal secara tenaga tinggi dengan disiasat menggunakan resonans 
spin elektron (ESR). ESR spektrum terdiri daripada isyarat malap di g ~ 3.9 
dengan kepadatan spin pada kuasa 3.34 X 104 spin/g; isyarat ini adalah 
disebabkan oleh Fe3+ daripada bahan  pengisaran . Keamatan, lebar jalur 
dan nilai-g isyarat dominan meningkat secara linear dengan meningkatkan 
masa pengisaran. Kecacatan paramagnetik meningkat secara linear dari ~ 1 
X 1020 spin/g hingga 7 X 1020 spin/g , nilai-g meningkat dari 1.9993 (3) ke 
2.0026 (4) dan juga lebar garis (ΔBpp) dari 10.89 hingga 40.27 mT . Pusat 
dipercayai terdiri daripada beberapa isyarat bertindih yang timbul disebabkan 
oleh kewujudan pusat paramagnet yang berbeza semasa proses pengisaran 
dengan Zni-VZn yang dominan. Analisis PL bersuhu rendah menunjukkan 
bahawa peralihan optik yang menimbulkan puncak pada tenaga foton tinggi 
yang melibatkan elektron terperangkap di kecacatan penderma dan lubang 
terperangkap di penerima yang bersama dengan bendasing meggunakan 
pengisaran sederhana (VZn-X), di mana X mewakili bendasing. Peralihan biru 
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yang besar dalam jurang jalur dapat dilibatkan dengan kesan Burstein Moss 
dan peralihan disebabkan oleh pembawa cas terperangkap. Histogram 
resolusi tinggi penghantaran elektron mikroskop (HRTEM) menunjukkan 
bahawa taburan saiz adalah 3.50, 2.66, dan 2.00 nm untuk sampel untuk 
masa pengisaran 5, 10 dan 20 jam. Resolusi tinggi penghantaran elektron 
mikroskop (HRTEM) menunjukkan bahawa kecacatan berjaya dihapuskan 
dengan pengisaran berterusan. Kecacatan stokiometri disebabkan oleh 
penyebaran zink yang lambat dan dikenalpasti sebagai sumber kecacatan 
utama. Kemungkinan besar pusat  kecacatan teraruh semasa proses 
pengisaran mekanikal adalah (VZn–Zni),  VZn, dan VCd.
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CHAPTER 1

1 INTRODUCTION 

1.1 Research background

The high cost of vacuum based technologies for crystal growth has triggered 
a renewed effort in the search for deposition methods which are cost 
effective. On the other hand, non-vacuum deposition methods such as 
mechanical attrition and hydrothermal techniques are known to induce a high 
density of structural defects during crystal growth. However, our basic 
knowledge of thermodynamics tells us even if macroscopic samples are of 
the highest achievable purity, foreign atoms are always present; in other 
words, no crystal is completely free from induced defects [1].

Basic research on the defects in semiconductors is of vital importance, since 
their electrical and optical properties are strongly dependent on the density 
and the distribution of localized states in the band gap [2]. A knowledge of 
the rate, mechanism and the control of formation of defects in 
semiconductors is a key to developing the technology for realizing the 
ultimate potential of modern electronics. It is obvious that defects are 
detrimental to device performance and effort should be made to reduce their 
concentration below certain threshold during crystal growth [3]. Recently, a 
new trend has appeared in which mechanically induced defects generated 
via plastic deformation by high energy ball milling had been utilized to 
enhance magnetic properties, induce paramagnetic and spin glass behavior 
in nanocrystalline materials [4],[5],[6].

Mechanical milling is associated with the following fundamental processes 
during grain refinement [7],[8],[9]  

I. atomic- level disordering 
II. formation of vacancies, vacancy clusters, interstitials, grain 

boundaries, dislocations 
III. atomic level strain 
IV. contamination by residual metal impurities from the grinding media 
V. change in morphology and size reduction. 
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1.1.1 Atomic-scale disorder

Atomic-scale chemical disorder, occurs when large fractions of atoms are 
forced into common interface from which they undergo mixing and alloying. 
The energy required for interface formation and atomic motion comes from 
the collision of the balls with grinding medium. 

1.1.2 Defect generation by mechanical milling

In mechanical milling, lattice defects are generated continuously. In fact, 
during the mechanical milling process, a considerable amount of mechanical 
energy is generally stored in the of form lattice defects such as vacancies, 
interstitials, dislocations and grain boundaries [10],[11]. A relatively high 
concentration of lattice defects is required to stabilize metastable states and 
enhance reactivity of the elemental constituent during milling process. A 
crystal defect can be regarded as any permanent perturbation of the crystal 
structure. Perturbations in the crystal lattice extending for a particular atomic 
distance in any direction are related to intrinsic point defects (IPD). These 
consist of vacancies, interstitial atoms and Frankel pairs and are of particular 
importance in this work [12]. There is much interest in the identification of 
IPD which come into existence when lattice atoms are displaced from the 
normal site to an interstitial site. Intrinsic point defects are generally present 
in group II-VI compounds in significant concentration due to the conditions of 
thermodynamic equilibrium under which the crystal was grown [13]. These 
conditions result in departure from stoichiometry and depend on atomic 
interactions among the elemental constituents of the mixture. 

The determination of formation mechanism and evolution of IPD present a 
considerable challenge as does the identification and quantification of the 
associated energy level in the forbidden gap. The introduction of IPD induces 
the displacement of the lattice atoms that surround it. The atoms involved are
first, second, etc. neighbors in terms of their arrangements and depending on 
the extent of the perturbation. If a large distortion of the lattice surrounding 
an isolated vacancy occurs, the Jahn-Teller effect stems in. An isolated 
vacancy thus formed would constitute a deep level in the forbidden energy 
region [14]. 

Depending on the charge state, the IPD are capable of introducing localized 
state in the semiconductor prohibited region of both donor and acceptor 
levels that could be located at different distances from the conduction and 
valence band. 
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1.1.3 Contamination by residual metal impurities from the grinding 
media

An extrinsic atomic defect involves foreign atoms which have been 
introduced unintentionally during crystal growth. Residual metal impurities 
could substitute some atoms in the host material due to wear and tear of the 
grinding media. The residual impurities consists mainly of (Fe, Ni and Cr) if 
the grinding media is made up steel. Extrinsic defects arise due to the 
introduction of atomic impurities into the lattice. Since foreign atoms may 
interact strongly with intrinsic defects and the host material, the effect of this 
interaction should also be considered in milled powders. It has been 
established that over a wide temperature range, foreign interstitials may 
migrate towards intrinsic defects and interact with them [12]. 

1.1.4 Particle size reduction

In general, particle size reduction is accompanied by an increase in defect 
concentration and micro strain during mechanical milling. As the particle size 
decreases to nanometer scale, the surface-to-volume ratio increases. This 
leads to an increasing percentage of atoms on the surface of the particles 
compared to those at the interior. The surface atoms are chemically more 
active due to their higher adjacent coordinate atoms and increased number 
of dangling bonds. As the result of these imperfections at the surface of the 
particles, additional electron states are introduced in the band gap of the 
material . This also influences the system Hamiltonian [15]. 

The surface states act as electron or hole traps. Fast and efficient trapping of 
the photogenerated carriers on the surface of the particles should be 
expected. The resultant emission band is also expected to be broadened and 
highly Stokes-shifted [16]. 

1.2 Problem statement

The research of mechanically induced defects in solid state follows two main 
trends: investigation into structural changes and study of thermodynamic 
effects.  The purpose of this research is to determine the extent of deviation 
from ideal lattice arrangement during crystal growth.  We intend to identify 
and evaluate the concentration and effect of mechanically induced defects 
introduced during the milling process. To the best of my knowledge this is the 
first time in which such investigation of induced mechanical defects has been 
carried out on CdZnSe nanocrystals. 
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1.3 Hypothesis

The hypothesis of this study is that lattice distortion that occurs during severe 
plastic deformation is expected to result in deviation of an ideal lattice 
arrangement of the initial material.  This will generate mechanically induced 
defects in the milled powder. 

In addition, stoichiometric defects are expected due to the differences in 
melting point and hardness of the elemental constituents of CdZnSe samples 
used. This is due to inability of the elements to adequately diffuse during the 
alloy formation. As such Localized states at the band gap are expected to 
introduce additional electronic states or paramagnetic defects that will act as 
traps for photogenerated carriers. 

The lifetime of the carriers is expected to decrease with increasing milling 
time due to increase in concentration of mechanically induced defects. 

A deviation from the Curie Law for paramagnetic defects measured at low 
room temperature by ESR is anticipated due to residual metal contaminants 
in the host material. 

1.4 Research questions

I. What is the effect of milling parameters, i.e, milling time and energy 
input  on the generation of mechanically induced defects?

II. How does residual contamination affect the properties of the milled 
powders?

III. What is the effect mechanically induced defects on the carrier 
dynamics (average life time) of the resultant material?

1.5 Research objectives

Based on the research questions outlined above, the major goal of this work 
is to identify and quantify various structural defects that are mechanically 
induced. In order to achieve this aim the following objectives have been set: 

I. To synthesize CdZnSe nanocrystals by high and low energy ball 
milling using variable milling time and intensity of the milling. X-ray 
diffraction (XRD) is employed to evaluate the rate at which elemental 
constituents are forced into chemical mixing. 

II. To identify and quantify mechanically induced defects present in the 
resultant powder using electron spin resonance (ESR), continuous 
wave photoluminescence (cw-PL) spectroscopy and X-ray 
fluorescence (XRF). 
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III. To determine the effect of residual metal impurity contaminants on the 
chemical properties of the milled powder by low temperature ESR 
analysis. 

IV. To determine the effect of mechanically induced defects on the life 
time of the carriers. 

1.6 Scope of the study

Chapter One: Provides an overview of the main subject of the study, which 
is introduction of defects semiconductor materials during crystal growth. The 
importance of this topic in the semiconductor industry lies in the need to 
reduce the production cost of opto-electronic devices in terms of eliminating 
vacuum deposition methods. The aim and objectives of the study have been 
highlighted. 

Chapter Two: This chapter focuses on the defect centers found in group II-
IV semiconductors. The defects were induced through different synthetic 
methods. The corresponding energy levels of the defects in the band gap 
have been provided. The origin to these defects has been discussed. 

Chapter Three: This chapter discusses the theoretical foundation required to 
understand defect physics in semiconductor materials. Emphasis was given 
to electron spin and photoluminescence spectroscopy. 

Chapter Four: The experimental procedure adopted to synthesize the 
semiconductor nanocrystal is presented. High energy ball milling was used to 
synthesize the milled powders under intensive and low input energies. The 
aim is to understand the evolution of mechanically induced defects with 
variable milling parameters. 

Chapter Five: This chapter concentrates on understanding the mechanism 
of alloy formation through structural, morphological and evolution of the 
phases. The allowing rate of the individual elements (Cd, Zn and Se) was 
monitored by XRD diffractometry. The HRTEM and FESEM provide 
information on the structure and morphology of the milled powders. 

Chapter Six: This chapter is mainly concerned with the optical properties of 
the milled powders. The evolution of defects with milling time was discussed 
both at room temperature and below room temperature. The origin of large 
shifts in the energy band gap of the milled powders was reconsidered to 
include contributions from defects and impurities present in the milled 
samples. UV-visible and photoluminescence spectra in the high energy 
region are presented and discussed. 
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Chapter Seven: The results from electron spin spectroscopy and 
photoluminescence spectroscopy in the low energy region of the spectrum 
are presented and discussed. The evolution of the mechanically induced 
defects and impurities has been accurately quantified.  The different number 
of spin taken part in the transition was analyzed. The consequences of the 
introduction of impurities from the grinding media into the host materials have 
been confirmed to produce a dilute magnetic behavior in the milled powders. 

Chapter Eight: This last chapter presents conclusions that have been 
deduced from the results and recommendations for the use of high energy 
ball milling. 
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