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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in 

fulfillment of the requirements for the degree of Doctor of Philosophy 

SUPPORT VECTOR MACHINE AND ITS APPLICATIONS FOR LINEAR 

AND NONLINEAR REGRESSION IN THE PRESENCE OF OUTLIERS 

OF HIGH DIMENSIONAL DATA 

By 

WALEED DHHAN SLEABI 

September 2016 

Chairman   :   Md. Sohel Rana, PhD 

Faculty        :   Science 

The ordinary least squares (OLS) is reported as the most commonly used 

method to estimate the relationship between variables (inputs and output) in 

the linear regression models because of its optimal properties and ease of 

calculation. Unfortunately, the OLS estimator is not efficient in cases of the 

presence of outliers in a data set, nonlinear relationships and high dimensional 

problems. Thus, the search for alternatives that feature the necessary flexibility 

to handle them has become an urgent necessity such as nonparametric 

approaches. Consequently, the support vector regression (SVR) is used as an 

alternative to OLS.                                                                      .  

In this thesis, at first, we consider the identification of outliers through the 

SVR. In regression, outliers can be classified into two different types, such as 

vertical outlier and leverage points (good and bad leverage points). It is very 

important to identify outliers and bad leverage points (BLP) because of their 

significant effects on estimators. Most of the parametric diagnostic measures 

are considered good leverage points as bad leverage points. Hence, new 

nonparametric techniques are proposed for identification outliers that we call 

the fixed parameters support vector regression methods (FP-SVR). The results 

of real applications and simulation studies showed that the proposed methods 

have advantages over classical methods to identify vertical outliers and bad 

leverage points. 
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Further, in this thesis, the GM6 version of the robust estimation methods was 

developed only to identify and inhibit the influence of leverage points (LB) 

without taking into consideration whether it is good or bad. Thus, a new class 

of GM-estimators based on FP-SVR technique is developed takes into account 

minimizing the impact of the bad leverage points only on the model, and we 

call it GM-SVR. The results show that the performance of the GM-SVR is the 

best overall, followed by GM6 for all possible combinations of size of samples 

and percentages of contamination. 

 

This thesis also addresses the problem of high dimensionality in linear and 

nonlinear regression models. It is well known that the support vector 

regression has the ability to introduce sparse models (less complexity). 

Unfortunately, there is a potential problem: if the value of threshold is small (ε 

near zero), the resulting model depends on a greater number of the training 

data points, thus making the solution more complexity (non-sparse).Therefore, 

the single index support vector regression (SI-SVR) model is proposed which 

combines the flexibility of the nonparametric model and the high accuracy of 

the parametric model. The real and simulation studies pointed out that the 

proposed method has the ability to address the problem of high 

dimensionality. 

 

This thesis also explores the problem of high dimensionality when the number 

of predictors p larger than the sample size n. Although, we have proposed the 

SI-SVR to solve the problem of high dimensionality but this model does not 

have the ability to modeling examples with rank deficient. Furthermore, the 

efficiency of the resulting SI-SVR model can be decreased and less accurate 

predictions will be produced when unnecessary predictors are included in the 

model. Hence, a new method is suggested to overcome this issue using the 

Elastic Net technique for selecting significant variables which we call the elastic 

net single index support vector regression (ENSI-SVR). The comparison results 

show that the ENSI-SVR is an efficient method in dealing with sparse data to 

achieve dimension reduction which allows applying the SI-SVR easily. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia 

sebagai memenuhi keperluan untuk ijazah Doktor Falsafah 

MESIN VEKTOR SOKONGAN DAN PENGGUNAAN UNTUK REGRESI 

LINEAR DAN BUKAN LINEAR DENGAN KEHADIRAN TITIK 

TERPENCIL DAN DATA BERDIMENSI TINGGI 

Oleh 

WALEED DHHAN SLEABI 

September 2016 

Pengerusi   :  Md. Sohel Rana, PhD 

Fakulti        :  Sains 

Kaedah biasa kuasa dua terkecil (OLS) dilaporkan sebagai kaedah yang paling 

biasa digunakan untuk menganggarkan hubungan antara pembolehubah 

(input dan output) dalam model regresi linear kerana sifat-sifat yang optimum 

dan memudahkan dalam pengiraan. Malangnya, penganggar OLS tidak 

berkesan dalam kehadiran titik terpencil, hubungan tidak linear dan masalah 

dimensi yang tinggi. Oleh itu, mencari alternatif yang fleksibil telah menjadi 

satu keperluan yang segera bagi  mengendalikan titik terpencil seperti kaedah 

tidak berparameter. Oleh itu, regresi vektor sokongan (SVR) digunakan 

sebagai alternatif kepada OLS. 

Dalam tesis ini, pada mulanya, kami mengambil kira mengenalpasti titik 

terpencil melalui SVR . Dalam regresi, titik terpencil boleh diklasifikasikan 

kepada dua jenis yang berbeza, seperti titik terpencil menegak dan titik tuasan 

(titik tuasan baik dan buruk). Sangat  penting untuk  mengenalpasti titik 

terpencil dan titik tuasan buruk (BLP), ini kerana ianya mempunyai kesan 

yang signifikan ke atas penganggar. Kebanyakan pengukur diagnostik 

berparameter mempertimbangkan titik tuasan baik  sebagai titik tuasan buruk. 

Oleh itu, teknik tidak berparameter baru dicadangkan untuk mengenalpasti 

titik luaran dimana ianya dinamakan Parameter Tetap Menyokong Kaedah 

Regresi Vektor (FP-SVR). Keputusan  bagi aplikasi sebenar dan kajian simulasi 

menunjukkan kaedah yang dicadangkan mempunyai kebaikan berbanding 

dengan kaedah yang sedia ada bagi mengenal pasti titik terpencil menegak 

dan titik tuasan buruk . 
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Selanjutnya, dalam tesis ini, versi GM6 kaedah anggaran teguh telah 

dicadangkan hanya untuk mengenalpasti dan menghalang pengaruh titik 

tuasan tanpa mengambil kira sama ada ianya baik atau buruk. Oleh itu, 

kaedah baharu penganggar GM berdasarkan parameter tetap menyokong 

teknik regresi vektor dibangunkan dengan mengambil kira minimumkan 

kesan daripada titik tuasan buruk hanya kepada model, dan kami 

menamakannya GM-SVR. Keputusan menunjukkan prestasi GM-SVR adalah 

yang paling baik untuk keseluruhan, diikuti dengan GM6 untuk kesemua 

kemungkinan kombinasi saiz sampel dan peratusan data yang tercemar. 

 

Tesis ini juga menangani masalah dimensi tinggi dalam model regresi linear 

dan tidak linear. Adalah diketahui umum bahawa regresi sokongan vektor 

mempunyai keupayaan untuk memperkenalkan model jarang (kurang rumit). 

Malangnya, wujudnya masalah berpotensi: jika nilai ambang adalah kecil (ε 

hampir sifar), model yang terhasil bergantung kepada bilangan yang lebih 

besar daripada titik data latihan, dengan itu membuat penyelesaian menjadi 

lebih kompleks (tidak jarang). Oleh itu, model Tunggal Sokongan Indeks 

Vektor Regresi (SI-SVR) dicadangkan bagi menggabungkan fleksibiliti model 

tidak berparameter dan ketepatan yang tinggi bagi model berparameter. Kajian 

sebenar dan simulasi menunjukkan kaedah yang dicadangkan mempunyai 

keupayaan untuk menangani masalah  dimensi tinggi. 

 

Tesis ini juga meneroka masalah dimensi tinggi apabila bilangan peramal p 

lebih besar daripada saiz sampel n. Walaupunbagaimanapun, kami 

mencadangkan SI-SVR untuk menyelesaikan masalah dimensi tinggi tetapi 

model ini tidak mempunyai keupayaan untuk model contoh dengan susunan 

kekurangan. Tambahan pula, kecekapan model SI-SVR yang terhasil boleh 

menurun dan ramalan kurang tepat akan dihasilkan apabila peramal yang 

tidak perlu dimasukkan dalam model. Oleh itu, satu kaedah baru dicadangkan 

untuk mengatasi isu ini dengan menggunakan teknik bersih anjal untuk 

memilih pembolehubah penting yang kami namakan Sokongan Bersih Indeks 

Tunggal Vektor Regresi Elastik (ENSI-SVR). Keputusan pembandingan 

mendapati ENSI-SVR merupakan kaedah yang berupaya dalam berurusan 

dengan data jarang untuk mencapai pengurangan dimensi yang membolehkan 

penggunaan SI-SVR dengan mudah. 

 

 

 

 

 

 

 

 



© C
OPYRIG

HT U
PM

v

ACKNOWLEDGEMENTS 

First and foremost, I would like to give thanks to my God, who has provided 

me His strength and grace throughout my doctoral pursue.  

Heartfelt appreciation also goes to my committee chairperson, Dr. Sohel Rana 

for his constant inspiration, efficient guidance, and constructive feedback 

rendered. I am deeply honored to have the opportunity to complete my degree 

under his supervision. 

I would also like to thank my internal co-supervisors, Prof. Dr. Habshah Midi 

and Associate Prof. Dr. Ibragimov Gafurjan for all their support and guidance 

provided.  

I would like to express my sincere appreciation and deepest gratitude to the 

Ministry of Municipalities and Public Works (MMPW) for providing me 

scholarship and also to all my colleagues whom are always willing to help me. 

My special thanks go to my beloved wife, for standing by with me patiently 

with her never ending encouragement, prayers and support throughout my 

doctoral pursue.  

Also, I would like to thank my children; MD. Sadeq, and Hayderali for giving 

me the happiness during my study. 



© C
OPYRIG

HT U
PM

vii

This thesis was submitted to the Senate of Universiti Putra Malaysia and has 

been accepted as fulfillment of the requirement for the degree of Doctor of 

Philosophy. The members of the Supervisory Committee were as follows:  

Md. Sohel Rana, PhD 

Senior Lecturer  

Faculty of Science 

Universiti Putra Malaysia 

(Chairman) 

Habshah bt Midi, PhD 

Professor  

Faculty of Science 

Universiti Putra Malaysia 

(Member) 

Ibragimov Gafurjan, PhD 

Associate Professor 

Faculty of Science 

Universiti Putra Malaysia 

(Member) 

 BUJANG BIN KIM HUAT, PhD 

   Professor and Dean  

 School of Graduate Studies  

 Universiti Putra Malaysia 

 Date: 



© C
OPYRIG

HT U
PM

viii

Declaration by graduate student 

I hereby confirm that: 

 this thesis is my original work;

 quotations, illustrations and citations have been duly referenced;

 this thesis has not been submitted previously or concurrently for any

other degree at any other institutions;

 intellectual property from the thesis and copyright of thesis are fully-

owned by Universiti Putra Malaysia, as according to the Universiti Putra

Malaysia (Research) Rules 2012;

 written permission must be obtained from supervisor and the office of

Deputy Vice-Chancellor (Research and Innovation) before the thesis is

published (in the form of written, printed or in electronic form) including

books, journals, modules, proceedings, popular writings, seminar

papers, manuscripts, posters, reports, lecture notes, learning modules or

any other materials as stated in the Universiti Putra Malaysia (Research)

Rules 2012;

 there is no plagiarism or data falsification/ fabrication in the thesis, and

scholarly integrity is upheld as according to the Universiti Putra

Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the

Universiti Putra Malaysia (Research) Rules 2012. The thesis has

undergone plagiarism software.

Signature:  Date:

Name and Matric No.: Waleed Dhhan Sleabi,  GS37423 



© C
OPYRIG

HT U
PM

ix

Declaration by Members of Supervisory Committee 

This is to confirm that: 

 the research conducted and the writing of this thesis was under our

supervision;

 supervision responsibilities as stated in the Universiti Putra Malaysia

(Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: 

Name of 

Chairman of 

Supervisory 

Committee: Md. Sohel Rana, PhD 

Signature: 

Name of 

Member of 

Supervisory 

Committee: Habshah bt Midi, PhD 

Signature: 

Name of 

Member of 

Supervisory 

Committee: Ibragimov Gafurjan, PhD 



© C
OPYRIG

HT U
PM

x

TABLE OF CONTENTS 

     Page 

i 

iii 

v 

vi 

viii 

xiv 

xvi 

xviii 

ABSTRACT 

ABSTRAK 

ACKNOWLEDGEMENTS 

APPROVAL 

DECLARATION 

LIST OF TABLES 

LIST OF FIGURES 

LIST OF  APPENDICES 

LIST OF  ABBREVIATIONS xix 

CHAPTER 

1 INTRODUCTION 1 

1.1 Background of the Study 1 

1.2 Impo rtance and Motivation of the Study 2 

1.3 Research Objectives 5 

1.4 Scope and Limitation of Study 6 

1.5 Overview of the Thesis 7 

2 LITERATURE  REVIEW 9 

2.1 Introduction 9 

2.2 Background and Notation 9 

2.2.1 The Standardized Form 10 

2.3 Ordinary Least Squares Estimation Method 11 

2.3.1 The Classical Gauss-Markov assumptions 12 

2.3.2 Limitation of the Least Squares Assumptions 13 

2.4 Introduction to Support Vector Machine for Regression 13 

2.4.1 The Basic Idea 15 

2.4.2 Dual Problem and Quadratic Programs 17 

2.4.3 Generalize SVR Algorithm for Nonlinear Case 18 

2.4.4 The Steps of SVR Algorithm 19 

2.5 Diagnostic Methods 20 

2.5.1 Hat Matrix 21 

2.5.2 Robust Mahalanobis Distance 22 

2.5.3 Principal Components 23 

2.5.4 The Standard SVM Regression for Outlier 

Detection 

24 



© C
OPYRIG

HT U
PM

xi 

 

  2.5.5     SVR Based Outlier Detection 25 

 2.6 Introduction to Robust Estimators 27 

  2.6.1 Basic Concepts  27 

   2.6.1.1      Efficiency 27 

   2.6.1.2      Breakdown Point  28 

   2.6.1.3   Bounded Influence Function 28 

 2.7 Robust Linear Regression 29 

  2.7.1 M-Estimator 29 

  2.7.2 GM1-estimator  31 

  2.7.3 GM6-estimator  32 

  2.7.4 MM-Estimator 33 

 2.8 Estimation of Standard Error Using Bootstrap technique 34 

  2.8.1 Random-X Bootstrapping 34 

  2.8.2 Fixed-X Bootstrapping 35 

 2.9 Single Index Model 35 

  2.9.1 Estimation 36 

   2.9.1.1 Semiparametric Least Squares  37 

 2.10 Variable Selection Methods 38 

  2.10.1 LASSO Method 39 

  2.10.2 Elastic Net Method 40 

 

3 FIXED PARAMETERS SUPPORT VECTOR REGRESSION 

FOR OUTLIER DETECTION 

42 

 3.1 Introduction 42 

 3.2        Fixed Parameters SV Regression 44 

  3.2.1 Proposed Method for Radial Basis Function 45 

  3.2.2 Proposed Method for Linear Kernel Function 47 

 3.3        Experimental Results for Real Data Sets 47 

  3.3.1 The Copper Content Data 48 

  3.3.2 Belgian Phone Data 50 

  3.3.3 Hawkins, Bradu and Kass Data  51 

  3.3.4 First word-Gesell data 54 

  3.3.5 Cloud Point data 56 

  3.3.6 Stack loss data 58 

 3.4 Artificial and Simulation Studies 60 

  3.4.1 First  Artificial  Data 60 

  3.4.2 Second  Artificial Data 63 

  3.4.3 Simulation Data 65 

 3.5 Conclusion 67 

 

 

 



© C
OPYRIG

HT U
PM

xii 

 

4 A HIGH BREAKDOWN, HIGH EFFICIENCY AND 

BOUNDED INFLUENCE MODIFIED GM ESTIMATOR 

BASED ON SUPPORT VECTOR REGRESSION 

68 

 4.1 Introduction 68 

 4.2 Proposed GM-estimator Based On Fixed Parameter SVR 71 

  4.21 Choice of the Initial Weights of GM1 and GM6 71 

 
 4.2.2 

Choice of the Initial Weight of the Proposed 

Method 

72 

  4.2.3 Algorithm of Proposed Estimator GM-SVR 73 

 4.3 Artificial and Real Case Studies 74 

  4.3.1 Hawkins-Bradu-Kass Data 74 

  4.3.2 Aircraft Data 76 

 4.4 Monte Carlo Simulation Studies 77 

  4.4.1 Three-Dimensional Target Function 77 

  4.4.2 Five-Dimensional Target Function 82 

 4.5 Conclusion 86 

 

5 THE SINGLE-INDEX SUPPORT VECTOR REGRESSION 

MODEL TO ADDRESS THE PROBLEM OF HIGH 

DIMENSIONALITY 

87 

 5.1 Introduction 87 

 5.2 Single-Index Support Vector Regression 89 

 5.3 Training and Testing data 91 

 5.4 Simulations Studies 91 

  5.4.1 Four-Dimensional Target Function 91 

  5.4.2 Eight-Dimensional Target Function 93 

  5.4.3 Fifteen-Dimensional Target Function 95 

 5.5 Real Case Study 97 

  5.5.1 Prostate Cancer Data 98 

 5.6 Discussion and Conclusion 100 

   

6 ELASTIC NET FOR SINGLE INDEX SUPPORT VECTOR 

REGRESSION MODEL 

101 

 6.1 Introduction 101 

 6.2 Elastic Net Single Index 104 

 6.3 Estimation of the Unknown Link Function   105 

 6.4 Simulations Examples 107 

  6.4.1 Simulation I 107 

  6.4.2 Simulation II 109 

  6.4.3 Simulation III 111 

 6.5 Real Case Study 112 

  6.5.1 Body Dimensions Data 112 



© C
OPYRIG

HT U
PM

xiii 

 

 

 

 

 

 

 

 

 

 

  6.5.2 The NIR Data 114 

 6.5 Discussion and Conclusion 116 

   

7 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

FOR FURTHER STUDIES 

117 

 7.1 Introduction 117 

 7.2 Research Contributions 117 

 

 

7.2.1 FP-SVR for Multiple Outliers and Bad Leverage 

Points in Linear and Non-Linear Regression 

Model 

117 

 

 

7.2.2 Modified GM-estimator Based on FP-SVR for 

data having Vertical Outliers and Bad Leverage 

Points 

118 

 

 

7.2.3 New SIM to Remedy  the Problem of High 

Dimensionality  in Linear and Non-Linear 

Regression Model 

119 

  

7.2.4 Elastic Net with SIM for Reducing 

Dimensionality  when p is Larger Than n  for 

Linear and Non-Linear Regression Model 

119 

 7.3 Conclusion 120 

 7.4 Areas of Future Studies 121 

 

REFERENCES 122 

APPENDICES 135 

BIODATA OF STUDENT 149 

LIST OF PUBLICATIONS 150 



© C
OPYRIG

HT U
PM

xiv 

 

 LIST OF TABLES  

   

Table                                                                                                                              Page 

   

49 The results of applying the proposed method for copper content 

data 

 

3.1 

51 The results of applying the proposed method for phone calls data 

 

3.2 

53 The results of applying the proposed method for HBK data 

 

3.3 

55 The results of applying the proposed method for first word-Gesell 

data 

 

3.4 

57 The results of applying the proposed method for Cloud Point data 

 

3.5 

60 The results of applying the proposed method for Stack loss data 

 

3.6 

61 The results of applying the proposed method for first artificial 

data 

 

3.7 

64 The results of applying the proposed method for rank deficient 

data 

 

3.8 

66 Percentage of correct identification of BLP, masking  and 

swamping for simulation data with two predictors (p=2) 

 

3.9 

66 Percentage of correct identification of BLP, masking and 

swamping for simulation data with three predictors (p=3) 

 

3.10 

75 The summary results based on different regression methods for 

HBK data 

 

4.1 

76 The summary results based on different regression  

methods for aircraft data 

 

4.2 

79 The summary results based on different regression methods for 

three simulation target function 

 

4.3 

83 The summary results based on different regression methods for 

five- simulation target function 

 

4.4 

92 The MSE of SVR and the SI-SVR methods for four-dimensional 5.1 



© C
OPYRIG

HT U
PM

xv 

 

target function 

 

94 The MSE of SVR and SI-SVR methods for eight-dimensional 

target function 

 

5.2 

96 The MSE of SVR and SI-SVR methods for fifteen -dimensional 

target function 

 

5.3 

99 The MSE of SVR and SI-SVR methods for prostate cancer data 

 

5.4 

109 The MSE of SVR and ENSI-SVR methods for 20 predictors 

 

6.1 

110 The MSE of SVR and ENSI-SVR methods for 40 predictors 

 

6.2 

111 The MSE of SVR and ENSI-SVR methods for 50 predictors 

 

6.3 

113 The MSE of SVR and ENSI-SVR methods for Body dimensions 

data 

 

6.4 

115 The MSE of SVR and ENSI-SVR methods for NIR data 

 

6.5 

 

 

 

 

 

 

 

 

 

 

 

 



© C
OPYRIG

HT U
PM

xvi

LIST OF FIGURES 

Figure             Page 

16 The soft margin loss setting for a linear SVM 2.1

20 Architecture of a regression machine constructed by the SV 

algorithm 

2.2

21 Classification of observations for simple linear regression 2.3

48 Detection of outlier based on the proposed method for copper 

content data

3.1 (a)

49 Detection of outlier based on the PCA and RMD for copper 

content data

3.1 (b)

50 Detection of outliers based on the proposed method for phone 

calls data

3.2 (a)

51 Detection of outliers based on the PCA and RMD for phone calls 

data

3.2 (b)

52 Detection of outliers based on the proposed method for HBK data3.3 (a)

54 Detection of outliers based on the PCA and RMD for HBK data 3.3 (b)

55 Detection of outliers based on the proposed method for First 

word-Gesell data

3.4 (a)

56 Detection of outliers based on the PCA and RMD for First word-

Gesell data

3.4 (b)

57 Detection of outliers based on the proposed method for Cloud 

Point data

3.5 (a)

58 Detection of outliers based on the PCA and RMD for Cloud Point 

data

3.5 (b)

59 Detection of outlier based on the proposed method for Stack loss 

data

3.6 (a)

59 Detection of outlier based on the PCA and RMD for Stack loss 3.6 (b)



© C
OPYRIG

HT U
PM

xvii

data 

62 Detection of outliers based on the proposed method for first 

artificial data

3.7 (a)

62 Detection of outliers based on the PCA and RMD for first artificial 

data

3.7 (b)

63 Detection of outliers based on the proposed method  for rank 

deficient data

3.8 (a)

64 Detection of outliers based on the PCA for rank deficient data3.8 (b)

75 Detection of leverage points based on RMD and FP-SVR for HBK 

data

4.1

81 The efficiency based on GM6 and GM-SVR methods for three 

simulation target function 

4.2

85 The efficiency based on GM6 and GM-SVR methods for five 

simulation target function 

4.3

93 The MSE of SVR and SI-SVR methods for four dimensional target 

function

5.1

95 The MSE of  SVR and SI-SVR methods for eight dimensional target 

function

5.2

97 The MSE of SVR and SI-SVR methods for fifteen dimensional  

target function 

5.3

99 The MSE of SVR and SI-SVR methods for prostate cancer data 5.4

108 The MSE of SVR and ENSI-SVR for 20 predictors 6.1

110 The MSE of SVR and ENSI-SVR for 40 predictors 6.2

112 The MSE of SVR and ENSI-SVR for 50 predictors 6.3

114 The MSE of SVR and ENSI-SVR for Body dimensions data 6.4

115 The MSE of SVR and ENSI-SVR for NIR data 6.5



© C
OPYRIG

HT U
PM

xviii 

 

LIST OF APPENDICES 

 

 

Appendix                                                                                                                       Page 

 

A1 The Copper Content Data Set 

 

135 

A2 The Belgium Phone Calls Data Set 

 

136 

A3 The Hawkins, Brado and Kass Data Set 

 

137 

A4 The First word-Gesell Data Set 

 

138 

A5 The Cloud Point Data Set 

 

139 

A6 The Stack Loss Data Set 

 

140 

A7 The Aircraft Data Set 

 

141 

B The Simulation Algorithm 

 

142 

C R Programming Codes 

 

143 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



© C
OPYRIG

HT U
PM

xix 

 

LIST OF ABBREVIATIONS 

 

 

BIF Bounded Influence Function 

BLP Bad Leverage Points 

BLUE Best Linear Unbiased Estimators 

BP Breakdown Point 

CDE Chaos Differential Evolution 

DE Differential Evolution 

DOF Degrees Of Freedom 

EGO Algorithm of Global Optimization 

EN Elastic Net Method 

ENSI Elastic Net Single Index 

FP Fixed Parameters 

GM Generalized M estimators 

GS Grid Search Procedure 

HLP High Leverage Point 

IF Influence Function 

iid Independent Identically Distributed  

IRLS Iteratively Reweighted Least Squares  

KKT Karush Kuhn Tucker Conditions 

LASSO Least Absolute Shrinkage Selection Operator 

LAV Least Absolute Values 

LMS Least Median of Squares  

LP Leverage Point 

LTS Least Trimmed Squares 

MAD Median Absolute Deviation 

MCD Minimum Covariance Determinant 

MD Mahalanobis Distance 



© C
OPYRIG

HT U
PM

xx

MSE Mean Square Error 

MSVR Modified Support Vector Regression 

MVE Minimum Volume Ellipsoid  

NID Normal Independent Distributed 

NNR Neural Network Regression 

OLS Ordinary Least Squares  

OLSC Ordinary Least Squares for clean data 

PCA Principal Component Analysis 

PSO Particle Swarm Optimization 

RBF Radial Basis Function 

RMD Robust Mahalanobis Distance 

SE Standard Error 

SIM Single Index Model 

SLS Semi-parametric Least Squares 

SLT Statistical Learning Theory 

SRM Structural Risk Minimization 

SSVR Standard Support Vector Regression 

SV Support Vector 

SVC Support Vector Classification 

SVM Support Vector Machine 

SVR Support Vector Regression 

VAR Variance of Residuals 

WLS Weighted Least Squares  

WSLS Weighted Semi-parametric Least Squares 
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CHAPTER 1 

 

 

INTRODUCTION  

 

 

1.1.    Introduction and Background of the Study 

 

Regression analysis is a statistical process which aims to explore the functional 

relationship between two or more variables so that, a dependent variable 

(output) can be predicted from one or more of independent variables (input) 

(Kutner et al., 2005). Regression analysis estimates the conditional expectation 

of the response variable given the explanatory variables. In other words, it 

estimates the average value of the dependent variable when the independent 

variables are fixed. This estimation can be done by using the proper technique 

for the phenomenon or the data set under study such as the ordinary least 

squares method. The ordinary least squares method (OLS) is classified as one 

of the prevalent estimation techniques in the regression analysis. Further, the 

OLS is the most popular estimation method in the linear regression community 

due to its superior properties and ease of computation, provided that the 

Gaussian Markov assumptions are met. In addition, the OLS estimator is the 

best linear unbiased estimator (BLUE), when the random errors are 

independent identically distributed (iid) normal. Unfortunately, the 

assumptions of the linear relationship between the variables and the normal 

distribution of the error term are violated in the most of the real life 

applications. Furthermore, the OLS estimator is not robust against unusual 

data points which often appear in real life applications. In other words, the 

OLS estimator has very low breakdown point which is equal to 1/n (Maronna 

et al., 2006), where n is the sample size. That is, even one point (abnormal) 

could change the estimate of least squares dramatically in the wrong direction 

(Rousseeow and Leroy, 1987; Kamruzzaman and Imon, 2002; Maronna et al., 

2006). 

 

The assumption of the normal distribution of the error term is violated in the 

presence of one or more outlier observations. Belsley et al. (1980) reported that 

the outliers are those points either alone or together with several other points 

have the largest influence on the computed values of different estimates. 

Hawkins (1980) defined an outlier observation as the observation that deviates 

so much from the other observations as to arouse suspicions which it was 

generated by a various mechanism. Muñoz-Garcia et al. (1990) defined the 

outlier observation as “An outlier is an observation which being atypical 

and/or erroneous deviates decidedly from the general behavior of experimental 

data with respect to the criteria which is to be analyzed on it”. Barnett and 
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Lewis (1994) defined outlier points as those points that are markedly far from 

the majority of points in a data set.  In general, there are several classes of 

outliers in the regression problems. Observations that are outlying in the   -

direction are expressed as outliers or vertical outliers. In contrast, the 

observations which are outlying in the   -direction are called high leverage 

points (HLP). However, there is an urgent need in the regression analysis to 

find out whether HLP have much impact on the fitting of a model or not 

(Belsley et al., 1980; Rousseeow and Leroy, 1987). 

 

The other serious problems that affect the predicted model in addition to 

outliers and the non-linearity relationship among variables are problems of 

high-dimensional and sparse (p is larger than the number of observations n). 

The curse of high dimensionality refers to how certain algorithms such as 

algorithms in numerical analysis, sampling, combinatorics, machine learning 

and data mining that may perform poorly in high-dimensional data. The 

common theme of these problems is that when the dimensionality increases, 

the volume of the space increases so fast that the available data become sparse. 

This sparsity is problematic for any method that requires statistical 

significance. In high dimensional data, a matrix related to some algorithms 

may become singular and some additional information such as regularization, 

Bayesian prior and others need to be added to obtain standard solution. 

 

Recently, several procedures which deal with these problems separately are 

available. However, there are not extensive studies reported in the literature 

which takes into consideration the presence of the non-linearity, outliers and 

high dimensional problems (full or less than full rank) simultaneously. As a 

result, the search for alternatives that feature the necessary flexibility to handle 

these issues has become an urgent necessity such as nonparametric methods 

especially learning machines. 

 

 

1.2   Importance and Motivation of the Study 

 

Nonparametric regression technique is a form of statistical regression analysis 

in which there is no a predetermined form of the predictor but it is constructed 

based on the information derived directly from the data. Whereas the classical 

regression statistical techniques stand upon a strict assumption in terms of they 

assume that the underlying probability distribution of the data is known and 

the relationship among the variables takes a linear form. However, in real 

applications, often we confront with distribution-free regression problems with 

a non-linear relationship between input and output variables (Ukil, 2007). One 

nonparametric method which is not requiring knowledge of the underlying 

probability distribution of the data, as well as its ability to deal with non-linear 
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relationship is the support vector machine. Support vector machine (SVM) is 

one of the comparatively new and promising techniques for learning 

separating functions in classification problems (SVC) or for performing 

function estimation in regression problems (SVR). 

 

Support vector machine was initially applied for classification tasks (Cortes 

and Vapnik 1995), but shortly, the formulation was extended to deal with 

regression problems (Smola, and Vapnik 1997; Vapnik 1995). The advantages 

of support vector machine are its ability to modeling the non-linear 

relationships by employing kernel trick and its excellent generalization ability 

on the real applications of the classification and  regression problems while it is 

still capable of producing sparse model (not all observations are needed to find 

the optimal model) (Ceperic et al. 2014). The common formulation of support 

vector machine for regression is Vapnik’s ε-tube SV regression (ε-SVR) (Smola, 

and Vapnik 1997). The ε-SVR produces predictive model depends only on a 

subset of the training points whereas it ignores any points within the threshold 

ε. This step reveals the potential problem: if the value of threshold ε is small, 

then the resulting model depends on a greater number of the overall training 

points, thus making the resulting solution non-sparse, as demonstrated in Guo 

et al. (2010). 

 

Both of the parametric and nonparametric regression techniques are affected 

by the presence of single or multiple enormous points in a data (the parametric 

methods certainly are most influenced than nonparametric methods). Many 

researchers reported that the real data sets mostly contain unusual points 

ranging from 1% to 10% (Hampel et al. 1986; Wilcox, 2005). Outliers and HLP 

have a great effect on the values of various estimates, which leads to 

misleading conclusions result in wrong decisions. Hence, it is necessary to 

detect those unusual observations and removing them before embarking on 

building the predictive model (Cook, 1977) or orientation of the robust 

methods (Huber, 1973) which minimize the impact of outliers instead of 

removing them completely from the data. It is worth mentioning that the 

choose one of these methods is up to the researcher.  

 

There are several parametric methods used for detecting single or multiple 

outliers and HLP. Unfortunately, they are not successful to identify multiple 

abnormal points in the data sets due to the effects of masking and swamping 

problems (Rousseeuw and Leroy, 1987). On the other hand, these methods can 

not deal with less than full rank data. To address this problem some 

researchers explored the use of non-parametric methods for outlier detection in 

cases both of full rank and less than full rank. Jordaan and Smits (2004) 

suggested using standard support vector regression (SSVR) for outlier 

detection. The idea of this technique is by running the SV regression model 
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many times and detects points which are suspected as outliers. Nishiguchi et 

al. (2010) pointed out that some problems arise when applying it with real 

applications. It requires high computational costs for multiple outliers in the 

data because detection of an outlier requires a number of iterations of the 

calculation; the trial and error is used for accurate detection, since it is not clear 

how to identify the outlier threshold value. To remedy this problem, 

Nishiguchi et al. (2010) developed the modified support vector regression 

(MSVR) technique for outlier detection by employing new trade-off parameter 

(μ), which is successful in identifying outliers and HLP. Nonetheless, the 

MSVR approach is suitable for few outliers in the data, since one iteration is 

required to detect one outlier. Consequently, computational costs become close 

to those arising from the standard SVM regression method in case of presence 

multiple outliers. Further, there is no clear rule for choosing the value of 

threshold parameter, although it comes with fixed value of this parameter. The 

shortcoming of these methods has inspired us to develop new techniques to 

improve the performance of standard SVM regression for outlier detection, 

which we call the fixed parameters support vector regression (FP-SVR). The 

proposed two methods are expected to achieve accurate detection of outliers 

and HLP (only bad leverage points) with fixed parameters during one 

iteration. 

 

This thesis also concerned on the use of robust methods to address the problem 

of the presence of outliers and bad leverage points (BLP) in multiple linear 

regression models. As we mentioned previously the OLS estimator is seriously 

affected by the presence of outliers. One of the most common alternative 

techniques to OLS of addressing the presence of outliers is the robust 

regression procedure (Hampel, 1974). There are many robust regression 

methods in the literature, such as the least absolute values (LAV), the M-

estimator, generalized M-estimator (GM1-estimator), the least median of 

squares (LMS), the S estimator, the least trimmed squares (LTS), the MM 

estimator and new class of GM-estimator (GM6) proposed by Coakley and 

Hettmansperger (1993). Yohai and Zamar (1988) firmly recommended that one 

of the goals of robust regression technique is to achieve: (a) a high breakdown 

point of nearly 50%, (b) a bounded influence function and (c) a high efficiency, 

simultaneously. According to this recommendation, only GM6 method 

achieves the three conditions, (a), (b) and (c) simultaneously. Regrettably, this 

method considers the good leverage points to be bad leverage points, which 

means that its efficiency tends to decrease with the presence of “good” 

leverage points. This limitation has inspired us to develop a new class of GM-

estimators based on a fixed parameters support vector regression techniques 

that have been proven in Chapter 3, takes into account minimizing the impact 

of the bad leverage points only on the model, and we call it GM-SVR. 

 



© C
OPYRIG

HT U
PM

5 

 

This thesis also addresses the problem of high dimensionality in linear and 

nonlinear regression models. It should be noted that the sparsity feature (less 

complexity), which is characterized by the SVR model by itself is not sufficient 

to ensure good generalization to the model in addition to the problem of non-

sparse that accompany the small threshold, ε near zero (Ceperic et al. 2014). It 

is well known the support vector regression is a fully nonparametric approach, 

which makes it a flexible but at the same time it is suffering from precision 

decrease when increasing the covariates which is called the curse of the high-

dimensionality (Härdle et al. 2004). For this reason, the alternative is used to 

cope with this drawback. One of the common techniques to improve 

generalization accuracy and overcome the curse of the high dimensional 

problem is the single index model. Ichimura (1993) suggested a semi-

parametric model which combines between the flexibility of the nonparametric 

model and the high accuracy of the parametric model called single index 

model. This model summarizes the covariates within a single variable called 

index. To the best of our knowledge, there is no existing research in literature 

which used SVR to evaluate the unknown link function of the single index 

model. This inspires us to propose a new technique that uses the SVR model to 

estimate the unknown link function of the single index model namely the 

single index support vector regression (SI-SVR). 

 

 It should be stated that the SI-SVR model does not have the ability to 

modeling the rank deficient data. Furthermore, the efficiency of the resulting 

model could be declined, and less accurate predictions will be produced when 

unnecessary predictors are included in the model (Tibshirani, 1996; Hastie et 

al., 2009). This requires development of a new method to overcome this issue. 

This can be done by employing the concept of variables selection to achieve the 

possibility of modeling by single index model which we call the elastic net 

single index support vector regression (ENSI-SVR). 

 

 

1.3   Research Objectives 

 

The main goal of this thesis is to investigate the high dimensionality problems 

for linear and nonlinear regression models in the presence of outliers (outlying 

in coordinates X and Y). The classical estimation methods such as the ordinary 

least squares (OLS) method are not robust against outliers. Moreover, they can 

not evaluate the nonlinear relationships and the difficulty to meet all the 

assumptions for high-dimensional data. The foremost objectives of our 

research can be outlined systematically as follows: 

 

1. To propose new improved diagnostic methods for the identification of 

multiple outliers based on two types of kernel functions. 
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2. To formulate a new robust estimation method to remedy the presence 

of outliers in the data for the linear regression model. 

3. To propose a new semi-parametric method to cope the curse of high 

dimensionality combines between the high precision of parametric 

methods and the flexibility of nonparametric methods. 

4. To develop the elastic net penalty approach for selecting variables in a 

single index support vector regression model to overcome the curse of 

high dimensionality when the number of predictors, p is larger than 

sample size n. 

 

 

1.4   Scope and Limitation of the Study 

 

The linear and nonlinear regression models are widely used in many areas of 

studies such as bioinformatics, economics, financial predictions and social 

sciences. In the real situation, these regression models have many practical 

uses. However, the most applications of the linear regression models are 

evaluated using the OLS method because of the ease of computation and its 

optimal properties when the underlying assumptions are met. In reality, the 

OLS estimator is not resistant to outlying samples; even one outlier can destroy 

the OLS estimator. The alternative procedures which used to address this issue 

are detection methods and robust statistical methods. Flexible techniques are 

suggested to the identification of outliers and HLP such as SSVR and MSVR in 

cases of full and less than full rank data. Nonetheless, these existing methods 

basically focus only on the identification of leverage points without taking into 

consideration their classification into good and bad leverage points. It is very 

important to detect and classify the good and bad leverage points, as only bad 

leverage points are responsible for the misleading conclusion about the fitting 

of the regression model. On the other hand, many robust statistical estimation 

techniques are suggested such as LMS-estimator, LTS-estimator, M-estimator, 

GM1-estimator, MM-estimator, and GM6-estimator. However, some of these 

methods are not robust against leverage points and some methods are 

considered the good leverage points as bad leverage points. 

 

The other technique of statistical modeling is the nonparametric procedure 

which used to evaluate the nonlinear relationships and high dimensional 

problems including when the number of predictors p much greater than 

sample size n. One of the most effective methods in the nonparametric machine 

learning community is the support vector machine (Frohlich and Zell, 2005). 

However, the ability of the SVM model to evaluate the high dimensional 

problems is decreased because of the resulting model is non-sparse when the 

threshold is small. Furthermore, the generalization performance of SVM 

depends heavily on the right selection of the hyper-parameters C and ε, so the 
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major issue for practitioners attempting to apply SVM is how to set these 

parameter values to guarantee a good generalization performance for a 

training data set. It should be noted all calculations have been implemented 

using R software. 

 

 

1.5   Overview of the Thesis 

 

In accordance with the objectives and the scope of the study, the contents of 

this thesis are structured in the eight chapters. The thesis chapters are 

organized so that the study objectives are apparent and are conducted in the 

sequence outlined. 

 

Chapter Two: This chapter briefly presents the literature review of the least 

squares estimation method and the violations of its underlying assumptions 

such as the departure of normality and the presence of outliers. The literature 

review of the support vector machine for regression and its basic idea to 

employ the kernel trick during the estimation process are highlighted. The 

outliers, and leverage points and their diagnostics methods are also discussed. 

Moreover, basic concepts of robust linear regression and some important 

existing robust regression methods are also reviewed. Bootstrapping methods 

are also briefly discussed. In this chapter, the main idea of the single index 

model and its estimation methods are also discussed. Finally, the concept of 

variable selection and some of penalization methods are also briefly 

highlighted.  

 

Chapter Three: This chapter discusses the existing SSVR and MSVR which are 

developed by Jordaan and Smits (2004) and Nishiguchi et al. (2010). The new 

proposed methods (FP-SVR) for the identification of multiple vertical outliers 

and bad leverage points are presented in this chapter. The steps for proposed 

FP-SVR methods and its algorithm are also highlighted. Finally, some real and 

simulation studies are discussed to evaluate the performance of the proposed 

methods. 

 

Chapter Four: This chapter deals with the development of the GM-estimator 

based on FP-SVR (denoted by GM-SVR) for data having outliers and bad 

leverage points. Two Monte Carlo simulation studies and two numerical 

examples are carried out to assess the performance of the proposed method. 

 

Chapter Five: In this chapter, we present the proposed semi-parametric model 

to address the high dimensional problem, namely the single-index support 

vector regression (denoted by SI-SVR).The new proposed technique is useful to 

get rid the so-called the curse of high dimensionality. In this respect, two types 
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of data are considered, the linear and nonlinear relationships. The numerical 

and simulation examples are also discussed to assess our proposed method. 

 

Chapter Six: In this chapter, the concept of variable selection is utilized to 

achieve non-singular predictive matrix when the number of predictors p larger 

than sample size n. Then, the proposed model, namely the elastic net single-

index support vector regression (denoted by ENSI-SVR) can be used to remedy 

the curse of high dimensionality. The semi-parametric proposed model 

combines the high accuracy of parametric methods and the flexibility of 

nonparametric methods. A Monte Carlo simulation studies and numerical 

example are given to assess the performance of the proposed method. 

 

Chapter Seven: This chapter provides the summary and detailed discussions 

of the thesis conclusions. Areas for future research are also recommended. 
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