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Transdermal drug delivery shows a great potential to enhance the permeation 
process of drugs with poor solubility and low degree of bioavailability. 
Nevertheless, the penetration of drug through the skin is a big challenge to 
overcome. Nano-emulsion system can offer the solution to this problem by 
acting as chemical penetration enhancers (CPEs).  Therefore, palm kernel oil 
esters (PKOEs)-based and oleyl laurate (OLA)-based nano-emulsion systems 
were used as drug carrier model. PKOEs-based nano-emulsions with ibuprofen 
(PKOEs:IBU/T80) and without ibuprofen (PKOEs/T80) were simulated 
followed by the simulation with dipalmitoylphosphatidylcholine (DPPC) in 
water (PKOEs/DPPC).  
 
 
The PKOEs/T80, PKOEs:IBU/T80 and PKOEs/DPPC were simulated to 
determine the effect of surfactant and drug in the model systems. All 
simulations were performed using all-atom level molecular dynamics (MD) 
technique for 50 ns. The aggregation process was observed rapidly in the 
PKOEs-based nano-emulsion systems. These simulations provided better 
understanding and insight onto the properties of esters, surfactants, drug and 
water as well as the diffusion of IBU in PKOEs-based nano-emulsion system. A 
prolate ellipsoidal shape was obtained in both PKOEs/T80 and 
PKOEs:IBU/T80 models whereas a doughnut-like toroidal shape was gained in 
PKOEs/DPPC system. The average radius of gyration (Rg) values of 4.43 
(±0.01), 4.50 (±0.00) and 4.09 (±0.01) nm were reported for the PKOEs/T80, 
PKOEs:IBU/T80 and PKOEs/DPPC aggregates, respectively. The radial 
distribution function (RDF) analysis detected higher interaction between the 
PKOEs molecules compared to surfactant molecules in all models which could 
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be due to the hydrophobic interaction in the aggregated structures. In addition, 
oleyl oleate (OLE) produced the strongest interaction between IBU molecules 
with the RDF value of 1.26 (±0.41) in the PKOEs:IBU/T80 aggregate.  
 
 
Oleyl laurate was used as the main composition of PKOEs for coarse-grained 
molecular dynamics (CG-MD) simulation study. CG-MD simulation was 
applied to investigate the aggregation process of OLA-based nano-emulsion 
with IBU (OLA:IBU/T80) and without IBU (OLA/T80) for 500 ns. The 
structure of the OLA/T80 and OLA:IBU/T80 aggregates were not completely 
spherical. The Rg values obtained were 4.36 (±0.04) and 4.34 (±0.04) nm, 
respectively. The distribution of IBU molecules between the OLA was higher 
compared to T80 molecules in OLA:IBU/T80 model with the RDF values of 
1.77 (±1.16) and 1.12 (±0.40), respectively. The OLA:IBU/T80 was then 
simulated with DPPC as a lipid bilayer model. The new model created 
provided a detailed understanding of the diffusion process of drug through the 
skin. The OLA:IBU/T80 aggregate was able to move freely inside DPPC 
molecules. The diffusion of OLA:IBU/T80 also affected the DPPC lipid bilayer 
structure by disturbing the structure of DPPC and losing the bilayer 
compactness during 500 ns. The RDF value of DPPC as a lipid bilayer model 
was decreased from g(r)=2.92 to g(r)=1.22 in the presence of OLA:IBU/T80 
aggregate.  
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Penghantaran transdermal ubatan mempunyai potensi yang sangat hebat bagi 
meningkatkan proses penelapan ubat yang kurang larut dan rendah tahap 
bioketersediaan. Namun begitu, penembusan ubat melalui kulit merupakan 
satu cabaran yang besar. Sistem nano-emulsi dapat menyelesaikan masalah ini 
dengan bertindak sebagai bahan kimia peningkat penembusan. Oleh yang 
demikian, nano-emulsi berasaskan ester minyak isirong kelapa sawit (PKOEs) 
dan oleil laurat (OLA) telah digunakan sebagai model pembawa ubatan. Nano-
emulsi berasaskan PKOEs dengan ibuprofen (PKOEs:IBU/T80) dan tanpa 
ibuprofen (PKOEs/T80) telah disimulasi dan diikuti oleh simulasi dengan 
dipalmitoilfosfatidilkolin (DPPC) dalam air (PKOEs/DPPC). 
 
 
PKOEs/T80, PKOEs:IBU/T80 dan PKOEs/DPPC telah disimulasi untuk 
menentukan kesan surfaktan dan ubat pada model sistem. Kesemua simulasi 
telah dijalankan menggunakan teknik dinamik molekul (MD) seluruh-atom 
selama 50 ns. Proses penggumpalan telah dilihat berlaku sangat pantas pada 
sistem nano-emulsi berasaskan PKOEs. Simulasi ini memberikan pemahaman 
yang baik dan pengertian yang mendalam tentang sifat ester, surfaktan, ubat 
dan air serta penyebaran IBU pada sistem nano-emulsi berasaskan PKOEs. 
Bentuk elipsoidal lonjong telah terbentuk pada kedua-dua model PKOEs/T80 
and PKOEs:IBU/T80 sementara bentuk toroid seakan donat telah terbentuk 
pada sistem PKOEs/DPPC. Nilai jejari putaran (Rg) yang telah dilaporkan bagi 
agregat PKOEs/T80, PKOEs:IBU/T80 dan PKOEs/DPPC, masing-masing 
adalah sebanyak 4.43 (±0.01), 4.50 (±0.00) dan 4.09 (±0.01) nm. Analisis fungsi 
pengagihan radial (RDF) telah mengesan interaksi yang lebih tinggi di antara 
molekul PKOEs berbanding molekul surfaktan pada semua model yang 
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mungkin disebabkan oleh interaksi hidrofobik pada struktur agregat yang 
diperolehi. Di samping itu, oleil oleat (OLE) telah menghasilkan interaksi yang 
kuat terhadap molekul IBU dengan nilai RDF sebanyak 1.26 (±0.41) nm pada 
agregat PKOEs:IBU/T80. 
 
 
Oleil laurat telah digunakan untuk pengajian simulasi berbutir kasar-dinamik 
molekul (CG-MD) kerana ia merupakan komposisi yang utama bagi PKOEs. 
CG-MD telah digunakan untuk menyiasat proses pengagregatan bagi nano-
emulsi berasaskan OLA dengan IBU (OLA:IBU/T80) dan tanpa IBU 
(OLA/T80) selama 500 ns. Struktur bagi OLA/T80 dan OLA:IBU/T80  agregat 
merupakan sfera yang tidak sempurna. Nilai Rg yang diperolehi masing-
masing adalah 4.36 (±0.04) dan 4.34 (±0.04) nm. Pengagihan di antara molekul 
IBU terhadap OLA adalah lebih tinggi berbanding dengan molekul T80 pada 
model OLA:IBU/T80 dengan nilai RDF masing-masing 1.77 (±1.16) dan 1.12 
(±0.40). OLA:IBU/T80 kemudiannya disimulasi terhadap DPPC sebagai model 
lipid dwilapisan. Model yang baharu dibina dapat memberikan pemahaman 
yang lebih mendalam bagi penyebaran ubat melalui kulit. Agregat 
OLA:IBU/T80 mempunyai kebolehan untuk bergerak dengan bebas di dalam 
molekul DPPC. Penyerapan agregat OLA:IBU/T80 juga mempengaruhi 
struktur lipid dwilapisan DPPC dengan menggangu struktur DPPC and 
kehilangan kepadatan dwilapisan sepanjang 500 ns. Nilai RDF bagi membran 
DPPC sebagai model lipid dwilapisan telah berkurangan daripada g(r)=2.92 ke 
g(r)=1.22 dengan kehadiran struktur agregat OLA:IBU/T80. 
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CHAPTER 1 
 

INTRODUCTION 
 

1.1 Background of Research 
 
Ibuprofen (IBU) is one of the non-steroidal anti-inflammatory drugs (NSAIDs) 
used for pain relief, anti-stiffness and anti-inflammatory effect in rheumatoid 
arthritis, osteoarthritis, fever and gout treatments. It has a short plasma half-
life, low degree of bioavailability and low solubility in water (Winstanley and 
Walley, 2002). Drug based nano-emulsions with nano droplet size have the 
ability to enhance the absorption of drugs with poor solubility and low 
bioavailability like IBU. Drugs can diffuse effectively by using the nano-
emulsion formulation. Nano-emulsion systems can solubilize the hydrophobic 
substances within water-based phase (Delmas et al., 2010) and improve the 
permeation of many drugs for transdermal delivery application (Shakeel et al., 
2009).  
 
 
Nano-emulsion systems can act as chemical penetration enhancers (CPE) and 
drug carrier (Shakeel et al., 2007; Kong et al., 2011). Palm kernel oil esters 
(PKOEs)-based nano-emulsions have been produced to be applied for drug 
delivery system (Salim et al., 2011; Musa et al., 2013; De Costa et al., 2014; 
Razaee et al., 2014). PKOEs with relatively short chain length hydrocarbon can 
be considered as a good carrier to deliver drugs into the body (Keng et al., 
2009).  
 
 
Transdermal drug delivery system has been developed to control the release of 
drugs. Transdermal delivery is the administration of drug molecules directly to 
the targeting area through the stratum corneum (SC) of skin. The mobility of 
drugs, ions and water molecule is controlled by the SC skin barrier arranged in 
multiple bilayers called lamellae structure (Marrow et al., 2007; Subedi et al., 
2010; Iwai et al., 2012).   
 
 
The skin barrier consists of lipid structure in the extracellular space between 
the SC cells. Lipid consists of free fatty acids (FFAs), long-chain ceramides 
(CERs) and cholesterol (CHOL) (Wertz and Noelen, 2003). The SC is a dead 
keratinocytes layer of epidermal cells embedded in a lipid matrix (Morrow et 
al., 2007). The lipid matrix is formed by a parallel orientation of the lipid head 
groups in a bilayer structure.  
 
 
Molecular dynamics (MD) simulation is one of the computational approaches 
which have been used to model the nano-emulsion (Abdul Rahman et al., 2008; 
Abdul Rahman et al., 2009; Lee et al., 2010) and lipid systems (Eriksson and 
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Eriksson, 2011; Mihailescu et al., 2011) for several years. Many interesting 
properties of the systems are possible to be understood and estimated in both 
atomic and molecular levels. MD technique also has the abilities to simulate the 
interactions of nano-materials with biological membranes (Shi et al., 2008; 
Wallace and Sansom, 2008).  
 
 
1.2 Problem Statements 
 
Oral intakes of IBU may cause gastrointestinal (GI) ulcers or perforations, 
stomach bleeding and kidney toxicity in long term treatment (Beetge et al., 
2000). Transdermal drug delivery system could be the alternative to transfer 
IBU drug through the skin. Transdermal delivery has many advantages as 
compared to other routes by avoiding first-pass hepatic metabolism and 
providing patient compliance (Prausnitz and Langer, 2008). Nevertheless, there 
is a big challenge in transdermal application, considering the physicochemical 
properties of IBU. The transportation of IBU molecules has to overcome the 
skin barrier. Nano-emulsion systems could improve the properties of IBU in 
order to enhance the permeability of drug passing through the skin.  
 
 
Many experimental works tried to produce nano-emulsion systems to achieve 
the optimal level of drug permeation through the SC (Shakeel et al., 2009). They 
focused mostly on the formulation and preparation process. However, the self-
assembly or self-aggregation of nano-emulsions and the formation of droplet 
are difficult to be observed using laboratory tools. The laboratory experiments 
hardly detect the distribution of drug molecules in nano-emulsion droplet and 
the fundamental mechanism on how the system can penetrate the SC.  
 
 
Computer simulations could be applied to describe the behaviour of the 
simulated nano-emulsion model by determining their structural and 
dynamical properties (Abedi Karjiban et al., 2015). An all-atomic MD technique 
is still limited due to a practical upper simulation time limit of ∼100 ns for 
complex systems if computer clusters are not used. The main problem for all-
atom (AA) MD techniques is to reach the real equilibration state. This problem 
can be solved by using coarse-grained molecular dynamics (CG-MD). CG-MD 
represents the system by reducing the numbers of atoms as compared with an 
all-atom description. Coarse-graining approach can be very helpful to extend 
the simulation time and bridge the gap between the simulation and 
experimental techniques.  
 
 
1.3 Scope of Research 
 
By using the experimental findings reported, detailed understanding and 
insight into the interaction of nano-emulsion system with lipid bilayer can be 
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further explained by applying computer simulation approaches. In this project, 
MD simulation was applied to obtain the molecular structure, the stability and 
the dynamical information of PKOEs-based nano-emulsion system. The 
simulations were utilized to investigate the mechanism of self-assembly 
process of PKOEs-based nano-emulsion model with and without IBU. Later on, 
the CG-MD study was performed to simulate the self-assembly process of oleyl 
laurate (OLA)-based nano-emulsion system with and without IBU. Oleyl 
laurate (OLA) is the main component of PKOEs. This CG model was then used 
to study the distribution of OLA-based nano-emulsion containing IBU through 
dipalmitoylphosphatidyl-choline (DPPC) lipid bilayer. DPPC lipid bilayer was 
simulated as the uppermost SC layer of skin. Overall, this study could explain 
the application of PKOEs-based nano-emulsion system as a carrier of IBU drug 
for transdermal delivery. 
 
 
1.4 Objectives 

 
The main objective of this research was to apply MD simulation techniques to 
model the self-assembly process of PKOEs-based and OLA-based nano-
emulsions with and without IBU followed by exploring the distribution of 
OLA-based nano-emulsion with IBU through DPPC lipid bilayer. Therefore, 
the following specific objectives were pursued: 
 
1. To examine the mechanism of self-assembly process in both PKOEs-

based and OLA-based nano-emulsion systems.  
 
2. To determine the physicochemical and dynamical properties of 

PKOEs-based and OLA-based nano-emulsions models.  
 
3. To investigate the diffusion process of IBU in both PKOEs-based and 

OLA-based nano-emulsions model systems. 
 
4. To    identify   the   distribution OLA:IBU/T80 aggregate in DPPC. 
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