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Delay differential equations (DDEs) play an important role in the investigated system 

which depends on the position of the system in the past and current time. The analytical 

solution of DDEs is hard to be found. Numerical methods provide an alternative way of 

constructing solutions to the problems.  

This thesis describes the development of numerical algorithms for solving higher order 

DDEs. One-point and two-point multistep block method based on the Adam-Bashforth-

Moulton methods for solving higher ordinary differential equation are adapted to solve 

the higher order DDEs. The proposed methods are based on constant step size and 

variable step size approach. Two types of DDEs are considered, namely retarded and 

neutral DDEs. Only the DDEs with constant delays and pantograph type are considered 

in this thesis. The delay term in DDEs with constant delays is approximated using 

Hermite interpolation. Linear and Hermite interpolators are used to approximate the 

delay terms in DDEs of pantograph type. The derivatives of the delay terms are 

approximated by using difference formula.   

The thesis discusses the stability of the method when applied to DDEs with constant 

delays and pantograph type. The region of the stability is presented. Several problems 

are considered for illustrative purposes and the numerical approximations of their 

solutions are obtained using C-language. Numerical results of the proposed methods are 

compared with the existing numerical methods. Comparison among the methods 

indicated that the proposed methods achieve the desired accuracy. Block method are 

efficient when compare with the non-block method as the total steps taken can be reduced. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk ijazah Doktor Falsafah 

KAEDAH MULTI LANGKAH BAGI MENYELESAIKAN PERSAMAAN 
PEMBEZAAN LENGAH PERINGKAT TINGGI 

Oleh 

HOO YANN SEONG 

Mei 2016 

Pengerusi: Profesor Zanariah binti Abdul Majid, PhD 
Fakulti : Sains  

Persamaan pembezaan lengah (PPL) memainkan peranan yang penting dalam sistem 

kajian yang bergantung kepada kedudukan sistem tersebut dalam masa lalu dan sekarang. 

Penyelesaian analitik PPL sukar dicari. Kaedah berangka menyediakan kaedah alternatif 

bagi membentuk penyelesaian kepada masalah. Tesis ini menghuraikan proses 

pembangunan algoritma berangka bagi menyelesaikan PPL peringkat tinggi. Satu titik 

multi langkah dan blok dua titik multi langkah berdasarkan kaedah-kaedah Adam-

Bashforth-Moulton bagi menyelesaikan persamaan pembezaan biasa disesuaikan bagi

menyelesaikan PPL peringkat tinggi. Kaedah-kaedah cadangan berdasarkan pendekatan 

saiz langkah tetap dan berubah. Dua jenis PPL dipertimbangkan iaitu persamaan 

pembezaan lengah lewat (PPLL) dan persamaan pembezaan lengah neutral (PPLN). 

Hanya PPL jenis malar dan jenis pantograf akan dipertimbangkan di tesis ini. Sebutan 

lengah di dalam PPL jenis malar adalah dianggarkan menggunakan interpolasi Hermite. 

Interpolasi linear dan interpoasi Hermite digunakan bagi menganggarkan sebutan lengah 

di dalam PPL jenis pantograf. Terbitan bagi sebutan lengah dianggarkan menggunakan 

formula pembezaan.

Tesis ini membincangkan kestabilan kaedah apabila diaplikasikan ke PPLL dan PPLN. 

Rantau kestabilan dibentangkan. Beberapa masalah dipertimbangkan bagi tujuan ilutrasi 

dan penghampiran berangka bagi penyelesaian mereka adalah diperolehi menggunakan 

bahasa pengaturcaraan C. Perbandingan di antara kaedah-kaedah yang dibangunkan 

menunjukkan bahawa semua kaedah-kaedah tersebut mencapai tahap kejituan yang 

dikehendaki. Keputusan berangka bagi kaedah-kaedah dibangunkan adalah 

dibandingkan dengan kaedah berangka sedia ada. Kaedah-kaedah blok adalah cekap 

apabila dibandingkan dengan kedah tanpa blok kerana jumlah bilangan langkah yang 

diambil dapat dikurangkan.  
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1 

CHAPTER 1 

INTRODUCTION 

1.1 Background 

Time delay differential equations exist in many physical and engineering systems. Delay 

differential equations (DDEs) constitute basic mathematical models for real phenomena, 

for instance in engineering, applied sciences, and economics. DDEs play an important 

role in the investigated system which depends on the position of the system in the past 

and current time.(Kuang, 1993). 

A n-th order retarded DDE (RDDE) is usually given in the form of

…,  y(n 1) , y τ(t,y (1.1) 

The function τ y , the argument τ(t,y , a value of the solution delay term 

y τ(t,y  and a value of the derivative delay term y' τ(t,y  are named as 

a delay, a delay argument, the (solution) delay value and derivative delay value, 

respectively. 

The delay may be a constant value τ≥0), a function of the time τ(t)≥0  or a function of 

the solution y  itself τ(t,y )≥0  Accordingly, Eqn. (1.1) is called a differential 

equation with constant delay, time-dependent delay, or state-dependent delay, 

respectively. 

When the right-hand side of the problem depends on the delay value and derivative delay 

value, that is, 

…,y(n 1) , y

τ t,y ≥0 ,…, τ t,y ≥0 (1.2) 

we have a neutral DDE (NDDE). The term DDE refers to both a RDDE and a NDDE. 

The thesis is divided into two main parts according to the type of delay τ t,y
occurring in Eqn. (1.1) and (1.2). In general, DDE can be classified into two categories, 

namely those with finite time delay, i.e.  

τ

and those with infinite time delay, i.e. 

τ
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Let’s compare their typical representatives, which are the equations 

(1.3) 

and 

(1.4) 

where and  are real numbers. Clearly, Eqn. (1.3) has a finite delay 

and Eqn. (1.4) belongs to the class of equations with the infinite delay. The category of 

Eqn. (1.3) is also known as the differential equation of constant delay while the category 

of Eqn. (1.4) is known as the differential equation of pantograph type. 

The solutions of DDEs can be obtained by using analytical, semi-analytical, numerical 

methods or hybrid between semi-analytical and numerical methods. Sometimes, the 

exact solutions are difficult to obtain through analytical methods even if the exact 

solutions exist. Semi-analytical methods approximate the solutions in a series form. In 

addition, the transformation formulas used in the calculations are complicated. 

Numerical methods find approximations to the solutions of the problem using estimation 

and calculation. 

Numerical methods for solving DDEs are adapted from numerical methods for ordinary 

differential equations (ODEs). Two most popular methods are linear multistep and 

Runge-Kutta type of method.

1.2 Problem Statement 

Ordinary and partial differential equations have played an important role in the 

development of mathematical modelling. However, the use of past states is able to 

approximate a true situation and a more realistic model. The theory and numerical 

analysis for such a system have not been developed much compared to ordinary and 

partial differential equations.  

The current research is mainly focusing on solving the first order of DDEs. DMRODE 

(Neves, 1975), DKLAG6 (Corwin et al., 1997), dde23 (Shampine & Thompson, 2000) 

and DDVERK90 (Zivaripiran, 2005) are examples of DDE solvers which were designed

to solve the system of first order DDEs. In order to solve higher order DDEs using these 

existing solvers, the higher order DDEs are transformed into a system of first order DDEs. 

This indirectly creates a not so user-friendly situation, besides this system of 

transformation is going to burden up the calculations. In some cases, the systems of 

transformation become an implicit system of first order DDEs where the existing solvers 

are unable to solve (Shampine & Thompson, 2000). 

The analysis of the numerical methods is important to ensure the methods are suitable to 

solve the differential equations. There are some research mainly studied the stability of 

the different types of DDEs. (Drazkova, 2014; Hrabalová, 2013; Li, 1988). Only a few 

of them studied the stability properties of the numerical methods for solving different 

type of DDE. Normally they pursue a purely theoretical analysis. (Jánský & Kundrat, 

2011; Huang, 2007; Xu, 2006) 
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1.3 Objective of the Thesis 

The main objective of the thesis is to use 1-point multistep and 2-point multistep block 

method to solve higher order DDEs with constant delay and DDEs of pantograph type 

directly. The study is also numerically investigating the shapes of the stability regions of 

the 1-point multistep and 2-point multistep block method for solving different types of 

DDEs.  

The objectives can be accomplished by  

(i) extending the order of the 1-point multistep and 2-point multistep block 

method with constant step size that have been derived by Abdullah (2014) 

to the order of six and seven. 

(ii) developing new algorithms for the 1-point multistep and 2-point multistep 

block method for solving higher order DDE with constant delay using 

constant and variable step size directly. 

(iii) developing new algorithms for the 1-point multistep and 2-point multistep 

block method for solving higher order DDE of pantograph delay using 

constant and variable step size directly.

(iv) analysing the shape of the stability region of RDDE and NDDE in the 1-

point multistep and 2-point multistep block method.

1.4 Scope and Limitation of the Study 

The scopes of the work presented in this thesis were: 

(i) To develop new algorithms based on the 1-point multistep and 2-point 

multistep block method with constant step size and variable step size 

approaches to solve higher order DDEs. 

(ii) Second and third order DDEs with single constant delay, and first to third 

order DDEs of single pantograph delay are considered in this thesis.  

(iii) The stability regions for first order RDDEs with pantograph delay and 

second order RDDEs and NDDEs with constant delay are analyse.

The following limitations were imposed on the work in this thesis: 

(i) The representative set of test problems available is limited to a single DDE 

equation. So in this thesis, only single DDE equation is considered. 

(ii) Standard codes for treating DDEs efficiently over a wide range of tolerances 

still lack. The comparison of the available experimental codes for DDEs 

remains to be done. Therefore, in this thesis, the comparison is only 

conducted between proposed methods and the Matlab solvers. 

1.5 Outline of the Thesis 

Brief descriptions of every chapter in this thesis are presented below. 

The general idea of the whole thesis is provided in Chapter 1. The concept of DDEs is 

also introduced.  
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The introduction of DDEs and the discussion on numerical difficulties for solving DDEs 

are presented in Chapter 2. It also consists a review of the research on DDEs. 

In Chapter 3, a brief description of the derivations of the 1-point multistep methods for 

solving third order DDEs is restated. Algorithms have been developed to solve the 

second and third order RDDE of constant type by using the adaptation of the 1-point 

multistep methods. The stability regions of the methods for solving the second order 

RDDE of constant delay are presented. Numerical results are presented and analysed. 

In Chapter 4, the second and third order RDDE with constant delay are solve by using 

the adaptation of the 2-point multistep block method. A brief description of the 

derivations of the 2-point multistep block methods for solving third order DDEs is 

restated as well. Algorithms for the implementation of the adaptation methods are 

developed to solve this particular type of DDE. The numerical results by using the 2-

point multistep block method and numerical comparisons with existing method are 

discussed. The stability regions of the methods are presented for solving second order 

RDDE of constant delay. 

DDEs with pantograph delay are a special type of DDE. In Chapter 5, the algorithms are 

developed to solve the first and higher order RDDE of pantograph type by using the 

adaptation of the 1-point multistep and 2-point multistep block method. The stability 

region of first order RDDE of pantograph type is discussed. The tested problems of 

RDDE with pantograph delay are solved by using the adaptation of the 1-point multistep 

and 2-point multistep block method. Numerical comparisons with the existing method 

are presented. 

The first and higher order NDDE with constant and pantograph delay are solved in 

Chapter 6 by using the adaptation of the 1-point multistep and 2-point multistep block 

method with constant and variable step size approach. The stability regions for the 

second order NDDE with constant delay are presented.  

In Chapter 7, a summary of this thesis is presented and future investigations are discussed.  
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