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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of 

the requirements for the degree of Master of Science 

BLOCK BACKWARD DIFFERENTIATION FORMULAS FOR SOLVING 

FIRST AND SECOND ORDER FUZZY DIFFERENTIAL EQUATIONS 

By 

TIAW KAH FOOK 

November 2016 

Chairman: Zarina Bibi binti Ibrahim, PhD 

Faculty     : Science 

In this thesis, the concerns are mainly in modifying existence method of Block 

Backward Differentiation Formula (BBDFs) for solving first order fuzzy differential 

equation, second order non-stiff and stiff fuzzy differential equations (FDEs). This 

method will solve the Initial Value Problems (IVPs) of FDEs using constant step size. 

The first part of the thesis discussed the combination of BBDF and Block Simpson into 

Hybrid method for solving first order FDEs. The subsequent part of the thesis focuses 

on the modification of BBDF into fuzzy version of BBDF for solving second order 

non-stiff FDEs and second orders stiff FDEs. 

Algorithm was developed to run the FDEs problems in Microsoft Visual C++ 

environment to obtain exact and approximate solutions. The algorithm of existing 

BBDF was modified into fuzzy version. The BBDFs method approximates the solution 

at two points concurrently. Therefore, numerical results show that the proposed 

methods reduce the execution time when compared to the Backward Differentiation 

Formula (BDF). In order to compute the error norm, the difference between the 

approximate solutions and the exact solutions was calculated. The numerical results 

also show the proposed method produces smaller errors when compared to modified 

Euler method. The accuracy of the solutions obtained by BBDF and BDF are 

comparable particularly when the finer step sizes are used. However, in term of 

execution time, the proposed method BBDF outperformed BDF method.  The solutions 

obtained were illustrated by graphs.  

In conclusion, the numerical results clearly demonstrate the efficiency of using BBDF 

methods proposed in this study for solving fuzzy differential equations. From the 

results of tests problems, the modified BBDF method reveals that the execution time 

has been reduced and the numerical result is accurate, which proves its superiority on 

the existing methods. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk Ijazah Master Sains 

FORMULA BLOK PEMBEZAAN KE BELAKANG UNTUK 

MENYELESAIKAN PERSAMAAN PEMBEZAAN KABUR PERINGKAT 

KEDUA 

Oleh 

TIAW KAH FOOK 

November 2016 

Pengerusi : Zarina Bibi binti Ibrahim, PhD 

Fakulti     : Sains 

Dalam tesis ini, tumpuan utama adalah mengubahsuai kaedah yang sedia ada Formula 

Blok Pembezaan ke Belakang (FBPB) untuk menyelesaikan persamaan pembezaan 

kabur (PPK) peringkat pertama, PPK bukan kaku peringkat kedua dan PPK kaku 

peringkat kedua. Kaedah ini akan digunakan untuk menyelesaikan Masalah Nilai Awal 

(MNA) PPK dengan saiz langkah yang berterusan. Bahagian pertama tesis ini 

membincangkan penggabungan FBPB dan Blok Simpson menjadi kaedah hybrid bagi 

menyelesaikan PPK peringkat pertama. Bahagian berikutnya dalam tesis ini memberi 

tumpuan kepada pengubahsuaian FBPB ke dalam versi kabur FBPB untuk 

menyelesaikan PPK bukan kaku peringkat kedua dan PPK stiff peringkat kedua. 

Algoritma telah dibangunkan untuk menjalankan masalah PPK dalam persekitaran 

perisian “Microsoft Visual C ++” untuk mendapatkan penyelesaian tepat dan 

penyelesaian anggaran. Algoritma FBPB yang sedia ada telah diubahsuai kepada versi 

kabur. Kaedah versi kabur FBPB menganggar penyelesaian pada dua titik dengan 

secara serentak. Oleh itu, keputusan berangka menunjukkan bahawa kaedah yang 

dicadangkan ini dapat mengurangkan masa pelaksanaan apabila ia dibandingkan 

dengan kaedah Formula Pembezaan ke Belakang (FPB). Dalam usaha untuk mengira 

ralat norma, perbezaan antara penyelesaian anggaran dan penyelesaian tepat telah 

dikira. Keputusan berangka ini juga menunjukkan ralat yang lebih kecil jika 

dibandingkan dengan kaedah Euler yang diubahsuai. Ketepatan penyelesaian FBPB 

dan FPB adalah setanding terutamanya apabila saiz langkah yang lebih halus 

digunakan. Walaubagaimanapun, masa pelaksanaan bagi kaedah yang dicadangkan itu 

dapat mengatasi kaedah FPB. Penyelesaian yang diperolehi telah ditunjukkan melalui 

graf. 

Kesimpulannya, keputusan berangka telah menunjukkan kecekapan penggunaan 

kaedah FBPB yang dicadangkan dalam kajian ini dalam menyelesaikan persamaan 
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pembezaan kabur. Daripada keputusan ujian masalah, kaedah FBPB yang telah 

diubahsuai mendedahkan bahawa masa pelaksanaan telah dikurangkan dan keputusan 

berangka adalah tepat, maka terbukti bahawa keberkesanan kaedah ini berbanding 

dengan kaedah yang sedia ada. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1   Introduction 

 

In many cases of modeling the real world phenomena, information about the behavior 

of a dynamical system is uncertain. In order to obtain a more realistic model, these 
uncertainties have to be taken into account. Fuzzy Differential Equation (FDEs) is a 

powerful tool for modeling uncertainty and for processing vague or subjective 

information in mathematical models. Fuzzy model is also adequate for some real-world 

phenomena.  

 

In recent years, FDEs system can be found in wide varieties of scientific and 

engineering applications, and they can be used to model problems. For examples, 

 

i. modeling the decay of the biochemical oxygen demand in water by Diniz et al. 
(2001), 

[𝑧′(𝑡𝑖)]
∝ ≈

[𝑧(𝑡𝑖+ℎ)]
𝛼−[𝑧(𝑡𝑖)]

𝛼

ℎ
, 

 

ii. biology population models by Mengshu et al. (2003), 
 

𝑁′(𝑡) = 𝑁(𝑡)𝑓0(𝑁(𝑡 − 𝜏)) = 𝑓(𝑁(𝑡), 

𝑁(𝑡 − 𝜏), 𝑡 ∈ 𝑅+, 
𝑁(𝑡) = 𝜑(𝑡),   𝑡 ∈ 𝐼0 = [𝑡0, 0], 

 
iii. a fuzzy delay differential equation model for HIV dynamics in medicine by 

Rosana et al. (2009) 

 
𝑑𝑥(𝑡)

𝑑𝑡
= 𝜆 − 𝑑𝑥(𝑡) − 𝛽(𝑡)𝑥(𝑡)𝑣(𝑡) 

𝑑𝑦(𝑡)

𝑑𝑡
= 𝛽(𝑡)𝑥(𝑡)𝑣(𝑡) − 𝛼𝑦(𝑡) 

𝑑𝑣(𝑡)

𝑑𝑡
= 𝑘(𝑡)𝑦(𝑡) − 𝑢𝑣(𝑡), 

iv. genetic programming by Kumaresan et al. (2011). 
 

𝑥′(𝑡) = −𝑥(𝑡) + 1, 𝑥(0) = 𝑥0. 
 

Due to the large potential of fuzzy differential equation involving in these fields, it has 

become the subject of research projects. In most real life situations, the fuzzy 

differential equation that models the problem is too complicated to be solved 

analytically. Therefore, many numerical methods have been developed to obtain 
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numerical approximate solutions. Some of the numerical methods include the use of 

Taylor series by Abbasbandy et al. (2002), the Runge-Kutta method by Abbasbandy et 

al. (2004), the predictor-corrector method by Allahviranloo et al. (2007), and the Euler 

method by Ahmad et al. (2011). However, some of these methods cannot provide a 

very accurate result and sometimes, the numerical steps are very complicated and 

difficult to apply. Thereby the ability to obtain accurate numerical approximate 

solutions plays an important role, especially dealing with stiff FDEs.  

 

Lambert (1992), defined stiffness as follows: 

 
 

If a numerical method with a finite region of absolute stability, applied to a system with 

any initial conditions, is forced to use in a certain interval of integration a step size 

which is excessively small in relation to the smoothness of the exact solution in that 

interval, then the system is said to be stiff in that interval. There are other 

characteristics which are exhibited by many examples of stiff problems, but for each 

there are counter examples, so these characteristics do not make good definitions of 

stiffness. Nonetheless, definitions based upon these characteristics are in common use 

by some authors and are good clues as to the presence of stiffness. There is no unique 

definition of stiffness in the literature. However Lambert refers to these as 'statements' 

rather than definitions, for the aforementioned reasons. A few of these are: 
 

(a) A linear constant coefficient system is stiff if all of its eigenvalues have 

negative real part and the stiffness ratio is large. 

(b) Stiffness occurs when stability requirements, rather than those of accuracy, 

constrain the step size. 

(c) Stiffness occurs when some components of the solution decay much more 

rapidly than others. 

 

The most common methods for solving stiff differential equation are based on BDFs. 

The implementation of BDFs using Newton-like iteration, require repeated solution of 

linear equation on each step with Jacobian matrix of the differential equation. The 
matrix operation in the iteration scheme consumed a considerable amount of 

computational effort. Therefore, appropriate numerical methods are needed to counter 

these problems. Hence, we are interested in applying the Fuzzy version of Block 

Backward Differentiation Formulas (FBBDFs) to solve first order fuzzy differential 

equations, second order differential equations and second order stiff fuzzy differential 

equations. 

 

  

https://en.wikipedia.org/wiki/Numerical_analysis
https://en.wikipedia.org/wiki/Numerical_stability
https://en.wikipedia.org/wiki/Initial_value_problem
https://en.wikipedia.org/wiki/Eigenvalue
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1.2  Problem Statement 

 

FDE problems have been studied and solved by different approaches. Most of the 

existing numerical methods for solving FDEs require a high computation cost. 

Therefore, it would be more interesting if the numerical solutions can be computed 

simultaneously. The clear advantage of the method which computes solutions 

simultaneously is the low computation cost. This again will lead to a quicker execution 

time. Although it is possible to integrate a second order FDEs 𝑦" = 𝑓(𝑥, 𝑦, 𝑦′) by 

reducing it to first order systems, the numerical methods can be derived via integrating 

𝑦" = 𝑓(𝑥, 𝑦, 𝑦′) directly without using the first derivatives. These approaches should 

provide significant increase in efficiency and decrease computation work. 

 

1.3  Objectives of Study 

 

The objectives of the research are: 

 

(i) to develop hybrid method based on BBDF, Ibrahim (2006) and block 

Simpson, Adegboye et al. (2014) to solve first order FDEs. 
 

(ii) to modify BBDF, Ibrahim (2008) into fuzzy version in order to solve 

second order non-stiff and stiff FDEs directly. 

 

(iii) to develop algorithms in C programming environment for solving FDEs. 

 

(iv) to compare the numerical results obtained. 
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1.4  An Overview of Thesis 

 

A brief description of the organization of the thesis is as follows: Chapter 1 is a brief 

introduction to Fuzzy Differential Equation (FDEs) and the scope of the study. Chapter 

2 begins with literature review, which covers discussion on methods used to solve 

FDEs proposed by several researchers. For Chapters 3, 4 and 5, each chapter represents 

a separate study that has its own introduction, including objective, methods, results, 

discussion and conclusion.  

 

In Chapter 3, we will propose a new fuzzy version hybrid method by combining block 

backward differentiation formulas (BBDFs) that have been proposed by Ibrahim et al. 

(2006) and block Simpson formula that is proposed by Adegboye et al. (2014). The 

proposed hybrid method is used to solve first order fuzzy differential equation. 

Numerical results obtained by the proposed hybrid method will be compared with the 

numerical results obtained by Euler method and BBDF. The accuracy and efficiency of 

the methods will be discussed in details. Graphs will be plotted to compare the 

approximate solutions with the exact solutions. 

 

For Chapter 4, this study extends the block backward differentiation formulas (BBDFs) 
that have been proposed by Ibrahim et al. (2006) and the BBDFs is modified into fuzzy 

version BBDF (FBBDFs) to solve second order fuzzy differential equations. Numerical 

results obtained by the proposed method will be compared with the numerical results 

obtained by backward differential formula (BDF) and modified Euler methods in term 

of accuracy and execution time. Graphs will be presented and compared. 

In Chapter 5, the numerical method developed in Chapter 4 will be used to solve 

second order stiff fuzzy differential equations, the approximate solution obtained is 

then compared with the exact solution. One of the examples in engineering application 

is also shown in this chapter. 

 

Finally, Chapter 6 summarizes the conclusions of the research and recommendations 
for further study will be suggested.  
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