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Indoor localisation techniques in multi-floor environments are emerging for 
location based service applications. Developing an accurate location 
determination and time-efficient technique is crucial for online location estimation 
of the multi-floor localisation system. The localisation accuracy and 
computational complexity of the localisation system mainly relies on the 
performance of the algorithms embedded with the system. Unfortunately, 
existing algorithms are either time-consuming or inaccurate for simultaneous 
determination of floor and horizontal locations in multi-floor environment. This 
thesis proposes an improved multi-floor localisation technique by integrating 
three important elements of the system; radio map fingerprint database 
optimisation, floor or vertical localisation, and horizontal localisation. The main 
focus of this work is to extend the kernel density approach and implement multi-
class machine learning classifiers to improve the localisation accuracy and 
processing time of the each and overall elements of the proposed technique. 

For fingerprint database optimisation, novel access point (AP) selection 
algorithms which are based on variant AP selection are investigated to improve 
computational accuracy compared to existing AP selection algorithms such as 
Max-Mean and InfoGain. The variant AP selection is further improved by 
grouping AP based on signal distribution. In this work, two AP selection 
algorithms are proposed which are Max Kernel and Kernel Logistic Discriminant 
that implement the knowledge of kernel density estimate and logistic regression 
machine learning classification. 

For floor localisation, the strategy is based on developing the algorithm to 
determine the floor by utilising fingerprint clustering technique. The clustering 
method is based on simple signal strength clustering which sorts the signals of 
APs in each fingerprint according to the strongest value. Two new floor 
localisation algorithms namely Averaged Kernel Floor (AKF) and Kernel Logistic 



© C
OPYRIG

HT U
PM

ii 
 

Floor (KLF) are studied. The former is based on modification of univariate kernel 
algorithm which is proposed for single-floor localisation, while the latter applies 
the theory kernel logistic regression which is similar to AP selection approach but 
for classification purpose. 

For horizontal localisation, different algorithm based on multi-class k-nearest 

neighbour (𝑘NN) classifiers with optimisation parameter is presented. Unlike the 
classical kNN algorithm which is a regression type algorithm, the proposed 
localisation algorithms utilise machine learning classification for both linear and 
kernel types. The multi-class classification strategy is used to ensure quick 
estimation of the multi-class 𝑘NN algorithms. 

The proposed algorithms are compared and analysed with existing algorithms to 
confirm reliability and robustness. Additionally, the algorithms are evaluated 
using six multi-floor and single-floor datasets to validate the proposed algorithms. 
In database optimisation, the proposed AP selection technique using Max Kernel 
could reduce as high as 77.8% APs compared to existing approaches while 
retaining similar accuracy as localisation algorithm utilising all APs in the 
database. In floor localisation, the proposed KLF algorithm at one time could 
demonstrate 93.4% correct determination of floor level based on the measured 
dataset. In horizontal localisation, the multi-class 𝑘NN classifier algorithm could 
improve 19.3% of accuracy within fingerprint spacing of 2 meters compared to 
existing algorithms. 

All of the algorithms are later combined to provide device location estimation for 
multi-floor environment. Improvement of 43.5% of within 2 meters location 
accuracy and reduction of 15.2 times computational time are seen as compared 
to existing multi-floor localisation techniques by Gansemer and Marques. The 
improved accuracy is due to better performance of proposed floor and horizontal 
localisation algorithm while the computational time is reduced due to introduction 
of AP selection algorithm. 

  



© C
OPYRIG

HT U
PM

iii 
 

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia dan 
University of Sheffield sebagai memenuhi keperluan untuk ijazah Doktor 

Falsafah 

 
KERNEL DAN KLASIFIKASI KELAS PELBAGAI UNTUK LOKALISASI 

BANGUNAN BERTINGKAT WLAN 
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MOHD AMIRUDDIN BIN ABD RAHMAN 

Jun 2016 

Pengerusi: Profesor Madya Zulkifly Abbas, PhD 
 
Fakulti: Sains 

Teknik lokalisasi dalam bangunan untuk bangunan bertingkat sedang 
memuncul untuk aplikasi berdasarkan servis lokasi. Membangunkan sistem 
yang tepat dan cekap masa penting untuk anggaran lokasi semasa dalam 
bangunan bertingkat. Ketepatan dan kecekapan masa system bergantung 
terutamanya kepada prestasi algorithma yang terbenam dalam sistem. Namun, 
algoritma sedia ada adalah kurang cekap atau kurang tepat untuk dibangunkan 
dalam bangunan bertingkat. Tesis ini mencadangkan system lokalisasi 
bertingkat yang di tambah baik. Tiga elemen penting sistem iaitu 
pengoptimuman pangkalan data, lokalisasi lantai atau menegak, dan lokalisasi 
mendatar disepadukan dalam teknik lokalisasi bertingkat. Fokus utama kerja ini 
ialah untuk menambah baik ketepatan dan kecekapan pengiraan algoritma 
dengan mengambil kira setiap elemen tersebut. 
 
Untuk pengoptimuman pangkalan data, teknik pemilihan titik akses (TA) yang 
baharu berdasarkan pemilihan TA berbeza dikaji untuk menambah baik 
ketepatan pengiraan berbanding teknik pemilihan TA yang lepas. Permilihan TA 
berbeza seterusnya ditambah baik dengan mengumpul TA berdasarkan ciri 
signal. Berdasarkan aspek ini, dua algoritma pemilihan TA dicadangkan iaitu 
algoritma Max Kernel dan Kernel Logistic Discriminant yang menggunapakai 
ilmu anggaran ketumpatan kernel dan klasifikasi pembelajaran mesin regresi 
logistik. 

Untuk lokalisasi lantai, strategi adalah berdasarkan menggabungkan teknik 
pengklusteran fingerprint dengan algoritma lokalisasi lantai. Kaedah 
pengklusteran adalah berdasarkan pengklusteran kekuatan signal mudah 
dengan menyusun signal TA di setiap fingerprint berdasarkan nilai paling kuat. 
Dua algoritma lokalisasi lantai dinamakan algoritma Averaged Kernel Floor dan 
Kernel Logistic Floor dikaji. Algoritma pertama adalah berdasarkan 
pengubahsuaian algoritma kernel univariate yang digunakan untuk lokalisasi 
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satu aras. Algoritma kedua menggunakan teori kernel regresi logistic yang 
sama dengan teknik pemilihan TA tetapi untuk tujuan klasifikasi. 

Untuk lokalisasi mendatar, algoritma lokalisasi berbeza berdasarkan algoritma 
klasifikasi kelas pelbagai 𝑘-nearest neighbour (𝑘NN) dengan parameter 
pengoptimum dicadangkan. Tidak sama seperti algoritma 𝑘NN klasik yang 
merupakan algoritma jenis regresi, algoritma lokalisasi yang dicadangkan juga 
berdasarkan pengklasifikasi pembelajaran mesin. Algoritma tersebut 
dicadangkan dalam dua versi iaitu linear dan kernel. Strategi pelbagai-kelas 
untuk klasifikasi digunakan untuk memastikan anggaran pantas algoritma 𝑘NN 
pelbagai-kelas. 

Kesemua algoritma yang dibangunkan dibandingkan secara kendiri dan 
dianalisa dengan algoritma terdahulu untuk mengesahkan kejituan dan 
kemapanan. Di samping itu, penilaian algoritma dibuat dengan pelbagai 
pangkalan data bertingkat dan satu aras untuk memastikan 
kebolehgunapakaian algoritma yang dicadangkan. Dalam pengoptimuman 
pangkalan data, algoritma pemilihan TA yang dicadangkan boleh mencapai 
sehingga 91.3% ketepatan di antara lokasi 2 meter dan pada masa yang sama 
menurunkan 17.7% kerumitan pengiraan. Dalam lokalisasi lantai, algoritma 
lantai yang dicadangkan menujukkan sehingga 96.8% ketepatan lantai. Dalam 
lokalisasi mendatar, algoritma yang dibangunkan mencapai sehingga 93.7% 
ketepatan di antara lokasi 2 meter. 

Algoritma tersebut kemudian digabungkan untuk menganggarkan lokasi peranti 
untuk bangunan bertingkat. Keputusan purata 73.6% ketepatan di antara lokasi 
2 meter dan 93.4% ketepatan lantai menunjukkan peningkatan berbanding 
teknik terdahulu oleh Gansemer dan Marques. Penambahbaikan kejituan 
disebabkan oleh prestasi algoritma lokalisasi lantai dan mendatar yang lebih 
baik manakala pengurangan kerumitan pengiraan disebabkan oleh pengenalan 
algoritma pemilihan TA.  
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CHAPTER 1 
 
 

INTRODUCTION 
 
 
1.1 Overview 
 
 
Location is one of the most valuable information in mobile communication 
nowadays. Today’s mobile devices are designed and programmed to have 
location features so it can be complemented with Location-Based Service (LBS) 
applications (Schiller and Voisard 2004). The location is important because it 
reflects interaction and context of the user based on the location of the device. In 
past times, location is mainly used to guide users to move from one place to 
another by giving the best possible route to reach the destination. However 
currently, the location information is used in much wider context. For example, by 
using smartphone a user can locate user’s current position and share the 
location with his or her friends on the social network. Also, a user can book a taxi 
service or finding the nearest restaurants or cash machines by considering 
user’s current location. 

  
Unfortunately, all of these applications infer the device location mainly based on 
its position in outdoor environment which mainly depends on the information 
provided by Global Navigation Satellite System (GNSS) receiver integrated with 
the mobile device. However, with only information of outdoor location, further 
development or enhancement of LBS applications is restricted. In near future, 
LBS applications are designed and developed to work for indoor-based services. 
For example, to assist shoppers to find items that they want to purchase by 
locating the exact aisle of the item in a hypermarket, to help drivers find their car 
in a multi-story indoor airport car park, and to supply information for smart 
building administrators to monitor temperature, room availability, and lightings. 
Therefore it is a requirement to know accurate indoor location to achieve these 
objectives. GNSS receiver however is generally not suitable to provide indoor 
location due to blockage and attenuation of the signals by roofs, walls and other 
objects. 

 
Researchers have been working to find alternative technologies to obtain 
accurate indoor location information. Some solutions includes Wireless Local 
Area Network (WLAN) infrastructure (Fang and Lin 2010, Prieto et al. 2012, 
Mirowski et al. 2014, Wang et al. 2015, Liang, Zhang, and Peng 2015), infrared 
(Petrellis, Konofaos, and Alexiou 2006, Tao et al. 2014), and Bluetooth (Hossain 
and Soh 2007, Jianyong et al. 2014, Gu and Ren 2015). Among the solutions, 
one of the most promising solutions is WLAN as its signal coverage is available 
almost anywhere in urban environments. Indoor localisation methods based on 
WLAN are largely documented in the literature and surpass any other indoor 
localisation technologies. 
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1.2 WLAN Indoor Localisation 
 
 
Indoor localisation based on WLAN was pioneered by Bahl and Padmanabhan 
(2000). WLAN based localisation is established by associating received Radio 
Frequency (RF) signals with physical location. The received RF signals or also 
known as Received Signal Strength (RSS) could characterise different locations 
as the propagated signals are location dependent. To localise unique location, 
RSS is measured throughout the floor area as combination of multiple signals 
from multiple Access Points (APs).  

 
The location estimation technique could be classified by two methods; radio 
propagation based model and fingerprinting method. In radio propagation based 
model, the location is estimated by triangulation where the location of three or 
more access points must be known and the path loss model such as log-
distance, which described the environment dependent relationship of the 
distance between the transmitter (AP) and receiver (device) according to 
variation of signal strength value, of the APs are determined. During position 
request by the device, the signal vector measured by the device at an unknown 
location is used as the input to the path loss model to determine the distance of 
the device from the APs which translates the location of the device. On the other 
hand, the fingerprinting method first requires real surveying by collecting the 
signal signature at every unique physical location which is also called as 
fingerprint location. The collection of multiple signal signatures associated with 
the physical locations are stored in the database as radio map and during the 
location request by the device, the signal vector of the device is compared its 
similarity with the one in the database to determine the location. 

 
Between the two methods, the latter technique, fingerprinting, is preferred.  This 
is because higher positioning accuracy could be achieved compared to radio 
propagation based model. Radio propagation based model could not provide 
finer accuracy due to inability of the model to characterise complex multipath 
signals received at each specific locations. However, fingerprinting technique 
comes with the cost of high processing time of localisation algorithm due to large 
amount of signal signatures in the radio map. In today’s application, indoor 
localisation system should be embedded in mobile device such as smartphone 
which has small computing capability, the localisation algorithm must be 
designed and developed to utilise as small processing power as possible and at 
the same time retain good positioning accuracy. Some examples of good and 
robust classical localisation algorithms are 𝑘-Nearest Neighbour (𝑘NN) (Bahl and 
Padmanabhan 2000), univariate kernel (Roos et al. 2002), and multivariate 
kernel (Kushki et al. 2007). Additionally, the localisation algorithm must be 
designed so that it can work in multiple indoor environments especially in urban 
area where the application is demanded. Generally, these areas are occupied 
with various multi-floor constructions. Therefore, the indoor localisation system 
must be designed and developed for this kind of infrastructure. 
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1.3 Multi-Floor Localisation 
 
 
Numerous studies can be found on development of indoor localisation system. 
However, majority of them are focussing on single-floor localisation (Wu et al. 
2013, Sorour et al. 2015, Chen and Wang 2015). It is investigated that the 
research on multi-floor localisation receives less attention is mainly due to two 
reasons. First, large radio map datasets is required as multi-floor data must be 
collected e.g. large fingerprint dataset for fingerprinting method, or large AP 
location dataset for AP based method. Second, the perception that development 
of multi-floor localisation could be easily extended from single-floor localisation 
technique. However, multi-floor WLAN localisation is actually much more 
challenging compared to single floor localisation. Figure 1.1 illustrates the 
comparison between single-floor localisation and multi-floor localisation. It is 
understood that multi-floor localisation challenges comes additional floor 
environment which increases the complexity of localisation in multi-floor setting. 
 

 
Figure 1.1. WLAN indoor localisation in single-floor and multi-floor settings 

 
There are significant differences between multi-floor and single-floor WLAN 
localisation. First, the datasets of the collected signal data must be characterised 
by three-dimensional position, which includes floor level of the building and 
horizontal positions of the data compared to only horizontal positions required for 
single-floor localisation. As the amount of entries in the radio map varies 
according to the number of fingerprint locations, therefore the amount of entries 
of the datasets for multi-floor localisation is generally in multiplication of the 
number of fingerprint locations and number of floor level exists within the 
building. Second, the number of APs increases proportionally with the number of 
floor level in multi-floor building. This causes the dimensionality of AP during 
online phase increase. Additionally, during the signal measurement process, 
each signal vector for multi-floor localisation will be added with multiple APs 
signal from other floors in addition to signal from the APs on the floor itself 
compared to single-floor where the AP signals mostly come from the APs 
installed on the floor. The computation of the localisation algorithms depends on 

Signal Level Signal Level 
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the three factors which are number of fingerprint locations, number of APs within 
the environment and the size of signal vector and these are the elements that 
are mentioned in first, second, and third comparisons. Therefore the 
computational complexity or processing time of the algorithm in multi-floor setting 
will be much higher compared to single-floor localisation. The fourth difference is 
the estimated locations in multi-floor environment require additional coordinate of 
the floor level or the z-coordinate compared to single-floor environment which is 
described by only x and y-coordinate. Lastly, the probability of error in multi-floor 
localisation is generally higher because of possibility that the estimated location 
is in different floor level than expected. All of these comparisons are summarised 
in Table 1.1. 

 
Multi-floor localisation system could be divided into two main problems which are 
to locate the floor level of the device and to position the device on the chosen 
floor level which determines the horizontal location. The algorithms should be 
accurate and quickly processed the radio map database to give estimation of the 
location. Therefore, three important categories that should be investigated in 
order to produce an efficient multi-floor location are radio map fingerprint 
database optimisation, floor localisation algorithm, and horizontal localisation 
algorithm. 
 

1.4 Kernel and Multi-Class Classifier Approach for Multi-Floor 
Localisation 

 
In particular, the technique to estimate the location in multi-floor environment has 
been focusing on similar type of algorithm. The algorithm also is the extension of 
previously developed algorithm for single-floor localisation. Multi-floor localisation 
involves processing larger database compared to single-floor and therefore the 
extended algorithm is no longer suitable to be applied for multi-floor case. The 
usage of classical algorithms in multi-floor environment also leads to increasing 
computational complexity as related to increasing amount of database element. 
To solve the problem, this thesis proposes new multi-floor localisation technique 
based on kernel and multi-class classifier. The techniques implements kernel 
density estimate and multi-class classifier based on logistic regression as tools 
for AP selection, and floor localisation algorithm. The 𝑘NN multi-class classifier is 
applied for new horizontal localisation algorithm. Theoretical foundation and 
algorithm implementation of the technique is described in details in Chapter 3 
and 4 respectively. 
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Table 1.1. Summary of differences between single-floor WLAN localisation 
versus multi-floor WLAN localisation 

Issue Single Floor Localisation Multi-Floor localisation 

 Radio map 

database 

 Radio map database is for 

single floor and the quantity 
of the entries of the database 

depends on the number of 
fingerprint locations. 

 Radio map database is in 

multiple number of floors exist 
in the building and the entries 

generally consists of 
multiplication of number of 
fingerprint locations and 

number of floor level. 

 Dimensions of AP  Dimensionality of AP 

depends on the number of 
APs installed in single floor. 

 Dimensionality of APs increase 

with increasing number of APs 
installed on every floor level of 
the building. 

 Fingerprint signal 
vector 

 Signal vector at each 
fingerprint location is majorly 

from multiple APs that are 
installed on the floor level and 
the signal follows normal path 

loss model. 

 Signal vector at each fingerprint 
location consists of signal from 

APs within similar floor level 
and also from other floor level 
within the building and the 

signal follows multi-floor path 
loss model. 

 Estimated location 

coordinate 
dimension 

 Estimated location is in 2 

dimensional coordinate (x 
and y) which is the horizontal 

location. 

 Estimated location is in 3 

dimensional coordinate (x, y, 
and z) which includes floor 

location and horizontal location. 

 Probability of 

location error 

 The probability of location 

error is only within horizontal 
locations.    

 The probability of location error 

may increase due to possibility 
of estimated location is located 
on different floor level than 

expected.  

 

1.5 Problem Statement 

 
To develop an efficient multi-floor localisation system, all of the elements of 
multi-floor localisation in Table 1.1 should be analysed according to categories 
mentioned above. There have been some developments of multi-floor WLAN 
localisation system and comprehensive review on the topic is written in Chapter 
2 of this thesis. From the review, it is indicated that majority of multi-floor WLAN 
localisation algorithm are developed based on extension of single-floor 
localisation algorithms. Generally, the problem with this kind of system did not 
consider computational complexity of the algorithms implemented in multi-floor 
environment. Also, the algorithm is not optimised for simultaneous estimation of 
both floor and horizontal locations. Specifically, in order to develop an efficient 
and robust multi-floor indoor localisation system, this thesis investigates the 
following problems: 

1. Majority of the proposed floor localisation algorithm is still based on 
classical similarity measure algorithm which is extended for multi-floor 
localisation. This means the developed floor localisation algorithm 
requires calculating every single entry of fingerprint to perform floor 
estimation. As discussed in Section 1.3, the multi-floor building problem 
involves the number of fingerprints is in the multiple of number of floor 
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level exists inside the building. Therefore the computational complexity 
increases as the number of floor increases. 

2. Considering all APs for localisation may degrade the performance of the 
localisation system. The number of APs installed within building 
increases as the number of floor level increases so that the coverage of 
the signal is enough for localisation system to work. This leads to AP 
dimensionality in multi-floor environment is much higher compared to 
single floor.  

3. The horizontal localisation algorithm in multi-floor setting is mainly 
implemented based on previously developed algorithm for single-floor 
problem. However in multi-floor building, additional AP signals are 
measured from other floor levels which degrade the performance of the 
algorithm. Consequently, the location estimation error in multi-floor 
location could not be minimised compared to single-floor location if 
similar algorithm is implemented for both environments. 

4. The validity of some existing multi-floor localisation algorithm is 
questionable as the algorithms are only tested in limited testing area 
such as one or two buildings and the buildings are low rise which 
contains less than five floor levels, and it is not guaranteed that the 
proposed algorithm will produce the similar performance as in different 
environments. 

5. The work on combining radio map database optimisation, floor 
localisation and horizontal localisation is not well studied to improve the 
multi-floor localisation system. Existing techniques are based solely on 
either improving floor localisation only or combination of database 
optimisation and floor localisation. The performance of combining all of 
the techniques is unknown. 

 

1.6 Objective of the Research 
 

The aim of this thesis is to develop a robust and efficient multi-floor localisation 
system emphasizing on: i) the accuracy of the localisation algorithms in both 
vertical and horizontal position which are characterised by estimated location 
error of the algorithms, and ii) the computational complexity of localisation 
algorithm which is to reduce the processing time of the developed algorithms. To 
achieve the aim, detail objectives are given as follows: 

1. To optimise the radio map database by implementing AP selection 
technique to limit or reduce the number of required APs information to 
perform localisation and at the same time retain similar accuracy with 
using all APs information. Two novels AP selection algorithms are 
introduced to improve the selection of APs in optimising the database. 
The performances of the proposed AP selection schemes are compared 
with existing AP selection technique to evaluate the performance of the 
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proposed algorithms based on three classical localisation algorithms of 
𝑘NN, univariate kernel, and multivariate kernel. 

2. To reduce the processing complexity of floor localisation algorithm and 
at the same time to improve the accuracy of the estimated floor level. 
Proposed two new floor localisation algorithms based on clustered multi-
floor radio map. The performances of the new floor localisation 
algorithms are compared with existing floor localisation algorithms to 
evaluate the effectiveness of the algorithm. 

3. To improve the location estimation error of horizontal localisation 
algorithm by introducing novel localisation algorithms for both multi-floor 
and single-floor environments. The horizontal localisation algorithms are 
compared with classical single-floor localisation algorithms (𝑘NN, 
univariate kernel, and multivariate kernel) and the performances of all 
algorithms are analysed and discussed.  

4. To combine the proposed AP selection technique, floor localisation 
algorithm and horizontal localisation algorithms to evaluate performance 
in multi-floor environment. The test is in multiple multi-floor environments 
with different number of floor levels to verify the performance of the 
proposed algorithm. The performance is also compared with existing 
multi-floor localisation algorithm. 

 

1.7 Organisation of the Thesis 

 
In Chapter 2, review of the literature on the multi-floor localisation system is 
given. The review presents in depth study on problems exist in existing multi-
floor localisation system which leads to the development of problem statement in 
Section 1.5. The review identifies the gaps in current research particularly in 
multiple scenarios of multi-floor e.g. validity of chosen environment for testing the 
multi-floor localisation system, radio map database optimisation techniques, floor 
localisation algorithms, and lastly the horizontal localisation algorithms. 

 
Chapter 3 first presents the background on WLAN fingerprint localisation and 
theory that is related to localisation algorithm used in this thesis and second 
describes the novel algorithms developed for the multi-floor localisation. The 
state-of-the-art WLAN fingerprint localisation mechanism is introduced. The 
related improvement components of the multi-floor localisation are presented 
which involves the database optimisation, floor localisation, and horizontal 
localisation. The theory of three popular classical algorithms which are used as 
benchmark for proposed algorithms are also discussed. The theory on kernel 
density estimate and machine learning multiclass classification using 𝑘NN and 
logistic regression are explained. The theories are applied for the following 
proposed algorithms. The database optimisation algorithms implement Max 
Kernel and Kernel Logistic Pairwise Discriminant (KLPD). The floor localisation 
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comprises of Averaged Kernel Floor and Kernel Logistic Floor algorithms. 
Normal and kernel multi-class 𝑘NN algorithms are used for horizontal localisation 

 
Chapter 4 explains the measurement setup of collecting the RSS signal data. 
This includes the measurement tools, floor map, and specification of the 
measurement. Also the method to extract the path loss parameters of the 
measured signal data to be tested with propagation model is shown. The details 
of measured fingerprint database specification and evaluation of path loss model 
using extracted path loss parameter of the measured signal data from the 
database are described. The performance metrics to evaluate the developed 
algorithms are discussed. Additionally, the method to determined number of 𝑘 
used for 𝑘NN algorithm is presented. 

 
Chapter 5 to 8 discuss the results related to the developed multi-floor system. 
The results explain the performance of the proposed AP Selection (Chapter 5), 
floor localisation (Chapter 6), and horizontal localisation algorithms (Chapter 7) 
of which results are evaluated and discussed. The results of combining the three 
proposed algorithms for multi-floor localisation are explained in Chapter 8. The 
results are mainly focusing on accuracy and computational complexity of the 
algorithms. 

 
Lastly, Chapter 9 draws conclusion on the proposed multi-floor system. The work 
presented in the thesis is summarised. The contributions of the thesis are 
highlighted. Also, further research directions are suggested. 
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