Il
UNIVERSITI PUTRA MALAYSIA

MOLECULAR DYNAMICS SIMULATION OF PALM KERNEL OIL
ESTERS-BASED NANO-EMULSION WITH IBUPROFEN AND
DIPALMITOYLPHOSPHATIDYL-CHOLINE LIPID BILAYER

NUR HANA BINTI FAUJAN

FS 2016 51




UPIM

UNIVERSITI PUTRA MALAYSIA
[BERILMU BERBAKTI]

\

MOLECULAR DYNAMICS SIMULATION OF PALM KERNEL OIL
ESTERS-BASED NANO-EMULSION WITH IBUPROFEN AND
DIPALMITOYLPHOSPHATIDYL-CHOLINE LIPID BILAYER

By

NUR HANA BINTI FAUJAN

Thesis Submitted to the School of Graduate Studies,
Universiti Putra Malaysia, in Fulfilment of the Requirement for the
Degree of Doctor of Philosophy

June 2016



All material contained within the thesis, which including the without
limitations texts, logos, icons, photographs and all other artwork, is copyright
material of Universiti Putra Malaysia unless otherwise stated. Use may be
made of any material contained within the thesis for non-commercial purposes
from the copyright holder. Commercial use of material may only be made with
the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia



DEDICATED

This thesis is lovingly dedicated to

My great parents,
Prof. Dr. Faujan B. H. Ahmad @ Amat and Mrs. Samilah binti Kutim.

My beloved husband,
Khairul Syahmi bin Kamso.

My dearest kids,
Muhammad Ahnaf and Khairunnajah.

My kindness siblings,
Nur Huda, Nur Hadi, Nur Hani, Nur Hafizah, Nur Hidayah, Nur Hakim, Nur Hariz
and Nur Hazigah.

Who lead me with the light of their endless love, support and encourage me
throughout my life.



Abstract of thesis presented to the Senate of Universiti Putra Malaysia in
fulfilment of the requirement for the degree of Doctor of Philosophy

MOLECULAR DYNAMICS SIMULATION OF
PALM KERNEL OIL ESTERS-BASED NANO-EMULSIONS WITH
IBUPROFEN AND DIPALMITOYLPHOSPHATIDYL-CHOLINE
LIPID BILAYER

By
NUR HANA BINTI FAUJAN

June 2016

Chairman : Roghayeh Abedi Karjiban, PhD
Faculty : Science

Transdermal drug delivery shows a great potential to enhance the permeation
process of drugs with poor solubility and low degree of bioavailability.
Nevertheless, the penetration of drug through the skin is a big challenge to
overcome. Nano-emulsion system can offer the solution to this problem by
acting as chemical penetration enhancers (CPEs). Therefore, palm kernel oil
esters (PKOEs)-based and oleyl laurate (OLA)-based nano-emulsion systems
were used as drug carrier model. PKOEs-based nano-emulsions with ibuprofen
(PKOEs:IBU/T80) and without ibuprofen (PKOEs/T80) were simulated
followed by the simulation with dipalmitoylphosphatidylcholine (DPPC) in
water (PKOEs/DPPC).

The PKOEs/T80, PKOEs:IBU/T80 and PKOEs/DPPC were simulated to
determine the effect of surfactant and drug in the model systems. All
simulations were performed using all-atom level molecular dynamics (MD)
technique for 50 ns. The aggregation process was observed rapidly in the
PKOEs-based nano-emulsion systems. These simulations provided better
understanding and insight onto the properties of esters, surfactants, drug and
water as well as the diffusion of IBU in PKOEs-based nano-emulsion system. A
prolate ellipsoidal shape was obtained in both PKOEs/T80 and
PKOEs:IBU/ T80 models whereas a doughnut-like toroidal shape was gained in
PKOEs/DPPC system. The average radius of gyration (Rg) values of 4.43
(¥0.01), 4.50 (x0.00) and 4.09 (¥0.01) nm were reported for the PKOEs/T80,
PKOEs:IBU/T80 and PKOEs/DPPC aggregates, respectively. The radial
distribution function (RDF) analysis detected higher interaction between the
PKOEs molecules compared to surfactant molecules in all models which could



be due to the hydrophobic interaction in the aggregated structures. In addition,
oleyl oleate (OLE) produced the strongest interaction between IBU molecules
with the RDF value of 1.26 (0.41) in the PKOEs:IBU/ T80 aggregate.

Oleyl laurate was used as the main composition of PKOEs for coarse-grained
molecular dynamics (CG-MD) simulation study. CG-MD simulation was
applied to investigate the aggregation process of OLA-based nano-emulsion
with IBU (OLA:IBU/T80) and without IBU (OLA/T80) for 500 ns. The
structure of the OLA/T80 and OLA:IBU/T80 aggregates were not completely
spherical. The R; values obtained were 4.36 (+0.04) and 4.34 (£0.04) nm,
respectively. The distribution of IBU molecules between the OLA was higher
compared to T80 molecules in OLA:IBU/T80 model with the RDF values of
1.77 (£1.16) and 1.12 (£0.40), respectively. The OLA:IBU/T80 was then
simulated with DPPC as a lipid bilayer model. The new model created
provided a detailed understanding of the diffusion process of drug through the
skin. The OLA:IBU/T80 aggregate was able to move freely inside DPPC
molecules. The diffusion of OLA:IBU/T80 also affected the DPPC lipid bilayer
structure by disturbing the structure of DPPC and losing the bilayer
compactness during 500 ns. The RDF value of DPPC as a lipid bilayer model
was decreased from g(r)=2.92 to g(r)=1.22 in the presence of OLA:IBU/T80
aggregate.
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Penghantaran transdermal ubatan mempunyai potensi yang sangat hebat bagi
meningkatkan proses penelapan ubat yang kurang larut dan rendah tahap
bioketersediaan. Namun begitu, penembusan ubat melalui kulit merupakan
satu cabaran yang besar. Sistem nano-emulsi dapat menyelesaikan masalah ini
dengan bertindak sebagai bahan kimia peningkat penembusan. Oleh yang
demikian, nano-emulsi berasaskan ester minyak isirong kelapa sawit (PKOEs)
dan oleil laurat (OLA) telah digunakan sebagai model pembawa ubatan. Nano-
emulsi berasaskan PKOEs dengan ibuprofen (PKOEs:IBU/T80) dan tanpa
ibuprofen (PKOEs/T80) telah disimulasi dan diikuti oleh simulasi dengan
dipalmitoilfosfatidilkolin (DPPC) dalam air (PKOEs/DPPC).

PKOEs/T80, PKOEs:IBU/T80 dan PKOEs/DPPC telah disimulasi untuk
menentukan kesan surfaktan dan ubat pada model sistem. Kesemua simulasi
telah dijalankan menggunakan teknik dinamik molekul (MD) seluruh-atom
selama 50 ns. Proses penggumpalan telah dilihat berlaku sangat pantas pada
sistem nano-emulsi berasaskan PKOEs. Simulasi ini memberikan pemahaman
yang baik dan pengertian yang mendalam tentang sifat ester, surfaktan, ubat
dan air serta penyebaran IBU pada sistem nano-emulsi berasaskan PKOEs.
Bentuk elipsoidal lonjong telah terbentuk pada kedua-dua model PKOEs/T80
and PKOEs:IBU/T80 sementara bentuk toroid seakan donat telah terbentuk
pada sistem PKOEs/DPPC. Nilai jejari putaran (R,) yang telah dilaporkan bagi
agregat PKOEs/T80, PKOEs:IBU/T80 dan PKOEs/DPPC, masing-masing
adalah sebanyak 4.43 (£0.01), 4.50 (+0.00) dan 4.09 (+0.01) nm. Analisis fungsi
pengagihan radial (RDF) telah mengesan interaksi yang lebih tinggi di antara
molekul PKOEs berbanding molekul surfaktan pada semua model yang



mungkin disebabkan oleh interaksi hidrofobik pada struktur agregat yang
diperolehi. Di samping itu, oleil oleat (OLE) telah menghasilkan interaksi yang
kuat terhadap molekul IBU dengan nilai RDF sebanyak 1.26 (£0.41) nm pada
agregat PKOEs:IBU/T80.

Oleil laurat telah digunakan untuk pengajian simulasi berbutir kasar-dinamik
molekul (CG-MD) kerana ia merupakan komposisi yang utama bagi PKOEs.
CG-MD telah digunakan untuk menyiasat proses pengagregatan bagi nano-
emulsi berasaskan OLA dengan IBU (OLA:IBU/T80) dan tanpa IBU
(OLA/T80) selama 500 ns. Struktur bagi OLA /T80 dan OLA:IBU/T80 agregat
merupakan sfera yang tidak sempurna. Nilai R; yang diperolehi masing-
masing adalah 4.36 (£0.04) dan 4.34 (+0.04) nm. Pengagihan di antara molekul
IBU terhadap OLA adalah lebih tinggi berbanding dengan molekul T80 pada
model OLA:IBU/T80 dengan nilai RDF masing-masing 1.77 (x1.16) dan 1.12
(£0.40). OLA:IBU/T80 kemudiannya disimulasi terhadap DPPC sebagai model
lipid dwilapisan. Model yang baharu dibina dapat memberikan pemahaman
yang lebih mendalam bagi penyebaran ubat melalui kulit. Agregat
OLA:IBU/T80 mempunyai kebolehan untuk bergerak dengan bebas di dalam
molekul DPPC. Penyerapan agregat OLA:IBU/T80 juga mempengaruhi
struktur lipid dwilapisan DPPC dengan menggangu struktur DPPC and
kehilangan kepadatan dwilapisan sepanjang 500 ns. Nilai RDF bagi membran
DPPC sebagai model lipid dwilapisan telah berkurangan daripada g(r)=2.92 ke
g(r)=1.22 dengan kehadiran struktur agregat OLA:IBU/T80.
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CHAPTER 1
INTRODUCTION
1.1 Background of Research

Ibuprofen (IBU) is one of the non-steroidal anti-inflammatory drugs (NSAIDs)
used for pain relief, anti-stiffness and anti-inflammatory effect in rheumatoid
arthritis, osteoarthritis, fever and gout treatments. It has a short plasma half-
life, low degree of bioavailability and low solubility in water (Winstanley and
Walley, 2002). Drug based nano-emulsions with nano droplet size have the
ability to enhance the absorption of drugs with poor solubility and low
bioavailability like IBU. Drugs can diffuse effectively by using the nano-
emulsion formulation. Nano-emulsion systems can solubilize the hydrophobic
substances within water-based phase (Delmas ef al., 2010) and improve the
permeation of many drugs for transdermal delivery application (Shakeel et al.,
2009).

Nano-emulsion systems can act as chemical penetration enhancers (CPE) and
drug carrier (Shakeel et al., 2007; Kong et al., 2011). Palm kernel oil esters
(PKOEs)-based nano-emulsions have been produced to be applied for drug
delivery system (Salim et al., 2011, Musa et al., 2013; De Costa et al.,, 2014;
Razaee et al., 2014). PKOEs with relatively short chain length hydrocarbon can
be considered as a good carrier to deliver drugs into the body (Keng et al.,
2009).

Transdermal drug delivery system has been developed to control the release of
drugs. Transdermal delivery is the administration of drug molecules directly to
the targeting area through the stratum corneum (SC) of skin. The mobility of
drugs, ions and water molecule is controlled by the SC skin barrier arranged in
multiple bilayers called lamellae structure (Marrow et al., 2007; Subedi et al.,
2010; Iwali et al., 2012).

The skin barrier consists of lipid structure in the extracellular space between
the SC cells. Lipid consists of free fatty acids (FFAs), long-chain ceramides
(CERs) and cholesterol (CHOL) (Wertz and Noelen, 2003). The SC is a dead
keratinocytes layer of epidermal cells embedded in a lipid matrix (Morrow et
al., 2007). The lipid matrix is formed by a parallel orientation of the lipid head
groups in a bilayer structure.

Molecular dynamics (MD) simulation is one of the computational approaches
which have been used to model the nano-emulsion (Abdul Rahman et al., 2008;
Abdul Rahman et al., 2009; Lee et al., 2010) and lipid systems (Eriksson and
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Eriksson, 2011; Mihailescu et al,, 2011) for several years. Many interesting
properties of the systems are possible to be understood and estimated in both
atomic and molecular levels. MD technique also has the abilities to simulate the
interactions of nano-materials with biological membranes (Shi et al., 2008;
Wallace and Sansom, 2008).

1.2 Problem Statements

Oral intakes of IBU may cause gastrointestinal (GI) ulcers or perforations,
stomach bleeding and kidney toxicity in long term treatment (Beetge et al.,
2000). Transdermal drug delivery system could be the alternative to transfer
IBU drug through the skin. Transdermal delivery has many advantages as
compared to other routes by avoiding first-pass hepatic metabolism and
providing patient compliance (Prausnitz and Langer, 2008). Nevertheless, there
is a big challenge in transdermal application, considering the physicochemical
properties of IBU. The transportation of IBU molecules has to overcome the
skin barrier. Nano-emulsion systems could improve the properties of IBU in
order to enhance the permeability of drug passing through the skin.

Many experimental works tried to produce nano-emulsion systems to achieve
the optimal level of drug permeation through the SC (Shakeel et al., 2009). They
focused mostly on the formulation and preparation process. However, the self-
assembly or self-aggregation of nano-emulsions and the formation of droplet
are difficult to be observed using laboratory tools. The laboratory experiments
hardly detect the distribution of drug molecules in nano-emulsion droplet and
the fundamental mechanism on how the system can penetrate the SC.

Computer simulations could be applied to describe the behaviour of the
simulated nano-emulsion model by determining their structural and
dynamical properties (Abedi Karjiban et al., 2015). An all-atomic MD technique
is still limited due to a practical upper simulation time limit of ~100 ns for
complex systems if computer clusters are not used. The main problem for all-
atom (AA) MD techniques is to reach the real equilibration state. This problem
can be solved by using coarse-grained molecular dynamics (CG-MD). CG-MD
represents the system by reducing the numbers of atoms as compared with an
all-atom description. Coarse-graining approach can be very helpful to extend
the simulation time and bridge the gap between the simulation and
experimental techniques.

1.3 Scope of Research

By using the experimental findings reported, detailed understanding and
insight into the interaction of nano-emulsion system with lipid bilayer can be
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further explained by applying computer simulation approaches. In this project,
MD simulation was applied to obtain the molecular structure, the stability and
the dynamical information of PKOEs-based nano-emulsion system. The
simulations were utilized to investigate the mechanism of self-assembly
process of PKOEs-based nano-emulsion model with and without IBU. Later on,
the CG-MD study was performed to simulate the self-assembly process of oleyl
laurate (OLA)-based nano-emulsion system with and without IBU. Oleyl
laurate (OLA) is the main component of PKOEs. This CG model was then used
to study the distribution of OLA-based nano-emulsion containing IBU through
dipalmitoylphosphatidyl-choline (DPPC) lipid bilayer. DPPC lipid bilayer was
simulated as the uppermost SC layer of skin. Overall, this study could explain
the application of PKOEs-based nano-emulsion system as a carrier of IBU drug
for transdermal delivery.

14 Objectives

The main objective of this research was to apply MD simulation techniques to
model the self-assembly process of PKOEs-based and OLA-based nano-
emulsions with and without IBU followed by exploring the distribution of
OLA-based nano-emulsion with IBU through DPPC lipid bilayer. Therefore,
the following specific objectives were pursued:

1. To examine the mechanism of self-assembly process in both PKOEs-
based and OLA-based nano-emulsion systems.

2. To determine the physicochemical and dynamical properties of
PKOEs-based and OLA-based nano-emulsions models.

3. To investigate the diffusion process of IBU in both PKOEs-based and
OLA-based nano-emulsions model systems.

4. To identify the distribution OLA:IBU/T80 aggregate in DPPC.
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