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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of 

the requirement for the degree of Doctor of Philosophy 

ABSTRACT 

 

DIAGONAL R–POINT VARIABLE STEP VARIABLE ORDER BLOCK  

METHOD FOR SOLVING SECOND ORDER ORDINARY DIFFERENTIAL  

EQUATIONS 

 

 

By 

 

NOORAINI BINTI ZAINUDDIN 

 

November 2016 

 

 

Chairman : Zarina Bibi Binti Ibrahim, PhD 

Faculty  : Science 

 

 

This thesis focuses on solving the initial value problems of stiff second order Ordinary 

Differential Equations (ODEs) directly by methods of 2-point Diagonal Block Backward 

Differentiation Formula (2DBBDF) and 3-point Diagonal Block Backward 

Differentiation Formula (3DBBDF). The 2DBBDF and 3DBBDF give two and three 

approximated solutions respectively for each integration step. The coefficients of these 

methods are derived by utilizing the error constants of the linear difference operators 

obtained from the general form of each method. The convergence and stability properties 

of the 2DBBDF and 3DBBDF methods are also discussed in details. 

 

 

The proposed 2DBBDF and 3DBBDF methods are implemented with fixed step size in 

order to justify the numerical efficiency of the proposed methods. Subsequently, the 

computation of variable step size of 2DBBDF and 3DBBDF methods of order two, three 

and four are presented and finally they are implemented in variable step variable order 

scheme. The detailed algorithms on the selection of step sizes and orders are discussed.  

Conclusively, numerical results obtained while comparing the proposed methods with 

the existing variable step methods show the efficiency in reducing the number of function 

evaluations as well as the number of total steps. Further implementation of the 2DBBDF 

and 3DBBDF methods in variable step variable order scheme displays comparable 

results with other variable step variable order methods. These findings conclude that the 

proposed methods can serve as an alternative solver for solving stiff second order ODEs 

directly. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk ijazah Doktor Falsafah 

ABSTRAK 

 

KAEDAH R-TITIK BLOK PEPENJURU SAIZ LANGKAH BERUBAH 

PERINGKAT BERUBAH UNTUK PENYELESAIAN PERSAMAAN 

PEMBEZAAN BIASA PERINGKAT KEDUA 

 

 

Oleh 

 

NOORAINI BINTI ZAINUDDIN 

 

November 2016 

 

 

Pengerusi : Zarina Bibi Binti Ibrahim, PhD 

Fakulti  : Sains 

 

 

Tesis in tertumpu kepada penyelesaian masalah nilai awal Persamaan Pembezaan Biasa 

(PPB) kaku peringkat kedua secara terus dengan menggunakan kaedah 2-titik Blok 

Pepenjuru Formula Pembezaan ke Belakang (2BPFPB) dan 3-titik Blok Pepenjuru 

Formula Pembezaan ke Belakang (3BPFPB). Kaedah 2BPFPB dan 3BPFPB masing-

masing memberikan dua dan tiga penyelesaian untuk setiap langkah penyelesaian. 

Pekali-pekali bagi kaedah-kaedah ini diterbitkan dengan menggunakan pemalar ralat 

operator beza linear yang diperolehi daripada bentuk umum bagi setiap kaedah. Ciri-ciri 

penumpuan dan kestabilan bagi kaedah 2BPFPB dan 3BPFPB juga turut dibincangkan 

dengan terperinci. 

 

 

Kaedah 2BPFPB dan 3BPFPB diimplementasikan dengan saiz langkah tetap untuk 

menjustifikasikan keberkesanan berangka bagi kaedah yang ditawarkan. Seterusnya, 

pengiraan kaedah 2BPFPB dan 3BPFPB dengan saiz langkah berubah peringkat dua, 

tiga dan empat diberikan dan akhirnya diimplementasikan dengan skim saiz langkah 

berubah peringkat berubah. Perincian algoritma mengenai pemilihan saiz langkah dan 

peringkat dibincangkan.  Kesimpulannya, keputusan berangka yang diperoleh apabila 

kaedah yang diusulkan dibandingkan dengan kaedah sedia ada menunjukkan 

keberkesanan dalam mengurangkan nombor penilaian fungsi dan juga jumlah langkah. 

Pelaksanaan selanjutnya bagi kaedah 2BPFPB dan 3BPFPB dengan skim saiz langkah 

berubah peringkat berubah memberikan keputusan yang setanding dengan kaedah saiz 

langkah berubah peringkat berubah sedia ada. Penemuan ini menyimpulkan bahawa 

kaedah yang dicadangkan boleh berfungsi sebagai penyelesai terus alternatif kepada 

PBB kaku peringkat kedua. 
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1 
 

CHAPTER 1 

 

 

1 INTRODUCTION 

 

1.1 Introduction 

 

Ordinary Differential Equations (ODEs) arises naturally in the field of science and 

engineering. The problems of second order ODEs involve the second derivatives of 

dependent variable with respect to one independent variable. Such problems are Van der 

Pol Oscillator, electric circuit and the swinging pendulum, to mention a few. Some 

carefully chosen problems can be treated directly with the fundamentals of calculus and 

algebra. However, many realistic mathematical problems involving ODEs are impossible 

to solve analytically, and therefore the computational approach is sought for the 

numerical approximation. 

 

 

To deal with this difficulty, various computational methods such as linear multistep 

methods (LMM) and Runge-Kutta are widely used and its advancement is extensively 

proposed.  Variety of implementation techniques such as variable step and variable step 

variable order are applied in order to improve the efficiency of the numerical 

computations. Some are made available in readily software such as ode15s in MATLAB 

which apply the technique of variable step variable order for the computational approach.  

 

 

These numerical methods are carefully chosen when dealing with the problem of ODEs, 

which can be classified as stiff and nonstiff. The popular numerical method for stiff 

ODEs is backward differentiation formulae (BDF) which sometimes known as Gear’s 

formulae and Adams formulae for nonstiff ODEs. 

 

 

Through this thesis, the numerical methods which are in the form of BDF are proposed 

to cater the problem of stiff second order ODEs. 

 

 

1.2 Objectives of the Thesis 

 

This thesis proposed second order ODEs solver which belongs to the family of BDF. The 

following objectives are made compulsory to be accomplished by the end of this thesis.  

1. To derive the 2-pointand 3-point diagonal block BDF (rDBBDF, r = 2, 3) 

methods of constant step for solving second order ODEs. 

2. To construct variable step sizes of rDBBDF, r = 2, 3 methods of order two, 

three, and four. 

3. To establish the convergence and stability properties of rDBBDF, r = 2, 3 

methods. 
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4. To develop the code of rDBBDF, r = 2, 3 methods by using Microsoft 

Visual Studio C++ programming language. The implementation will be 

starting with constant step size, followed by varying the step sizes and 

finally by varying the step sizes and orders. 

5. To evaluate the efficiency of the rDBBDF, r = 2, 3 methods on solving the 

problem of second order ODEs directly.     

6. To verify the efficiency of the proposed method on solving second order 

ODE obtained from RLC circuit. 

 

 

1.3 Scope of the Thesis 

 

This thesis focuses on solving directly the initial value problems of stiff second order 

ODEs. The proposed method known as diagonal block backward differentiation 

formulae are derived to give the approximated solutions at two and three points 

concurrently.  The method is developed to give the solutions by the means of constant 

step, variable step and finally variable step variable order scheme. The given conclusions 

are restricted only to the selected tested problems and their numerical performances. 

 

 

1.4 Problems Statement 

 

This thesis is devoted on solving the initial value problem of second order ODEs. The 

systems of 𝑠 second order ODEs are defined as: 

 

      , , 1, 2, , , , ,i iy f x Y i s Y a x a b     ,  (1.1) 

where  

 

     1 1 1 1, , , , , , , , , .s s s sY x y y y y           

 

 

Throughout the thesis, the following theorem which states the conditions on 𝑓(𝑥, 𝑌̌) that 

guarantee the existence of a unique solution of (1.1). 

 

 

Theorem 1.1 

Let 𝑓(𝑥, 𝑌̌) be defined and continuous for all points (𝑥, 𝑌̌) in the region D defined by 𝑎 ≤

𝑥 ≤ 𝑏, ‖𝑌̌‖ < ∞, where a and b are finite, and let there exists a constant L known as 

Lipschitz constant such that for every 𝑥, 𝑌̌ and 𝑌̌∗ such that (𝑥, 𝑌̌) and (𝑥, 𝑌̌∗) are both 

in D,  

 

     * *, , .f x Y f x Y L Y Y  
    (1.2) 
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Then if   is any given number, there exist a unique solution 𝑌̃(𝑥) of the initial value 

problem (1.1) where𝑌̃(𝑥) is continuous and differentiable for all (𝑥, 𝑌̃)  in D. 
  

The requirement (1.2) is known as Lipschitz condition. For the proof, see Henrici (1962). 

This assumption establishes the existence of a unique solution of (1.1).  

 

 

1.5 Outline of the Thesis 

 

 

Chapter 1 provides a brief introduction on the second order ODEs which is going to be 

covered in this thesis.  

 

 

In Chapter 2, previous research finding and complexities on the studies related to stiff 

ODEs and block methods are pointed out. Theories and definitions related to the 

proposed methods are given to support this study. 

 

 

Chapter 3 gives the details derivation of the constant step 2-point and 3-point diagonal 

block BDF (rDBBDF, r = 2, 3) methods. Numerical results are given to support the early 

progress of the proposed methods.  

 

 

The methods derived in Chapter 3 are extended to variable step rDBBDF, r = 2, 3 

methods. The details of the derivation, convergence and stability properties of these 

methods are discussed throughout Chapters 4 and 5. Given D = 2, 3, and 4, Chapter 4 is 

dedicated to variable step Dth order 2DBBDF method, and variable step Dth order 

3DBBDF method is devoted in Chapter 5.  

 

 

Chapter 6 discusses the details implementation approach of variable step rDBBDF, r = 

2, 3 methods. The necessary condition for when the methods need to maintain its current 

step size or not is discussed here. Numerical results are presented to justify the efficiency 

of the proposed variable step rDBBDF, r = 2, 3 methods.     

 

 

The following Chapter 7 focuses on the implementation of variable step variable order 

rDBBDF, r = 2, 3 methods. The algorithm on varying the step as well as the order is 

elaborated in details. In order to justify the numerical performances of this approach, the 

problem of second order ODEs given in Chapter 6 is recalculated by using the mentioned 

methods and the comparison are made with other variable step variable order methods.  

 

 

Chapter 8 provides the case study when the proposed methods solve the problems of 

second order ODE in RLC circuit.  
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Lastly, Chapter 9 concludes the research concerning this topic. Recommendations for 

future research are also put forward. 
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