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The ordinary least squares (OLS) is reported as the most commonly used
method to estimate the relationship between variables (inputs and output) in
the linear regression models because of its optimal properties and ease of
calculation. Unfortunately, the OLS estimator is not efficient in cases of the
presence of outliers in a data set, nonlinear relationships and high dimensional
problems. Thus, the search for alternatives that feature the necessary flexibility
to handle them has become an urgent necessity such as nonparametric
approaches. Consequently, the support vector regression (SVR) is used as an
alternative to OLS.

In this thesis, at first, we consider the identification of outliers through the
SVR. In regression, outliers can be classified into two different types, such as
vertical outlier and leverage points (good and bad leverage points). It is very
important to identify outliers and bad leverage points (BLP) because of their
significant effects on estimators. Most of the parametric diagnostic measures
are considered good leverage points as bad leverage points. Hence, new
nonparametric techniques are proposed for identification outliers that we call
the fixed parameters support vector regression methods (FP-SVR). The results
of real applications and simulation studies showed that the proposed methods
have advantages over classical methods to identify vertical outliers and bad
leverage points.



Further, in this thesis, the GM6 version of the robust estimation methods was
developed only to identify and inhibit the influence of leverage points (LB)
without taking into consideration whether it is good or bad. Thus, a new class
of GM-estimators based on FP-SVR technique is developed takes into account
minimizing the impact of the bad leverage points only on the model, and we
call it GM-SVR. The results show that the performance of the GM-SVR is the
best overall, followed by GM6 for all possible combinations of size of samples
and percentages of contamination.

This thesis also addresses the problem of high dimensionality in linear and
nonlinear regression models. It is well known that the support vector
regression has the ability to introduce sparse models (less complexity).
Unfortunately, there is a potential problem: if the value of threshold is small (&
near zero), the resulting model depends on a greater number of the training
data points, thus making the solution more complexity (non-sparse).Therefore,
the single index support vector regression (SI-SVR) model is proposed which
combines the flexibility of the nonparametric model and the high accuracy of
the parametric model. The real and simulation studies pointed out that the
proposed method has the ability to address the problem of high
dimensionality.

This thesis also explores the problem of high dimensionality when the number
of predictors p larger than the sample size n. Although, we have proposed the
SI-SVR to solve the problem of high dimensionality but this model does not
have the ability to modeling examples with rank deficient. Furthermore, the
efficiency of the resulting SI-SVR model can be decreased and less accurate
predictions will be produced when unnecessary predictors are included in the
model. Hence, a new method is suggested to overcome this issue using the
Elastic Net technique for selecting significant variables which we call the elastic
net single index support vector regression (ENSI-SVR). The comparison results
show that the ENSI-SVR is an efficient method in dealing with sparse data to
achieve dimension reduction which allows applying the SI-SVR easily.
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Kaedah biasa kuasa dua terkecil (OLS) dilaporkan sebagai kaedah yang paling
biasa digunakan untuk menganggarkan hubungan antara pembolehubah
(input dan output) dalam model regresi linear kerana sifat-sifat yang optimum
dan memudahkan dalam pengiraan. Malangnya, penganggar OLS tidak
berkesan dalam kehadiran titik terpencil, hubungan tidak linear dan masalah
dimensi yang tinggi. Oleh itu, mencari alternatif yang fleksibil telah menjadi
satu keperluan yang segera bagi mengendalikan titik terpencil seperti kaedah
tidak berparameter. Oleh itu, regresi vektor sokongan (SVR) digunakan
sebagai alternatif kepada OLS.

Dalam tesis ini, pada mulanya, kami mengambil kira mengenalpasti titik
terpencil melalui SVR . Dalam regresi, titik terpencil boleh diklasifikasikan
kepada dua jenis yang berbeza, seperti titik terpencil menegak dan titik tuasan
(titik tuasan baik dan buruk). Sangat penting untuk mengenalpasti titik
terpencil dan titik tuasan buruk (BLP), ini kerana ianya mempunyai kesan
yang signifikan ke atas penganggar. Kebanyakan pengukur diagnostik
berparameter mempertimbangkan titik tuasan baik sebagai titik tuasan buruk.
Oleh itu, teknik tidak berparameter baru dicadangkan untuk mengenalpasti
titik luaran dimana ianya dinamakan Parameter Tetap Menyokong Kaedah
Regresi Vektor (FP-SVR). Keputusan bagi aplikasi sebenar dan kajian simulasi
menunjukkan kaedah yang dicadangkan mempunyai kebaikan berbanding
dengan kaedah yang sedia ada bagi mengenal pasti titik terpencil menegak
dan titik tuasan buruk .
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Selanjutnya, dalam tesis ini, versi GM6 kaedah anggaran teguh telah
dicadangkan hanya untuk mengenalpasti dan menghalang pengaruh titik
tuasan tanpa mengambil kira sama ada ianya baik atau buruk. Oleh itu,
kaedah baharu penganggar GM berdasarkan parameter tetap menyokong
teknik regresi vektor dibangunkan dengan mengambil kira minimumkan
kesan daripada titik tuasan buruk hanya kepada model, dan kami
menamakannya GM-SVR. Keputusan menunjukkan prestasi GM-SVR adalah
yang paling baik untuk keseluruhan, diikuti dengan GM6 untuk kesemua
kemungkinan kombinasi saiz sampel dan peratusan data yang tercemar.

Tesis ini juga menangani masalah dimensi tinggi dalam model regresi linear
dan tidak linear. Adalah diketahui umum bahawa regresi sokongan vektor
mempunyai keupayaan untuk memperkenalkan model jarang (kurang rumit).
Malangnya, wujudnya masalah berpotensi: jika nilai ambang adalah kecil (e
hampir sifar), model yang terhasil bergantung kepada bilangan yang lebih
besar daripada titik data latihan, dengan itu membuat penyelesaian menjadi
lebih kompleks (tidak jarang). Oleh itu, model Tunggal Sokongan Indeks
Vektor Regresi (SI-SVR) dicadangkan bagi menggabungkan fleksibiliti model
tidak berparameter dan ketepatan yang tinggi bagi model berparameter. Kajian
sebenar dan simulasi menunjukkan kaedah yang dicadangkan mempunyai
keupayaan untuk menangani masalah dimensi tinggi.

Tesis ini juga meneroka masalah dimensi tinggi apabila bilangan peramal p
lebih besar daripada saiz sampel n. Walaupunbagaimanapun, kami
mencadangkan SI-SVR untuk menyelesaikan masalah dimensi tinggi tetapi
model ini tidak mempunyai keupayaan untuk model contoh dengan susunan
kekurangan. Tambahan pula, kecekapan model SI-SVR yang terhasil boleh
menurun dan ramalan kurang tepat akan dihasilkan apabila peramal yang
tidak perlu dimasukkan dalam model. Oleh itu, satu kaedah baru dicadangkan
untuk mengatasi isu ini dengan menggunakan teknik bersih anjal untuk
memilih pembolehubah penting yang kami namakan Sokongan Bersih Indeks
Tunggal Vektor Regresi Elastik (ENSI-SVR). Keputusan pembandingan
mendapati ENSI-SVR merupakan kaedah yang berupaya dalam berurusan
dengan data jarang untuk mencapai pengurangan dimensi yang membolehkan
penggunaan SI-SVR dengan mudah.

iv



ACKNOWLEDGEMENTS

First and foremost, I would like to give thanks to my God, who has provided
me His strength and grace throughout my doctoral pursue.

Heartfelt appreciation also goes to my committee chairperson, Dr. Sohel Rana
for his constant inspiration, efficient guidance, and constructive feedback
rendered. I am deeply honored to have the opportunity to complete my degree
under his supervision.

I would also like to thank my internal co-supervisors, Prof. Dr. Habshah Midi
and Associate Prof. Dr. Ibragimov Gafurjan for all their support and guidance
provided.

I would like to express my sincere appreciation and deepest gratitude to the
Ministry of Municipalities and Public Works (MMPW) for providing me
scholarship and also to all my colleagues whom are always willing to help me.

My special thanks go to my beloved wife, for standing by with me patiently
with her never ending encouragement, prayers and support throughout my
doctoral pursue.

Also, I would like to thank my children; MD. Sadeq, and Hayderali for giving
me the happiness during my study.



This thesis was submitted to the Senate of Universiti Putra Malaysia and has
been accepted as fulfillment of the requirement for the degree of Doctor of
Philosophy. The members of the Supervisory Committee were as follows:

Md. Sohel Rana, PhD
Senior Lecturer

Faculty of Science
Universiti Putra Malaysia
(Chairman)

Habshah bt Midi, PhD
Professor

Faculty of Science
Universiti Putra Malaysia
(Member)

Ibragimov Gafurjan, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean

School of Graduate Studies
Universiti Putra Malaysia

Date:

vii



Declaration by graduate student

I'hereby confirm that:

Signature: Date:

this thesis is my original work;

quotations, illustrations and citations have been duly referenced;

this thesis has not been submitted previously or concurrently for any
other degree at any other institutions;

intellectual property from the thesis and copyright of thesis are fully-
owned by Universiti Putra Malaysia, as according to the Universiti Putra
Malaysia (Research) Rules 2012;

written permission must be obtained from supervisor and the office of
Deputy Vice-Chancellor (Research and Innovation) before the thesis is
published (in the form of written, printed or in electronic form) including
books, journals, modules, proceedings, popular writings, seminar
papers, manuscripts, posters, reports, lecture notes, learning modules or
any other materials as stated in the Universiti Putra Malaysia (Research)
Rules 2012;

there is no plagiarism or data falsification/ fabrication in the thesis, and
scholarly integrity is upheld as according to the Universiti Putra
Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the
Universiti Putra Malaysia (Research) Rules 2012. The thesis has
undergone plagiarism software.

Name and Matric No.: Waleed Dhhan Sleabi, GS37423

viii



Declaration by Members of Supervisory Committee

This is to confirm that:

o the research conducted and the writing of this thesis was under our
supervision;
o supervision responsibilities as stated in the Universiti Putra Malaysia

(Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature:

Name of

Chairman of

Supervisory

Committee: Md. Sohel Rana, PhD

Signature:

Name of

Member of

Supervisory

Committee: Habshah bt Midi, PhD

Signature:

Name of

Member of

Supervisory

Committee: Ibragimov Gafurjan, PhD

ix



TABLE OF CONTENTS

ABSTRACT

ABSTRAK
ACKNOWLEDGEMENTS
APPROVAL
DECLARATION

LIST OF TABLES

LIST OF FIGURES

LIST OF APPENDICES
LIST OF ABBREVIATIONS

CHAPTER

1 INTRODUCTION
1.1  Background of the Study
12 Impo rtance and Motivation of the Study
1.3 Research Objectives
14  Scope and Limitation of Study
1.5  Overview of the Thesis

2 LITERATURE REVIEW
2.1 Introduction
2.2 Background and Notation
2.2.1 The Standardized Form

2.3  Ordinary Least Squares Estimation Method
23.1 The Classical Gauss-Markov assumptions
232 Limitation of the Least Squares Assumptions
2.4  Introduction to Support Vector Machine for Regression

2.4.1 The Basic Idea

242 Dual Problem and Quadratic Programs
2.4.3 Generalize SVR Algorithm for Nonlinear Case

244 The Steps of SVR Algorithm
2.5  Diagnostic Methods

251 Hat Matrix

252 Robust Mahalanobis Distance

2.5.3 Principal Components

254 The Standard SVM Regression for Outlier

Detection

Page

1ii

vi
viii
Xiv
XVi

XVviii
Xix

NG N ==



2.5.5  p-&-SVR Based Outlier Detection
2.6 Introduction to Robust Estimators
2.6.1 Basic Concepts
2.6.1.1 Efficiency
2.6.1.2 Breakdown Point
2.6.1.3 Bounded Influence Function
2.7 Robust Linear Regression
2.7.1 M-Estimator
272 GM1-estimator
2.7.3 GMé6-estimator
274 MM-Estimator
2.8  Estimation of Standard Error Using Bootstrap technique
2.8.1 Random-X Bootstrapping
2.8.2 Fixed-X Bootstrapping
2.9  Single Index Model
29.1 Estimation
29.1.1 Semiparametric Least Squares
210  Variable Selection Methods
2.10.1  LASSO Method
2.10.2  Elastic Net Method

FIXED PARAMETERS SUPPORT VECTOR REGRESSION
FOR OUTLIER DETECTION
3.1 Introduction
3.2 Fixed Parameters SV Regression
321 Proposed Method for Radial Basis Function
322 Proposed Method for Linear Kernel Function
3.3  Experimental Results for Real Data Sets
3.3.1 The Copper Content Data
3.3.2 Belgian Phone Data
3.3.3 Hawkins, Bradu and Kass Data
3.34 First word-Gesell data
3.35 Cloud Point data
3.3.6 Stack loss data
3.4  Artificial and Simulation Studies
341 First Artificial Data
3.4.2 Second Artificial Data
3.4.3 Simulation Data
3.5  Conclusion

Xi

25
27
27
27
28
28
29
29
31
32
33

34
35
35
36
37
38
39
40

42

42
44
45
47
47
48
50
51
54
56
58
60
60
63
65
67



A HIGH BREAKDOWN, HIGH EFFICIENCY AND 68
BOUNDED INFLUENCE MODIFIED GM ESTIMATOR
BASED ON SUPPORT VECTOR REGRESSION

4.1 Introduction 68
42  Proposed GM-estimator Based On Fixed Parameter SVR 71
421 Choice of the Initial Weights of GM1 and GM6 71
Choice of the Initial Weight of the Proposed 72
422
Method
423 Algorithm of Proposed Estimator GM-SVR 73
43  Artificial and Real Case Studies 74
43.1 Hawkins-Bradu-Kass Data 74
43.2 Aircraft Data 76
44  Monte Carlo Simulation Studies 77
441 Three-Dimensional Target Function 77
442 Five-Dimensional Target Function 82
45  Conclusion 86
THE SINGLE-INDEX SUPPORT VECTOR REGRESSION 87
MODEL TO ADDRESS THE PROBLEM OF HIGH
DIMENSIONALITY
5.1 Introduction 87
52  Single-Index Support Vector Regression 89
5.3  Training and Testing data 91
5.4  Simulations Studies 91
54.1 Four-Dimensional Target Function 91
542 Eight-Dimensional Target Function 93
54.3 Fifteen-Dimensional Target Function 95
5.5  Real Case Study 97
551 Prostate Cancer Data 98
5.6  Discussion and Conclusion 100
ELASTIC NET FOR SINGLE INDEX SUPPORT VECTOR 101
REGRESSION MODEL
6.1 Introduction 101
6.2  Elastic Net Single Index 104
6.3  Estimation of the Unknown Link Function G 105
6.4  Simulations Examples 107
6.4.1 Simulation I 107
6.4.2 Simulation I 109
6.4.3 Simulation III 111
6.5  Real Case Study 112

6.5.1 Body Dimensions Data 112

xii



6.5.2

The NIR Data

6.5 Discussion and Conclusion

7 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS
FOR FURTHER STUDIES
7.1 Introduction

7.2 Research Contributions

7.2.1

7.2.2

723

724

FP-SVR for Multiple Outliers and Bad Leverage
Points in Linear and Non-Linear Regression
Model

Modified GM-estimator Based on FP-SVR for
data having Vertical Outliers and Bad Leverage
Points

New SIM to Remedy the Problem of High
Dimensionality  in Linear and Non-Linear
Regression Model

Elastic Net with SIM for Reducing
Dimensionality when p is Larger Than n for
Linear and Non-Linear Regression Model

7.3 Conclusion
7.4 Areas of Future Studies

REFERENCES
APPENDICES

BIODATA OF STUDENT
LIST OF PUBLICATIONS

xiii

114
116

117

117

117
117

118

119

119

120
121

122
135
149
150



Table

3.1

3.2

3.3

34

3.5

3.6

3.7

3.8

3.9

3.10

4.1

4.2

4.3

4.4

5.1

LIST OF TABLES

The results of applying the proposed method for copper content
data

The results of applying the proposed method for phone calls data

The results of applying the proposed method for HBK data

The results of applying the proposed method for first word-Gesell

data

The results of applying the proposed method for Cloud Point data

The results of applying the proposed method for Stack loss data

The results of applying the proposed method for first artificial
data

The results of applying the proposed method for rank deficient
data

Percentage of correct identification of BLP, masking and
swamping for simulation data with two predictors (p=2)

Percentage of correct identification of BLP, masking and
swamping for simulation data with three predictors (p=3)

The summary results based on different regression methods for
HBK data

The summary results based on different regression
methods for aircraft data

The summary results based on different regression methods for
three simulation target function

The summary results based on different regression methods for
five- simulation target function

The MSE of SVR and the SI-SVR methods for four-dimensional

xiv

Page

49

51
53

55

57
60

61

64

66

66

75

76

79

83

92



5.2

5.3

5.4

6.1

6.2

6.3

6.4

6.5

target function

The MSE of SVR and SI-SVR methods for eight-dimensional
target function

The MSE of SVR and SI-SVR methods for fifteen -dimensional
target function

The MSE of SVR and SI-SVR methods for prostate cancer data
The MSE of SVR and ENSI-SVR methods for 20 predictors
The MSE of SVR and ENSI-SVR methods for 40 predictors
The MSE of SVR and ENSI-SVR methods for 50 predictors

The MSE of SVR and ENSI-SVR methods for Body dimensions
data

The MSE of SVR and ENSI-SVR methods for NIR data

XV

94

99

109

110

111

113

115



Figure
2.1

2.2

2.3

3.1(a)

3.1 (b)

3.2 (a)

3.2 (b)

3.3 (a)
3.3 (b)

3.4 (a)

3.4 (b)

3.5 (a)

3.5 (b)

3.6 (a)

3.6 (b)

LIST OF FIGURES

The soft margin loss setting for a linear SVM

Architecture of a regression machine constructed by the SV
algorithm

Classification of observations for simple linear regression

Detection of outlier based on the proposed method for copper
content data

Detection of outlier based on the PCA and RMD for copper
content data

Detection of outliers based on the proposed method for phone
calls data

Detection of outliers based on the PCA and RMD for phone calls
data

Detection of outliers based on the proposed method for HBK data
Detection of outliers based on the PCA and RMD for HBK data

Detection of outliers based on the proposed method for First
word-Gesell data

Detection of outliers based on the PCA and RMD for First word-
Gesell data

Detection of outliers based on the proposed method for Cloud
Point data

Detection of outliers based on the PCA and RMD for Cloud Point
data

Detection of outlier based on the proposed method for Stack loss
data

Detection of outlier based on the PCA and RMD for Stack loss

XVi

Page
16

20

21

48

49

50

51

52
54

55

56

57

58

59

59



3.7 (a)

3.7 (b)

3.8 (a)

3.8 (b)

4.1

4.2

4.3

51

52

53

54
6.1
6.2
6.3
6.4

6.5

data
Detection of outliers based on the proposed method for first
artificial data

Detection of outliers based on the PCA and RMD for first artificial
data

Detection of outliers based on the proposed method for rank
deficient data

Detection of outliers based on the PCA for rank deficient data

Detection of leverage points based on RMD and FP-SVR for HBK
data

The efficiency based on GM6 and GM-SVR methods for three
simulation target function

The efficiency based on GM6 and GM-SVR methods for five
simulation target function

The MSE of SVR and SI-SVR methods for four dimensional target
function

The MSE of SVR and SI-SVR methods for eight dimensional target
function

The MSE of SVR and SI-SVR methods for fifteen dimensional
target function

The MSE of SVR and SI-SVR methods for prostate cancer data
The MSE of SVR and ENSI-SVR for 20 predictors

The MSE of SVR and ENSI-SVR for 40 predictors

The MSE of SVR and ENSI-SVR for 50 predictors

The MSE of SVR and ENSI-SVR for Body dimensions data

The MSE of SVR and ENSI-SVR for NIR data

Xvii

62

62

63

64

75

81

85

93

95

97

99

108

110

112

114

115



LIST OF APPENDICES

Appendix Page
Al The Copper Content Data Set 135
A2 The Belgium Phone Calls Data Set 136
A3 The Hawkins, Brado and Kass Data Set 137
A4 The First word-Gesell Data Set 138
A5 The Cloud Point Data Set 139
A6 The Stack Loss Data Set 140
A7 The Aircraft Data Set 141

B The Simulation Algorithm 142

C R Programming Codes 143

XViii



LIST OF ABBREVIATIONS

BIF Bounded Influence Function

BLP Bad Leverage Points

BLUE Best Linear Unbiased Estimators

BP Breakdown Point

CDE Chaos Differential Evolution

DE Differential Evolution

DOF Degrees Of Freedom

EGO Algorithm of Global Optimization
EN Elastic Net Method

ENSI Elastic Net Single Index

FP Fixed Parameters

GM Generalized M estimators

GS Grid Search Procedure

HLP High Leverage Point

IF Influence Function

iid Independent Identically Distributed
IRLS Iteratively Reweighted Least Squares
KKT Karush Kuhn Tucker Conditions

LASSO Least Absolute Shrinkage Selection Operator

LAV Least Absolute Values
LMS Least Median of Squares
LpP Leverage Point

LTS Least Trimmed Squares

MAD Median Absolute Deviation
MCD Minimum Covariance Determinant

MD Mahalanobis Distance

Xix



MSE Mean Square Error

MSVR Modified Support Vector Regression

MVE Minimum Volume Ellipsoid
NID Normal Independent Distributed
NNR Neural Network Regression

OLS Ordinary Least Squares

OLSC Ordinary Least Squares for clean data

PCA Principal Component Analysis
PSO Particle Swarm Optimization
RBF Radial Basis Function

RMD Robust Mahalanobis Distance
SE Standard Error

SIM Single Index Model

SLS Semi-parametric Least Squares
SLT Statistical Learning Theory
SRM Structural Risk Minimization
SSVR Standard Support Vector Regression
Y% Support Vector

svC Support Vector Classification
SVM Support Vector Machine

SVR Support Vector Regression
VAR Variance of Residuals

WLS Weighted Least Squares

WSLS Weighted Semi-parametric Least Squares

XX



CHAPTER 1

INTRODUCTION

1.1. Introduction and Background of the Study

Regression analysis is a statistical process which aims to explore the functional
relationship between two or more variables so that, a dependent variable
(output) can be predicted from one or more of independent variables (input)
(Kutner et al., 2005). Regression analysis estimates the conditional expectation
of the response variable given the explanatory variables. In other words, it
estimates the average value of the dependent variable when the independent
variables are fixed. This estimation can be done by using the proper technique
for the phenomenon or the data set under study such as the ordinary least
squares method. The ordinary least squares method (OLS) is classified as one
of the prevalent estimation techniques in the regression analysis. Further, the
OLS is the most popular estimation method in the linear regression community
due to its superior properties and ease of computation, provided that the
Gaussian Markov assumptions are met. In addition, the OLS estimator is the
best linear unbiased estimator (BLUE), when the random errors are
independent identically distributed (iid) normal. Unfortunately, the
assumptions of the linear relationship between the variables and the normal
distribution of the error term are violated in the most of the real life
applications. Furthermore, the OLS estimator is not robust against unusual
data points which often appear in real life applications. In other words, the
OLS estimator has very low breakdown point which is equal to 1/n (Maronna
et al., 2006), where n is the sample size. That is, even one point (abnormal)
could change the estimate of least squares dramatically in the wrong direction
(Rousseeow and Leroy, 1987; Kamruzzaman and Imon, 2002; Maronna et al.,
2006).

The assumption of the normal distribution of the error term is violated in the
presence of one or more outlier observations. Belsley et al. (1980) reported that
the outliers are those points either alone or together with several other points
have the largest influence on the computed values of different estimates.
Hawkins (1980) defined an outlier observation as the observation that deviates
so much from the other observations as to arouse suspicions which it was
generated by a various mechanism. Mufoz-Garcia et al. (1990) defined the
outlier observation as “An outlier is an observation which being atypical
and/or erroneous deviates decidedly from the general behavior of experimental
data with respect to the criteria which is to be analyzed on it”. Barnett and



Lewis (1994) defined outlier points as those points that are markedly far from
the majority of points in a data set. In general, there are several classes of
outliers in the regression problems. Observations that are outlying in the Y-
direction are expressed as outliers or vertical outliers. In contrast, the
observations which are outlying in the X-direction are called high leverage
points (HLP). However, there is an urgent need in the regression analysis to
find out whether HLP have much impact on the fitting of a model or not
(Belsley et al., 1980; Rousseeow and Leroy, 1987).

The other serious problems that affect the predicted model in addition to
outliers and the non-linearity relationship among variables are problems of
high-dimensional and sparse (p is larger than the number of observations ).
The curse of high dimensionality refers to how certain algorithms such as
algorithms in numerical analysis, sampling, combinatorics, machine learning
and data mining that may perform poorly in high-dimensional data. The
common theme of these problems is that when the dimensionality increases,
the volume of the space increases so fast that the available data become sparse.
This sparsity is problematic for any method that requires statistical
significance. In high dimensional data, a matrix related to some algorithms
may become singular and some additional information such as regularization,
Bayesian prior and others need to be added to obtain standard solution.

Recently, several procedures which deal with these problems separately are
available. However, there are not extensive studies reported in the literature
which takes into consideration the presence of the non-linearity, outliers and
high dimensional problems (full or less than full rank) simultaneously. As a
result, the search for alternatives that feature the necessary flexibility to handle
these issues has become an urgent necessity such as nonparametric methods
especially learning machines.

1.2 Importance and Motivation of the Study

Nonparametric regression technique is a form of statistical regression analysis
in which there is no a predetermined form of the predictor but it is constructed
based on the information derived directly from the data. Whereas the classical
regression statistical techniques stand upon a strict assumption in terms of they
assume that the underlying probability distribution of the data is known and
the relationship among the variables takes a linear form. However, in real
applications, often we confront with distribution-free regression problems with
a non-linear relationship between input and output variables (Ukil, 2007). One
nonparametric method which is not requiring knowledge of the underlying
probability distribution of the data, as well as its ability to deal with non-linear

2



relationship is the support vector machine. Support vector machine (SVM) is
one of the comparatively new and promising techniques for learning
separating functions in classification problems (SVC) or for performing
function estimation in regression problems (SVR).

Support vector machine was initially applied for classification tasks (Cortes
and Vapnik 1995), but shortly, the formulation was extended to deal with
regression problems (Smola, and Vapnik 1997; Vapnik 1995). The advantages
of support vector machine are its ability to modeling the non-linear
relationships by employing kernel trick and its excellent generalization ability
on the real applications of the classification and regression problems while it is
still capable of producing sparse model (not all observations are needed to find
the optimal model) (Ceperic et al. 2014). The common formulation of support
vector machine for regression is Vapnik’s e-tube SV regression (e-SVR) (Smola,
and Vapnik 1997). The e-SVR produces predictive model depends only on a
subset of the training points whereas it ignores any points within the threshold
€. This step reveals the potential problem: if the value of threshold ¢ is small,
then the resulting model depends on a greater number of the overall training
points, thus making the resulting solution non-sparse, as demonstrated in Guo
et al. (2010).

Both of the parametric and nonparametric regression techniques are affected
by the presence of single or multiple enormous points in a data (the parametric
methods certainly are most influenced than nonparametric methods). Many
researchers reported that the real data sets mostly contain unusual points
ranging from 1% to 10% (Hampel et al. 1986; Wilcox, 2005). Outliers and HLP
have a great effect on the values of various estimates, which leads to
misleading conclusions result in wrong decisions. Hence, it is necessary to
detect those unusual observations and removing them before embarking on
building the predictive model (Cook, 1977) or orientation of the robust
methods (Huber, 1973) which minimize the impact of outliers instead of
removing them completely from the data. It is worth mentioning that the
choose one of these methods is up to the researcher.

There are several parametric methods used for detecting single or multiple
outliers and HLP. Unfortunately, they are not successful to identify multiple
abnormal points in the data sets due to the effects of masking and swamping
problems (Rousseeuw and Leroy, 1987). On the other hand, these methods can
not deal with less than full rank data. To address this problem some
researchers explored the use of non-parametric methods for outlier detection in
cases both of full rank and less than full rank. Jordaan and Smits (2004)
suggested using standard support vector regression (SSVR) for outlier
detection. The idea of this technique is by running the SV regression model



many times and detects points which are suspected as outliers. Nishiguchi et
al. (2010) pointed out that some problems arise when applying it with real
applications. It requires high computational costs for multiple outliers in the
data because detection of an outlier requires a number of iterations of the
calculation; the trial and error is used for accurate detection, since it is not clear
how to identify the outlier threshold value. To remedy this problem,
Nishiguchi et al. (2010) developed the modified support vector regression
(MSVR) technique for outlier detection by employing new trade-off parameter
(1), which is successful in identifying outliers and HLP. Nonetheless, the
MSVR approach is suitable for few outliers in the data, since one iteration is
required to detect one outlier. Consequently, computational costs become close
to those arising from the standard SVM regression method in case of presence
multiple outliers. Further, there is no clear rule for choosing the value of
threshold parameter, although it comes with fixed value of this parameter. The
shortcoming of these methods has inspired us to develop new techniques to
improve the performance of standard SVM regression for outlier detection,
which we call the fixed parameters support vector regression (FP-SVR). The
proposed two methods are expected to achieve accurate detection of outliers
and HLP (only bad leverage points) with fixed parameters during one
iteration.

This thesis also concerned on the use of robust methods to address the problem
of the presence of outliers and bad leverage points (BLP) in multiple linear
regression models. As we mentioned previously the OLS estimator is seriously
affected by the presence of outliers. One of the most common alternative
techniques to OLS of addressing the presence of outliers is the robust
regression procedure (Hampel, 1974). There are many robust regression
methods in the literature, such as the least absolute values (LAV), the M-
estimator, generalized M-estimator (GM1l-estimator), the least median of
squares (LMS), the S estimator, the least trimmed squares (LTS), the MM
estimator and new class of GM-estimator (GM6) proposed by Coakley and
Hettmansperger (1993). Yohai and Zamar (1988) firmly recommended that one
of the goals of robust regression technique is to achieve: (a) a high breakdown
point of nearly 50%, (b) a bounded influence function and (c) a high efficiency,
simultaneously. According to this recommendation, only GM6 method
achieves the three conditions, (a), (b) and (c) simultaneously. Regrettably, this
method considers the good leverage points to be bad leverage points, which
means that its efficiency tends to decrease with the presence of “good”
leverage points. This limitation has inspired us to develop a new class of GM-
estimators based on a fixed parameters support vector regression techniques
that have been proven in Chapter 3, takes into account minimizing the impact
of the bad leverage points only on the model, and we call it GM-SVR.



This thesis also addresses the problem of high dimensionality in linear and
nonlinear regression models. It should be noted that the sparsity feature (less
complexity), which is characterized by the SVR model by itself is not sufficient
to ensure good generalization to the model in addition to the problem of non-
sparse that accompany the small threshold, € near zero (Ceperic et al. 2014). It
is well known the support vector regression is a fully nonparametric approach,
which makes it a flexible but at the same time it is suffering from precision
decrease when increasing the covariates which is called the curse of the high-
dimensionality (Hardle et al. 2004). For this reason, the alternative is used to
cope with this drawback. One of the common techniques to improve
generalization accuracy and overcome the curse of the high dimensional
problem is the single index model. Ichimura (1993) suggested a semi-
parametric model which combines between the flexibility of the nonparametric
model and the high accuracy of the parametric model called single index
model. This model summarizes the covariates within a single variable called
index. To the best of our knowledge, there is no existing research in literature
which used SVR to evaluate the unknown link function of the single index
model. This inspires us to propose a new technique that uses the SVR model to
estimate the unknown link function of the single index model namely the
single index support vector regression (SI-SVR).

It should be stated that the SI-SVR model does not have the ability to
modeling the rank deficient data. Furthermore, the efficiency of the resulting
model could be declined, and less accurate predictions will be produced when
unnecessary predictors are included in the model (Tibshirani, 1996; Hastie et
al., 2009). This requires development of a new method to overcome this issue.
This can be done by employing the concept of variables selection to achieve the
possibility of modeling by single index model which we call the elastic net
single index support vector regression (ENSI-SVR).

1.3 Research Objectives

The main goal of this thesis is to investigate the high dimensionality problems
for linear and nonlinear regression models in the presence of outliers (outlying
in coordinates X and Y). The classical estimation methods such as the ordinary
least squares (OLS) method are not robust against outliers. Moreover, they can
not evaluate the nonlinear relationships and the difficulty to meet all the
assumptions for high-dimensional data. The foremost objectives of our
research can be outlined systematically as follows:

1. To propose new improved diagnostic methods for the identification of
multiple outliers based on two types of kernel functions.



2. To formulate a new robust estimation method to remedy the presence
of outliers in the data for the linear regression model.

3. To propose a new semi-parametric method to cope the curse of high
dimensionality combines between the high precision of parametric
methods and the flexibility of nonparametric methods.

4. To develop the elastic net penalty approach for selecting variables in a
single index support vector regression model to overcome the curse of
high dimensionality when the number of predictors, p is larger than
sample size n.

1.4 Scope and Limitation of the Study

The linear and nonlinear regression models are widely used in many areas of
studies such as bioinformatics, economics, financial predictions and social
sciences. In the real situation, these regression models have many practical
uses. However, the most applications of the linear regression models are
evaluated using the OLS method because of the ease of computation and its
optimal properties when the underlying assumptions are met. In reality, the
OLS estimator is not resistant to outlying samples; even one outlier can destroy
the OLS estimator. The alternative procedures which used to address this issue
are detection methods and robust statistical methods. Flexible techniques are
suggested to the identification of outliers and HLP such as SSVR and MSVR in
cases of full and less than full rank data. Nonetheless, these existing methods
basically focus only on the identification of leverage points without taking into
consideration their classification into good and bad leverage points. It is very
important to detect and classify the good and bad leverage points, as only bad
leverage points are responsible for the misleading conclusion about the fitting
of the regression model. On the other hand, many robust statistical estimation
techniques are suggested such as LMS-estimator, LTS-estimator, M-estimator,
GM1-estimator, MM-estimator, and GMé6-estimator. However, some of these
methods are not robust against leverage points and some methods are
considered the good leverage points as bad leverage points.

The other technique of statistical modeling is the nonparametric procedure
which used to evaluate the nonlinear relationships and high dimensional
problems including when the number of predictors p much greater than
sample size . One of the most effective methods in the nonparametric machine
learning community is the support vector machine (Frohlich and Zell, 2005).
However, the ability of the SVM model to evaluate the high dimensional
problems is decreased because of the resulting model is non-sparse when the
threshold is small. Furthermore, the generalization performance of SVM
depends heavily on the right selection of the hyper-parameters C and ¢, so the



major issue for practitioners attempting to apply SVM is how to set these
parameter values to guarantee a good generalization performance for a
training data set. It should be noted all calculations have been implemented
using R software.

1.5 Overview of the Thesis

In accordance with the objectives and the scope of the study, the contents of
this thesis are structured in the eight chapters. The thesis chapters are
organized so that the study objectives are apparent and are conducted in the
sequence outlined.

Chapter Two: This chapter briefly presents the literature review of the least
squares estimation method and the violations of its underlying assumptions
such as the departure of normality and the presence of outliers. The literature
review of the support vector machine for regression and its basic idea to
employ the kernel trick during the estimation process are highlighted. The
outliers, and leverage points and their diagnostics methods are also discussed.
Moreover, basic concepts of robust linear regression and some important
existing robust regression methods are also reviewed. Bootstrapping methods
are also briefly discussed. In this chapter, the main idea of the single index
model and its estimation methods are also discussed. Finally, the concept of
variable selection and some of penalization methods are also briefly
highlighted.

Chapter Three: This chapter discusses the existing SSVR and MSVR which are
developed by Jordaan and Smits (2004) and Nishiguchi et al. (2010). The new
proposed methods (FP-SVR) for the identification of multiple vertical outliers
and bad leverage points are presented in this chapter. The steps for proposed
FP-SVR methods and its algorithm are also highlighted. Finally, some real and
simulation studies are discussed to evaluate the performance of the proposed
methods.

Chapter Four: This chapter deals with the development of the GM-estimator
based on FP-SVR (denoted by GM-SVR) for data having outliers and bad
leverage points. Two Monte Carlo simulation studies and two numerical
examples are carried out to assess the performance of the proposed method.

Chapter Five: In this chapter, we present the proposed semi-parametric model
to address the high dimensional problem, namely the single-index support
vector regression (denoted by SI-SVR).The new proposed technique is useful to
get rid the so-called the curse of high dimensionality. In this respect, two types



of data are considered, the linear and nonlinear relationships. The numerical
and simulation examples are also discussed to assess our proposed method.

Chapter Six: In this chapter, the concept of variable selection is utilized to
achieve non-singular predictive matrix when the number of predictors p larger
than sample size n. Then, the proposed model, namely the elastic net single-
index support vector regression (denoted by ENSI-SVR) can be used to remedy
the curse of high dimensionality. The semi-parametric proposed model
combines the high accuracy of parametric methods and the flexibility of
nonparametric methods. A Monte Carlo simulation studies and numerical
example are given to assess the performance of the proposed method.

Chapter Seven: This chapter provides the summary and detailed discussions
of the thesis conclusions. Areas for future research are also recommended.
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