
 
 

UNIVERSITI PUTRA MALAYSIA 
 

 
 

MEASURES OF INFLUENCE AND WEIGHTED PARTIAL LIKELIHOOD 
ESTIMATION FOR COX PROPORTIONAL HAZARDS REGRESSION 

 

 
 
 
 
 
 
 
 
 

REBECCA LOO TING JIIN 
 
 
 
 
 
 
 
 
 
 

FS 2016 53 
 

 
 
 
 



© C
OPYRIG

HT U
PM

  

 
 

MEASURES OF INFLUENCE AND WEIGHTED PARTIAL LIKELIHOOD 
ESTIMATION FOR COX PROPORTIONAL HAZARDS REGRESSION 

 
 
 
 
 
 
 
 
 
 
 
 
 

By 
 

REBECCA LOO TING JIIN 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in 
Fulfilment of the Requirements for the Degree of Master of Science 

 
 

February 2016 



© C
OPYRIG

HT U
PM

  

COPYRIGHT 
 
 

All material contained within the thesis, including without limitation text, logos, icons, 
photographs and all other artworks, is copyright material of Universiti Putra Malaysia 
unless otherwise stated. Use may be made of any material contained within the thesis 
for non-commercial purposes from the copyright holder. Commercial use of material 
may only be made with the express, prior, written permission of Universiti Putra 
Malaysia. 
 
 
Copyright © Universiti Putra Malaysia 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



© C
OPYRIG

HT U
PM

 

DEDICATIONS 
 
 

Mum 

Dad 

. . .  
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



© C
OPYRIG

HT U
PM

i 
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MEASURES OF INFLUENCE AND WEIGHTED PARTIAL LIKELIHOOD 
ESTIMATION FOR COX PROPORTIONAL HAZARDS REGRESSION 

 
 

By 
 

REBECCA LOO TING JIIN 
 

February 2016 
 
 
Chairman :  Anwar Fitrianto, PhD 
Faculty :  Science 
 
 
In this study, we consider the development of influential diagnostics to assess case 
influence for the Cox proportional hazards model and stratified Cox proportional 
hazards regression model. We examine various residuals previously proposed for these 
models and develop a diagnostics method using the case-deletion technique. However, 
existing diagnostics methods are affected by masking effect. This effect may cause 
diagnostics methods to fail to correctly detect influential cases. Therefore, we propose 
an influential diagnostics method that has lower masking effect as compared to other 
methods. The proposed influential diagnostics method is approximately Chi-square 
distribution with p degress of freedom. 
 
 
The simulation study is implemented to evaluate the performance of the proposed 
influential diagnostics method via comparison with existing diagnostics method. Then, 
the diagnostics methods are applied into the real data such as kidney catheter data, 
Worcester Heart Attack study and also Stanford Heart Transplant study. The 
performance of the proposed influential detection method is better than that of the 
existing influential detection method. The partial likelihood estimation for the Cox 
regression model is biased when there are measurement errors in the covariate. 
Therefore, a weighted partial likelihood estimation for Cox regression model is 
proposed when there is violation of underlying assumptions due to measurement error 
in the covariates. In the simulation study, the proposed weighted partial likelihood 
estimations for parameter coefficients have smaller bias, root mean square errors, and 
ratio of bias over standard error than the existing parameter estimators, both with and 
without contamination of the covariates. The demonstrated performance of the 
proposed influential methods and weighted partial likelihood estimators are superior to 
existing influential detection methods and parameter estimators. 
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UKURAN PENGARUH DAN WAJARAN SEPARA PENGANGGARAN 
KEBOLEHJADIAN UNTUK REGRESI COX BAHAYA BERKADARAN 

 
 

Oleh 

 

REBECCA LOO TING JIIN 
 

Februari 2016 
 

 

Pengerusi :  Anwar Fitrianto, PhD 
Fakulti :  Sains 
 

 

Dalam kajian ini, kami menyelidik pembangunan diagnostik berpengaruh bagi menilai 

pengaruh kes untuk model bahaya berkadaran Cox dan model regresi bahaya 

berkadaran Cox berstrata. Kami memeriksa pelbagai reja yang telah diusulkan untuk 
semua model ini, dan mengusulkan kaedah diagnostik dengan menggunakan teknik 

penghapusan kes. Namun begitu, kaedah diagnostik sedia ada telah dipengaruhi kesan 

penyelubungan. Kesan ini akan menyebabkan kaedah diagnostik itu tidak dapat 

mengesan kes berpengaruh dengan betul. Oleh itu, kami cuba untuk mengusulkan 

kaedah diagnostik berpengaruh yang mempunyai kesan penyelubungan yang lebih 

rendah berbanding kaedah lain. Kaedah diagnostik berpengaruh yang diusulkan adalah 

anggaran taburan Chi-square dengan darjah kebebasan p. 

 

 

Kajian simulasi dilaksanakan bagi menilai prestasi kaedah diagnostik berpengaruh 

yang diusulkan dengan membandingkannya dengan kaedah diagnostik sedia ada. 

Kemudian, kaedah diagnostik diaplikasikan pada data sebenar seperti data kateter buah 
pinggan, kajian serangan jantung Worcester, dan juga kajian pemindahan jantung 

Stanford. Prestasi kaedah pengesanan berpengaruh yang diusulkan adalah lebih baik 

berbanding kaedah pengesanan berpengaruh sedia ada. Anggaran kebolehjadian separa 

untuk model regresi Cox terpincang apabila ada ralat ukuran dalam kovariat. Oleh itu, 

anggaran kebolehjadian wajaran separa untuk model regresi Cox diusulkan apabila 

terdapat pelanggaran andaian dasar iaitu ralat ukuran dalam kovariat. Daripada kajian 

simulasi, anggaran kebolehjadian wajaran separa yang diusulkan untuk pekali 

parameter mempunyai pincang, ralat punca min persegi, dan nisbah pincang melawan 

ralat piawai yang lebih kecil berbanding penganggar parameter sedia ada dengan dan 

tanpa pencemaran dalam kovariat. Oleh itu, prestasi kaedah berpengaruh dan juga 

penganggar kebolehjadian wajaran separa yang diusulkan adalah lebih baik berbanding 
kaedah pengesanan berpengaruh dan penganggar parameter sedia ada. 
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CHAPTER 1

INTRODUCTION

Statistical modelling is an essential part in data analysis and has an important role as
it can lead to understanding the effect of explanatory variables on the survival times.
Covariates are the explanatory variables that affect the time-to-event. However, these
models can only be presented correctly if the data fulfils certain assumptions of the
model. If there is a minor modification is seriously affects the key results of the anal-
ysis, then the model or data set should be re-examined to investigate the cause of the
problems.

Cox (1972) proposed a statistical model that can be used to assess the relationship be-
tween a set of covariates and time-to-event with censored data. This model is known
as Cox proportional hazards regression model.

Influential diagnostics are generally considered to be useful to identify unusual ob-
servation. A few general methods are available and developed in the context other
than normal linear or generalized linear regression such as Cook’s distance, likeli-
hood displacement and so on. However, the models that are considered by these
authors do not include censored data. In the latter, authors like Schoenfeld (1982),
Cain and Lange (1984), Pettitt and Bin Daud (1989), Nardi and Schemper (1999) had
developed methods for model adequacy assessment in the presence of censored data
in Cox (1972) proportional hazards model.

The work in this thesis is mainly extending influential diagnostics method due to
modest perturbation which included censored data. Perturbation in single and multi-
covariates model is investigated. The outcome of the analysis due to abnormal sub-
jects existed is investigated through the case-deletion technique and has a cut-off
point with its approximating distribution.

The perturbation schemes that are considered in most of the works here are based
on contaminating the data which modified subjects to extreme values. The proposed
influential diagnostics method in this thesis is basically from the idea of the single
case deletion method, which was extended to the Cox regression model and strati-
fied Cox regression model from the methods that were introduced by Cain and Lange
(1984) and Pettitt and Bin Daud (1989). This case deletion technique provides the
basis to detect the influential cases in the data set to contribute influence effect on
the parameter estimation. An observation might be judged as influential observation
if the estimated parameter coefficients are altered substantially in the model by the
observation.
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The influential observation is observation that give dramatic influence to parameter
estimates. The estimated parameters that are affected by the observation that is judged
as influential will not present information correctly from the fitted model. In short,
the estimated coefficients of the Cox regression model is biased under violation of un-
derlying assumptions such as measurement error or contamination in the covariates
(Bednarski, 1993). Therefore, few parameter estimation methods in Cox model that
are less bias in case there are existing influential observations, were developed by
Sasieni (1993a), Sasieni (1993b), Bednarski (1993), Viviani and Farcomeni (2010)
and Farcomeni and Viviani (2011).

Methods for robust estimation that were discussed by the researchers are either based
on weighting or trimming the suspected observations that give more influence to the
estimation. Downweighting even just one subject in the Cox regression model is di-
rectly corresponds to downweighting few risk sets. Let x(i) is an observation with
survival time, t(i) that was sorted in ascending order of the rank of time. The longer
the survival time, the more risk sets of the observations get involved.

Before the scope of this thesis is outlined, we shall brief overview of some important
keywords definition used in the thesis.

1.1 Censored Data

The main difficulty in the analysis of time-to-event data is that it involved some in-
dividuals that may not be observed for the full follow up time until it experience the
event such as failure. Not all subjects have failed at the end of the study, and for
the subjects that have not failed before end of the study will have longer survival or
failure time. Such an incomplete observation is known as censoring. The data sets
that contain these kinds of incomplete observations are called censored data.

Three main types of censoring are right censoring, left censoring and interval censor-
ing. The right censoring of a subject is that the subject does not experience the event
when the study ended. The right censoring can be separated into three main types of
censoring which are type I, type II and random censoring.

In type I censoring, let cf be a fixed censoring time. If the observed lifetime is less
than cf then the lifetime is uncensored and the rest are censored at cf . While in type
II right censoring, the study ends when a fixed number of subjects have failed and the
rest is censored. At last, random censoring could be described as each subject has
potential censoring time and a potential lifetime, both are assumed to be independent
random variables. The lifetime is only observed if the potential lifetime is less than

2
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the censoring time.

For left censoring, the interested event has already occurred before the observed life-
time but the exact lifetime is unknown and only know that it is less than the censoring
time.

The exact lifetime in interval censoring is usually unknown because the subject’s
lifetime is failing within a certain interval [li, ri] where li and ri are left and right
censoring times, respectively. Left and right censoring are a special case of interval
censoring.

The lifetime data that is truncated due to some of the conditions in the study design
is known as truncation. Let say ui and vi are left and right truncation times, the indi-
vidual’s time-to-event do not lie between the interval (ui, vi] will not be included in
the study.

Ignoring the censored observations may lead to bias in inferences so that those ob-
servations have to be encountered and should not be ignored in the analysis. Special
statistical procedures are adopted to treat the censored data (Collett, 2003).

1.2 Semiparametric Models for Survival Data

A model that specifies hazard function of time-to-event conditional on a set of co-
variates is a product of baseline hazard function and exponential of covariates with an
effect of hazards. Cox (1972) introduced an estimator by using maximum likelihood
estimation which does not involve all the observations, which is known as partial
likelihood. The popular of Cox regression model is that it does not need underly-
ing assumption for baseline hazards function so that, it is known as semiparametric
model. Proportional hazards assumption is needed in the Cox regression model but it
is often violated. Some other semiparametric models were introduced as extension of
the Cox model when the proportional hazards assumption is violated such as stratified
Cox model.

1.2.1 Cox Proportional Hazards Regression Model

Cox proportional hazards model was first proposed by Cox (1972) which is concern-
ing the analysis of the effect of vector of variables with censored failure times by

3
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using regression model. The values of a set of explanatory variables, x are provided
by all individual who involves in the study and a follow up period is observed until
it experienced the event or censored. The hazard function, which is defined as the
instantaneous failure rate is formulated as a function of these covariates with the un-
known regression coefficients, β.

Cox proportional hazards model is a popular method to study time-to-event data in
various fields, e.g. credit scoring, clinical trials, marital instability, food security and
so on. One of the interesting properties of the Cox model is that it does not require
the full specification of the distribution of the follow up duration of the study. Besides
that, not all the observations that enrolled in the study do experienced the event, such
data is called censored data.

A more detailed discussion about Cox proportional hazards regression model and lit-
erature of the previous works are given in Chapter 2.

1.2.2 Stratified Cox Proportional Hazards Model

In stratified Cox regression, the assumption that subjects have different baseline haz-
ard if they are from different stratum. The baseline hazards are allowed to differ by
stratum, but the coefficient values, β are the same.

To estimate the parameter coefficients, the subjects are categorized according to each
stratum and the risk set in likelihood function are separated by stratum. The strata in
stratified Cox model are similar as block, a nuisance factor that will affect the esti-
mation. Then, the effect of the strata is not interested to be estimated in the stratified
regression model.

1.2.3 Risk Set

Risk set is a set of observation has risk to experience the event at time, ti. Suppose
observation j fails before i in which j < i then observation i is said to be in j’s risk
set. This is the set of observations that are at risk to experience the event or fail when
j is failing at time, tj . The observations that survived longer in the study contribute
in more risk sets in which they are included. The more risk sets that the observations
are included, the more contribution of the observations to the partial likelihood to
estimate parameter coefficients in the Cox proportional hazards model.
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1.3 Influential Observation

In a set of data, it might appear an observation to be inconsistent with the major-
ity of the data. This observation might cause suspicion with different mechanism.
A suspected observation will show up large gap between “abnormal” and “normal”
observations, and the deviation between “unusual” and the group of “normal” obser-
vations is slightly larger than the majority. These such unusual observations should be
foreign to the main population because of their nature, they may cause some difficul-
ties in the attempt to represent the population. Also, they might come from different
population with different nature. In short, influential observations are the subject that
can change grossly the estimate parameter coefficients in some model for the popu-
lation.

There are few ways to give rise to unusual subjects. One is misspecification in the
collection or recording the observations. And, there might exist some observations
that display different information as compared to the majority in the data set. For
example, most patients who experienced certain diseases and weak healthy condition
might have shorter life, but there still might exist some patients who lived in very
long period. From this influential assessment, we could be able to identify which
observations displays differently in the model and should be investigated. Besides
that, throughout the influential diagnostics, we could detect these kind of “influen-
tial” patients and then analyse differently since they might give useful information in
the analysis.

Influential observation does not mean an outlier in the data set. Influential observation
gives some influences to the parameter estimation or inferences and presented differ-
ently to give higher effect to change the inferences substantially than other majority
subjects. From the influential observation, we might get more useful information and
could investigate the reason of why this observation is “influential”.

1.4 Problem Statements

Influential diagnostics is essential for identifying the influential observations. These
observations should be detected because they will affect the parameter estimation in
the regression model. But, not all the influential diagnostics methods are effective
in detecting all the influential subjects since there will be a risk to have a masking
effect. Masking effect is an effect that causes the influential diagnostics method fail
to detect the influential observation correctly. This effect is the main problem to the
diagnostics methods (Pettitt and Bin Daud, 1989). When the number of influential
observations is large, the diagnostics methods might not able to detect those observa-
tions as influential.
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The covariate values with contamination or measurement error might cause signif-
icant effect to change the estimates parameter (Wang et al., 2006, Desmarais and
Harden, 2012). Therefore, these influential observations should be identified and the
masking effect should be decreased to avoid the diagnostics method to detect those
influential observations as non-influential.

Cox regression coefficients will be affected by the influential observation and will
have a dramatic change when the underlying assumption is violated such as mea-
surement error in the covariate (Heritier et al., 2009, Desmarais and Harden, 2012).
Therefore, the parameter coefficient will be biased. When the parameter in the regres-
sion model is biased, the effect of the covariate will not present the results correctly.

1.5 Objectives of the Study

The objectives of the research are,

1. to develop a new influence measure method to identify influential observations
that can avoid masking effect when there is measurement error or contamina-
tion in the covariate in Cox proportional hazards regression model.

2. to develop a new method of influence measure to identify influential observa-
tions that avoid masking effect in the presence of measurement error or con-
tamination in the covariate for stratified Cox proportional hazards regression
model.

3. to propose parameter estimator that has lower bias but higher efficiency in the
presence of measurement error or contamination in the covariate for Cox pro-
portional hazards regression model.

1.6 Scope of the Thesis

This thesis consists of 6 chapters. Chapter 1 is the general introduction for Cox pro-
portional hazards regression model and stratified Cox proportional hazards regression
model as well as influential diagnostics.

Chapter 2 presents some background of the study that are related to the current work.
It reviews literatures on some basis of Cox and stratified Cox models. Background
of residual analysis and influential diagnostics are also discussed here. Finally, the
literatures on robust parameter estimation on censored modeling is reviewed.
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Chapter 3 concentrates on influential measures with the violation of the assumptions
such as measurement error or contamination in the covariate in the Cox proportional
hazards model. A proposed method for identifying influential observation is applied
to the kidney catheter data and Worcester Heart Attack study. Simulation studies
are implemented to evaluate the performance of the proposed influential diagnostics
method.

Chapter 4 focuses on influential diagnostics in stratified Cox proportional hazards
regression model. The proposed influential detection method for the stratified Cox
model is similar to the proposed method in Chapter 3 which is applied to the Stan-
ford Heart Transplant study. A simulation study is conducted to obtain the model
parameters and a few covariate values were contaminated randomly. Most of the
contaminated subjects are influential subjects but not all the influential observations
are contaminated observations. Comparison between the proposed and existing influ-
ential observations detection method is implemented by using simulation study and
real data analysis for the stratified Cox model.

Chapter 5 explores the robust parameter estimation in Cox proportional hazards model
in the presence of measurement error or contamination in the covariate. A simulation
study is conducted and the performance is evaluated based on bias and root mean
square error (RMSE). The simulation study is used to evaluate the performance of
the proposed partial likelihood estimator with the ordinary Cox partial likelihood es-
timator and other estimators which are known as robust.

Last but not least, Chapter 6 is the last chapter in this thesis. It presents the conclusion
of our research which is included influential diagnostics and also parameter estima-
tion that illustrated lower bias and higher efficiency when there is contamination in
the covariate.
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