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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment
of the requirement for the degree of Doctor of Philosophy

PRICING CURRENCY OPTIONS BY GENERALIZATIONS OF THE
MIXED FRACTIONAL BROWNIAN MOTION

By

FOAD SHOKROLLAHI

March 2016

Chairman: Prof Adem Kılıçman, PhD
Faculty: Science

Option pricing is an active area in financial industry. The value of option pricing is
usually obtained by means of a mathematical option pricing model. Since fractional
Brownian motion and mixed fractional Brownian motion processes have some im-
portant features in order to get typical tail behavior from financial markets, such as:
self-similarity and long-range dependence, they can play a significant role in pricing
European option and European currency options. In this thesis, some extensions of
the mixed fractional Brownian motion model are proposed to wider classes of pricing
options systems.

In Chapter 3, a new framework for pricing the European currency option is developed
in the case where the spot exchange rate follows a mixed fractional Brownian motion
with jumps. An analytic formula for pricing European foreign currency options is
proposed using the equivalent martingale measure. For the purpose of understanding
the pricing model, some properties of this pricing model are discussed in Chapter
3 as well. Furthermore, the actuarial approach to pricing currency options which
transform option pricing into a problem of equivalent of fair insurance premium is
introduced.

In addition, in Chapter 4, the problem of discrete time option pricing by the mixed
fractional Brownian model with transaction costs using a mean self-financing delta
hedging argument is considered in a discrete time setting. A European call currency
option pricing formula is then obtained. In particular, the minimal pricing of an
option under transaction costs is obtained, which shows that time step δ t and Hurst
exponent H play an important role in option pricing with transaction costs.

Finally, Chapter 5 considers the problem of discrete time option pricing by a mixed
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fractional subdiffusive Black-Scholes model. Under the assumption that the price of
the underlying stock follows a time-changed mixed fractional Brownian motion, a
pricing formula for the European call option and European call currency option is
derived in a discrete time setting with transaction costs.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Doktor Falsafah

HOPSYEN MATA WANG HARGA OLEH GENERALISASI GERAKAN
CAMPURAN PECAHAN BROWNIAN

Oleh

FOAD SHOKROLLAHI

Mac 2016

Pengerusi: Prof Adem Kılıçman, PhD
Fakulti: Sains

Di dalam industry kewangan, opsyen harga adalah satu ciri aktif. Nilainya diper-
olehi dengan model harga opsyen matematik. Pergerakan pecahan Brownian dan
campuran pecahan Brownian mempunyai beberapa ciri penting di dalam mendap-
atkan tingkah laku ekor daripada pasaran kewangan seperti persamaan pergantungan
diri dan pergantungan jarak jauh. Di dalam tesis ini, kami mencadangkan beber-
apa sambungan model pergerakan Brownian pecahan bercampur kepada kelas-kelas
yang lebih luas daripada sistem opsyen harga.

Di dalam Bab 3, rangka kerja baru bagi opsyen harga untuk matawang Eropah telah
dimajukan di mana kadar pertukaran ini mengikut pergerakan pecahan campuran
Brownian dengan lompatan. Ukuran Martingale boleh digunakan untuk analisis for-
mula opsyen harga matawang asing Eropah. Untuk tujuan memahami model pe-
nentuan harga, ciri-ciri sesetengah model penentuan harga dibincangkan di baha-
gian akhir bab ini. Selain itu, pendekatan aktuari pilihan harga matawang menjadi
masalah setaraf dengan kewajaran premium insurans.

Di samping itu, di dalam Bab 4 terdapat masalah harga opsyen masa diskret oleh
campuran pecahan Brownian yang bercampur-campur dengan kos urusniaga. Den-
gan min delta diri pembiayaan lindung nilai hujah dikira dalam suasana masa diskret,
formula harga opsyen matawang panggilan Eropah diperolehi. Khususnya, mini-
mum harga opsyen di bawah kos transaksi diperolehi, yang menunjukkan bahawa
masa langkah t dan exponen Hurst H memainkan peranan penting dalam opsyen
harga dengan kos urusniaga.

Akhirnya di dalam Bab 5, kami mempertimbangkan masalah opsyen harga masa
diskret oleh campuran sub dengan pecahan model Black-Scholes. Di bawah andaian
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bahawa harga saham pendasar mengikut masa berubah bercampur gerakan pecahan
Brownian, kami memperolehi formula penetapan opsyen harga panggilan Eropah
dan matawang panggilan Eropah di dalam suasana masa diskret dengan kos urusni-
aga.
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CHAPTER 1

INTRODUCTION

1.1 Options

Financial markets throughout the modern world trade in derivative products such as
futures and options. A financial derivative product is so named because its value
is derived from the price of some underlying asset: a foreign currency, a stock, or a
stock index, for example. Options, in particular, are contracts to buy or sell a number
of the underlying asset, or combinations of assets, and techniques for determining a
fair price for these contracts are central to this thesis. There are mainly four kinds of
options, including American option, European option, Asian option, and Barrier op-
tion, in current financial markets. In this thesis, we only focus on pricing a European
option and European currency option.

There are many reasons why investors may prefer options to stocks or to other under-
lying securities. Options may provide a pattern of returns that could not be obtained
with common stocks, and using special knowledge, a portfolio with higher expected
return than other portfolios with the same degree of risk can be obtained. Option mar-
kets may provide a way of hedging against unanticipated changes in stock volatility.
Imagine the following scenario.You buy a large amount of shares in a stock. If the
volatility of the stock price unexpectedly increases, you might have to sell some of
your shares to reduce the risk of your investment. Therefore, you might lose some
of your potential profit. Alternatively, you might buy insurance on volatility changes
using options.

Options can be used as risk management tools in international portfolios of foreign
assets or currencies. Investors use options as speculative devices by using their own
volatility expectation if it is different from the volatility implied by the market prices
of options. In certain circumstances, options can be used as a hedge against uncer-
tainties.

International financial markets are characterized by a flexible exchange system, cap-
ital mobility and the integration of many economic systems. As a result, exchange
rates fluctuate drastically. These fluctuations have a strong impact on international
financial transactions, all cash inflows or outflows to or from a foreign country
are subjected to this transactional exposure. In response to foreign exchange risk,
transnational investors have developed several hedging techniques, some of which
use derivative instruments such as futures, forwards and currency options contracts.

A currency options refers an agreement that gives right to the holder in order to
buy or sell a determined amount of foreign currency at a constant exercise price
on option exercise. Currency options can be used to hedge against contingencies
and transactions that are not certain to materialize. Banks can write custom option
contracts and then use exchange traded contracts to balance their positions. Options
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can be used for payment of debt denominated in foreign currencies. For the past 15
years, both practitioners and academicians have been concerned with the study of
the valuation of these securities.

The fundamental concepts of financial mathematics are presented in this introduction
chapter.

Definition 1.1 A European call (Put) option grants the right to purchase (sell) a
stock at a specific time called maturity T for a specific amount K called the exercise
price (Clark and Ghosh (2004)).

The value of a European call option is denoted by (ST − K)+ where (x)+ =
max(x,0). Similarly, the value of a European put option is (K−ST )

+. This amount
is called the option payoff.

Definition 1.2 The payoff of European call and put option are denoted by (ST −K)+

and (K−ST )
+, respectively (Clark and Ghosh (2004)).

Definition 1.3 Stock price is the payoff for a European call which is expressed in
terms of the stock price at maturity and the strike price and is given by (ST −K)+;
likewise, the payoff for a European put is given by (K − ST )

+. The stock price
denoted by S0 (Clark and Ghosh (2004); Hull (2006)).

Definition 1.4 The strike (exercise) price is the price at which a derivative can be
exercised, and refers to the price of the derivatives underlying asset. The strike price
will be denoted by K (Clark and Ghosh (2004); Hull (2006)).

Definition 1.5 Expiration date (maturity time) is date on which the option can be
exercised or date on which the option ceases to exist or give the holder any rights.
This will be denoted by T (Clark and Ghosh (2004); Hull (2006)).

Definition 1.6 Volatility is a measure of uncertainty in stock price movements. A
large volatility implies the potential for wide variation in the stock price. The volatil-
ity will be denoted by σ (Clark and Ghosh (2004); Hull (2006)).

Definition 1.7 A risk free interest rate is the rate of return on an asset that possess
no risk is called risk free interest rate and denoted by r (Clark and Ghosh (2004);
Hull (2006)).

Definition 1.8 A dividend payout during the life of an option will have the affect of
decreasing the value of a call and increasing the value of a put, since the stock price
typically falls by the amount of the dividend when it is paid. This will be denoted by
D (Clark and Ghosh (2004); Hull (2006)).

2
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Definition 1.9 In the money is an option with positive intrinsic value. A call option
when the asset price is above the strike, a put option when the asset price is below the
strike (Kolb and Overdahl (1997); Musiela and Rutkowski (2006); Pliska (1997)).

Definition 1.10 Out of the money is an option with no intrinsic value, only time
value. A call option when the asset price is below the strike, a put option when the
asset price is above the strike (Kolb and Overdahl (1997); Musiela and Rutkowski
(2006); Pliska (1997)).

Definition 1.11 At the money is a situation where the spot price and strike price are
equal (Kolb and Overdahl (1997); Musiela and Rutkowski (2006); Pliska (1997)).

Definition 1.12 A stochastic process X is a collection of random variables

(Xt , t ∈ T ) = (Xt(w), t ∈ T,w ∈Ω), (1.1)

define on some space Ω. For a fixed outcome w ∈Ω, it is function of time:

Xt = Xt(w), t ∈ T. (1.2)

This function is called a realization, a trajectories or a sample path of the process X
(Hull (2006); Pliska (1997)).

Definition 1.13 A filtration is a family M = {Mt}t≥0 of σ -algebras Mt ⊂F such
that

0≤ s < t⇒Ms ⊂Mt , (1.3)

(Mt is increasing) (Kolb and Overdahl (1997); Musiela and Rutkowski (2006);
Pliska (1997)).

Definition 1.14 Let {Nt}t≥0 be an increasing family of σ -algebras of subsets of
Ω. A process g(t,w) : [0,∞)×Ω→ Rn is called Nt -adapted if for each t ≥ 0 the
function

w→ g(t,w), (1.4)

is Nt - measurable (Kolb and Overdahl (1997); Musiela and Rutkowski (2006);
Pliska (1997)).

Definition 1.15 An n-dimensional stochastic process {Xt}t≥0 on (Ω,F ,P) is called
a martingale with respect to filtration {Mt}t≥0 ( and with respect to P) if

(i) Xt is Mt -measurable for all t,

3
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(ii) E[|Xt |]< ∞ for all t, and

(iii) E[Ms|Mt ] = Mt for all s ≥ t (Kolb and Overdahl (1997); Musiela and
Rutkowski (2006); Pliska (1997)).

Definition 1.16 An Nt - adapted stochastic process Z(t) ∈Rn is called a local mar-
tingale with respect to the given filtration Nt if there exists an increasing sequence
of Nt - stopping times τk such that

τk→ ∞ k→ ∞, (1.5)

and

Z(t ∧ τk), (1.6)

is an Nt - martingale for all k, where t ∧ τk = min(t,τk) (Kolb and Overdahl (1997);
Musiela and Rutkowski (2006); Pliska (1997)).

Definition 1.17 A process {Xt ,Ft , t ≥ 0} is called semi-martingale, if it admits the
representation

Xt = X0 +Mt +At , (1.7)

where Mt is an Ft - local martingale with M0 = 0, At is a process of locally bounded
variation, X0 is F0-measurable (Kolb and Overdahl (1997); Musiela and Rutkowski
(2006); Pliska (1997)).

Definition 1.18 Holder continuous(Kolb and Overdahl (1997); Musiela and
Rutkowski (2006); Pliska (1997))

A function f : [0,1)→ R is said to be locally α-Holder continuous at x≥ 0, if there
exists ε > 0 and c > 0 such that

| f (x)− f (y)| ≤ c|x− y|α , for all y≥ 0 with |y− x|< ε. (1.8)

1.2 Trading strategy and arbitrage

Let (Ω,F ,P) denote a probability space (Mikosch (1998)). Let us consider a finan-
cial market consisting of n assets with prices S1(t), ...,Sn(t), which under probability
measure P are governed by the following stochastic differential equations:

dSi = µi(t)dt +σi(t)dBi(t), i = 1,2, ...,n, (1.9)

where Bi(t) for i = 1,2, ...,n is a BM.

4
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Next, we denote an n-dimensional stochastic process θ(t) = (δ1(t), ...,δn(t)) as a
trading strategy, where δi(t) denotes the holding in asset i at time t. The value V (δ , t)
at time t of a trading strategy δ is given by

V (δ , t) =
n

∑
i=1

δi(t)Si(t). (1.10)

Definition 1.19 A self-financing trading strategy is a strategy δ with the property:

V (δ , t) =V (δ ,0)+
n

∑
i=1

∫ t

0
δi(t)Si(t), t ∈ [0,T ]. (1.11)

Hence, a self-financing trading strategy is a trading strategy that requires nor gen-
erates funds between time 0 and time T . In other words, any profit/loss is generated
by buying or selling one of the assets Si.

Definition 1.20 An arbitrage opportunity is a self-financing trading strategy δ with

(i) V (δ ,0)≥ 0 almost surely,

(ii) E[V (δ ,0)]≥ 0.

In words, arbitrage is a situation where it is possible to make a profit without the
possibility of incurring a loss.

The most important derivative is the European call option.

Definition 1.21 A derivative security with pay-off H(T ) at time T is said to be at-
tainable if there is a self-financing strategy δ such that V (δ ,T ) = H(T ).

Definition 1.22 An economy is called complete if all the derivative securities are
attainable.

Definition 1.23 An asset is called a numeraire if it has strictly positive prices for all
t ∈ [0,T ].

We can use numeraire to denominate all prices in an economy.

Now, consider a numeraire N(t) and a probability measure PN that is associated with
N(t).

Definition 1.24 The measure PN is called equivalent martingale measure if

5
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(i) PN is equivalent to P,

(ii) For any self-financing portfolio V (δ , t),V (δ , t)/N(t) is a martingale under
PN ,

EPN
[V (δ , t)

N(t)
|Fs

]
=

V (δ ,s)
N(t)

, s≤ t. (1.12)

Definition 1.25 Portfolio is a grouping of financial assets such as stocks, bonds and
cash equivalents, as well as their mutual, exchange-traded and closed-fund counter-
parts. Portfolios are held directly by investors and/or managed by financial profes-
sionals.

1.3 Brownian motion

Definition 1.26 Let X = (Xt , t ∈ T ) be a stochastic process and T ⊂R be an interval
(Karatzas and Shreve (2012); Hida (1980)). X said to have stationary increments
if the random variables Xt −Xs and Xt+h−Xs+h have the same distribution for all
t,s ∈ T and h with t +h,s+h ∈ T .

X said to have independent increments if for every choice of ti ∈ T with t1 < ... < tn
and n≥ 1,

Xt2 −Xt1 , ...,Xtn −Xtn−1 (1.13)

are independent random variables.

Remark 1.1 Let (Xt)t∈R+ and (Yt)t∈R+ be two processes defined on the same prob-
ability space (Ω,F ,P). The notation {Xt} , {Yt} will mean that (Xt)t∈R+ and
(Yt)t∈R+ have the same law.

Definition 1.27 Naively, self-similarity is a typical property of fractals. A self-
similar object is exactly or approximately similar to a part of itself, i.e., the whole
has the same shape as one or more of the parts. Many objects in the real world are
statistically self-similar, such as Sierpinski triangle and fern, see Figures (1.1) and
(1.2). A real-valued stochastic process X(t), t ∈ R is self-similar with index H > 0
or H-self similarity, if, for any a > 0,

X(at), aHX(t). (1.14)

6
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Figure 1.1: Sierpinski triangle
Figure 1.2: Fern

Definition 1.28 A Gaussian process is a real valued stochastic process (Xt)t∈T , if
the random variables Xt1 ,Xt2 , ...,Xtn are jointly normal for any t1, t2, ..., tn in T .

Remark 1.2 A Gaussian process (Xt)t∈T is called centered if E[Xt ] = 0 for every
t ∈ T .

Definition 1.29 Brownian Motion

BM is a process (B(t))t≥0 with the following properties (Karatzas and Shreve
(2012); Hida (1980)):

(1) B(0) = 0,

(2) B(t) has independent increments: 0 ≤ t1 < t2 < ... < tn then (B(tn) −
B(tn−1), ...,(B(t2)−B(t1)) are independent,

(3) B(t)−B(s)∼ N(0, t− s) for s < t.

Definition 1.30 Long/Short-Range Dependence

Let (Xt)t∈T be a centered Gaussian process and let the auto-covariance between the
n-th increment and the first increment of the process X be denoted as γn = E[(X1−
X0),(Xn+1−Xn)],n≥ 1. Then,

(1) If γn > 0 for all n ≥ 1,the process has positively correlated increments. If
∑

∞
n=1 |γn|= ∞ we say that X has long-range dependence.

(2) If γn < 0 for all n ≥ 1,the process has negatively correlated increments. If
∑

∞
n=1 |γn|= c < ∞,c 6= ∞ we say that X has short-range dependence.

(3) If γn = 0 for all n≥ 1, ∑
∞
n=1 |γn|= 0 we say that X is independent process.
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Definition 1.31 Markov Process

The process (Xt)t∈T is a Markov process if

E( f (Xt)|Fs) = E[ f (Xt)|Xs], ∀t > s, t,s ∈ T, (1.15)

where T ⊆ R, Ft = σ [Xt,s∈T |s ≤ t], and f is a bounded Borel function (Øksendal
(2003); Seydel (2012)).

Definition 1.32 Levy process

Levy process (Xt)t>0 is a process with the following properties

(1) Independent increments,

(2) Stationary increments, and

(3) Continuous paths: That is limh→0 P(|Xt+h−Xt | ≥ ε) = 0 for any ε > 0 (Gyl-
fadottir (2010)).

Definition 1.33 Poisson process (Xt , t ≥ 0) is a process which satisfies following
conditions (Øksendal (2003); Seydel (2012)):

(1) X0 = 0,

(2) Xt −Xs are integer valued for 0≤ s < t < ∞ and

P(Xt −Xs = k) =
λ k(t− s)k

k!
e−λ (t−s) for k = 0,1,2, ... (1.16)

(3) The increment Xt2−Xt1 and Xt4−Xt3 are independent for every 0≤ t1 < t2 <
t3 < t4.

1.4 Fractional Brownian motion

FBM has recently become a hot choice for modeling in mathematical finance and
other sciences. On purely empirical data, some believe that FBM is an ideal candi-
date since it is a long-term dependent and self-similar process. Even with its popu-
larity, our understanding of the properties and behaviour of FBM is limited.

Kolmogorov (Kolmogorov (1941)) was the first to introduce the Gaussian process
which is now known as FBM in the theory of probability. This class of processes
was studied by Kolmogorov in detail and it played an essential role in the series of
problem s of the statistical theory of turbulence. Yaglom (Yaglom (1955)) discussed
the spectral density and correlation function of FBM. A quadratic variation formula
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for FBM follows from a general result of Baxter (Baxter (1956)). Gladyshev (Glady-
shev (1961)) extended Baxter’s result and provided a theoretical result to determine
the value of the Hurst effect denoted by H. However, most of the encomium to FBM
has been given to Mandelbrot and Van Ness (Mandelbrot and Van Ness (1968)) who
used FBM to model natural phenomena such as the speculative market fluctuations.

Definition 1.34 FBM is a centered Gaussian process (BH(t))t∈R where H ∈ (0,1)
with the following properties (Hu and Øksendal (2003); Rodón (2006); Biagini et al.
(2008)):

(1) BH(0) = 0,

(2) BH(t)−BH(s) is distributed as N(0, |t− s|2H),

(3) t→ BH(t) is continuous.

Figure (1.3) shows the sample path of the FBM for different parameter.

Figure 1.3: FBM with different Hurst parameter H

Corollary 1.1 Since E[BH(0)] = 0 and E[BH(t)]2 = t2H .

Then

E[BH(t)BH(s)] =
E[BH(1)]2

2
{E[BH(t)]2 +E[BH(s)]2−E[BH(|t− s|)]2}

=
E[BH(1)]2

2
{t2H + s2H −|t− s|2H}. (1.17)

Remark 1.3 Throughout this thesis without loss of generality we assume a standard
FBM, that is E[BH(1)] = 1.
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Corollary 1.2 FBM is a Gaussian H-self-similar process, that is

E
[
BH(t)

(
BH(t)−BH(s)

)]
= 0, ∀t > s. (1.18)

FBM with H = 1
2 satisfies the definition of BM (Definition 1.29). Additionally, when

H = 1 the process is degenerate since,

E[BH(t)− tBH(1)] = t2−2t2 + t2 = 0⇒ BH(t) =d tBH(1). (1.19)

Corollary 1.3 FBM has stationary increments. Since FBM is a centered Gaussian
processes, ∀t > s,τ > 0 we only need to consider the covariance function to prove
the stationarity of increments,

E
[
BH

t+τ BH
τ

]
= E

[
BH

t+τ BH
s+τ

]
−E

[
BH

t+τ BH
τ

]
−E

[
BH

τ BH
s+τ

]
+E

[
BH

τ

]2

=
1
2
{t2H + s2H −2(t− s)2H}

= E[BH
t BH

s ]. (1.20)

This proves that (BH
t+τ −BH

τ , t ∈ T ), (BH
t , t ∈ T ) (Embrechts and Maejima (2002)).

Remark 1.4 Using stationarity it can be shown that the auto-covariance function
for FBM is given by

γn =
1
2

[
(n+1)2H −2n2H +(n−1)2H

]
, (1.21)

therefore

γn ≈ H(2H−1)n2H−2, as n→ ∞,H 6= 1
2
. (1.22)

Notice that when

(1) H = 1
2 ,γn = 0,∀n therefore FBM has independent increments.

(2) H > 1
2 ,γn > 0 and γn ≈ H(2H − 1)n2H−2, as n → ∞ therefore the in-

crements of the FBM process are positively correlated and by p-series
∑

∞
n=1 |γn|= ∞, therefore has long-range dependence.

(3) H < 1
2 ,γn < 0 and γn ≈ H(1− 2H)n2H−2, as n → ∞ therefore the in-

crements of the FBM process are negatively correlated and by p-series
∑

∞
n=1 |γn|= c < ∞, therefore has short-range dependence.
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Remark 1.5 For 1
2 < H < 1, H measures the intensity of long-range dependence.

The closer H is to 1 the stronger long-memory the process exhibits.

1.5 Girsanov’s Theorem

Assume we have the probability space (Ω,F ,P). Then a change of measure from P
to Q means we have probability space (Ω,F ,Q).

Definition 1.35 Two measures P and Q are equivalent if

P(A)> 0⇒ Q(A)> 0, ∀A⊂Ω, (1.23)

and

P(A) = 0⇔ Q(A) = 0, ∀A⊂Ω. (1.24)

The Radon-Nikodym derivative can be defined by using two equivalent measures as
follows:

M(t) =
dQ
dP

(t), (1.25)

which enables us to change a measure to another. It follows that for any random
variable X

EP[XM] =
∫

Ω

X(w)M(t,w)dP(w) =
∫

Ω

X(w)dQ(w) = EQ[X ]. (1.26)

This interchangeability of the expected values under two different measures confirms
the important role of a Radon-Nikodym derivative as intermediate link between two
measures (Tong (2012)).

To change the measures for stochastic processes we can use the Girsanov’s theorem
(Tong (2012)).

Theorem 1.1 Girsanov’s Theorem

Let Ft be a a filtration on interval [0,T ] where T < ∞. Define a random process
M(t):

M(t) = exp
[
−
∫ t

0
λ (u)dBP(u)− 1

2

∫ t

0
λ

2(u)du
]
, t ∈ [0,T ]. (1.27)

where BP(t) is a BM under probability measure P and λ (t) is an Ft - measurable
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process that satisfies a condition

E
{

exp
[1

2

∫ t

0
λ

2(u)du
]}

< ∞, t ∈ [0,T ]. (1.28)

If we define BQ by

BQ(t) = BP(t)+
∫ t

0
λ (u)du, t ∈ [0,T ]. (1.29)

To change the measures for multidimensional stochastic process, we require a mul-
tidimensional Girsanov’s theorem, which is very similar to the one dimensional.

Theorem 1.2 Multidimensional Girsanov’s Theorem

Let Ft be a filtration on interval [0,T ] where T < ∞. Suppose Λ(t) =
(λ1(t),λ2(t), ...,λn(t)) be an n-dimensional process that is Ft -adapted and satis-
fies a condition

E
{

exp
[1

2

∫ t

0

n

∑
i=1

λ
2
i (u)du

]}
< ∞, t ∈ [0,T ]. (1.30)

We define a random process M(t):

M(t) = exp
[ n

∑
i=1

(
−
∫ t

0
λi(u)dBP

i (u)−
1
2

∫ t

0
λ

2
i (u)du

)]
, t ∈ [0,T ], (1.31)

where BP
i (t) is an n-dimensional BM with respect to the probability measure P for

i = 1, ...,n. If we define BQ
i by then the following outcomes holds:

(1) M(t) defines a Radon-Nikodym derivative.

M(t) =
dQ
dP

(t). (1.32)

(2) BQ
i is a BM under Ft under the probability measure Q for i = 1, ...,n (Tong

(2012)).

1.6 Ito Lemma

Let X(t) be a stochastic process and suppose that there exists a real number x(0) and
two adapted processes µ(t) and σ(t) such that the following relation holds for all
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t ≥ 0,

X(t) = x(0)+
∫ t

0
µ(s)ds+

∫ t

0
σ(s)dB(s). (1.33)

We can write the equation as follows

dX(t) = µ(t)dt +σ(t)dB(t), (1.34)

X(0) = x(0). (1.35)

Then, we can say X(t) satisfies the SDE given by (1.34) with the initial condition
given by (1.35). Note that the formal notation dX(t) = µ(t)dt +σ(t)dB(t) has no
particular meaning. It is simply a shorthand version of the expression (1.34) above.

In option pricing, we often take as given a SDE for some basic quantity such as stock
price. Many other quantities of interest will be functions of that basic process. To
determine the dynamics of these other processes, we shall apply Ito’s Lemma, which
is basically the chain rule for stochastic processes (Mikosch (1998); Tong (2012);
Øksendal (2003); Hirsa and Neftci (2013)).

Theorem 1.3 Ito’s Lemma

Assume the stochastic process X(t) satisfies in the following equation

dX(t) = µ(t)dt +σ(t)dB(t), (1.36)

where µ(t) and σ(t) are adapted processes to a filtration Ft . Let Y (t) be a new
process defined by Y (t) = f (X(t), t) where f (x, t) is a function twice differentiable in
its first argument and once in its second. Then Y (t) satisfies the stochastic differential
equation:

dY (t) =
(

∂ f
∂ t

+µ(t)
∂ f
∂X

+
1
2

σ
2(t)

∂ 2 f
∂X2

)
dt +σ(t)

∂ f
∂X

dB(t), (1.37)

where ∂ f
∂X = ∂ f

∂x |{x = X(t)} and ∂2 f
∂X2 = ∂2 f

∂x2 |{x = X(t)}.

Now, we present some extended versions of the Ito lemma. Recall that a second
order Taylor expansion yields that

f (t +dt,Bt+dt)− f (t,Bt) = f1(t,Bt)dt + f2(t,Bt)dBt

+
1
2

[
f11(t,Bt)(dt)2 +2 f12(t,Bt)dtdBt

+ f22(t,Bt)(dBt)
2
]

+ .... (1.38)
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Here, and what follows, we use the following notations for partial derivative of f .

fi(t,x) =
∂

∂xi
f (x1,x2)

∣∣
x1=t,x2=x, i = 1,2

fi j(t,x) =
∂

∂xi

∂

∂x j
f (x1,x2)

∣∣
x1=t,x2=x, i, j = 1,2. (1.39)

As in classical calculus, higher order terms in equation (1.38) are negligible, and so
are the terms with factors dtdBt and (dt)2. However, since we interpret (dBt)

2 as dt,
the term with (dBt)

2 can not be neglected.

Theorem 1.4 Extension I of Ito Lemma

Let f (t,x) be a function whose second order partial derivatives are continuous. Then

f (t,Bt) − f (s,Bs)

=
∫ t

s

[
f1(x,Bx)+

1
2

f22(x,Bx)
]
dx

+
∫ t

s
f2(x,Bx)dBx, s < t. (1.40)

An application of the Ito lemma 1.3 yields that the process X satisfies the following
SDE

Xt −X0 = c
∫ t

0
Xsds+σ

∫ t

0
XsdBs. (1.41)

For use we will need an even more general version of Ito lemma. We will consider a
process of the form f (t,Xt), where X is given by

Xt = X0 +
∫ t

0
A(1)

s ds+
∫ t

0
A(2)

s dBs, (1.42)

and both, A(1) and A(2), are adapted to BM. Here it is assumed that the above
integrals are well defined in the Riemann and Ito senses, respectively.

A process X , which has representation (1.42), is called an Ito process. One can show
that the processes A(1) and A(2) are uniquely determined in the sense that, if X has
representation (1.42), where the A(i)s are replaced with adapted process D(i), then
A(i) and D(i) necessarily coincide.

Now, using a similar argument with a Taylor expansion as above, one can show the
following formula.

Theorem 1.5 Extension II of Ito Lemma

Let X be an Ito process with representation (1.42) and f (t,x) be a function whose
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second order partial derivatives are continuous. Thus

f (t,Xt) − f (s,Xs)

=
∫ t

s

[
f1(y,Xy)+A(1)

y f2(y,Xy)+
1
2
[A(2)

y ]2 f22(y,Xy)
]
dy

+
∫ t

s
A(2)

y f2(y,Xy)dBy, s < t. (1.43)

Formula (1.43) is frequently giving in the following form

f (t,Xt) − f (s,Xs)

=
∫ t

s

[
f1(y,Xy)+

1
2
[A(2)

y ]2 f22(y,Xy)
]
dy

+
∫ t

s
f2(y,Xy)dXy, s < t, (1.44)

where

dXy = A(1)
y dy+A(2)

y dBy. (1.45)

Theorem 1.6 Extension III of Ito Lemma

Let X1 and X2 be two Ito process given by

X (i)
t = X (i)

0 +
∫ t

0
A(1,i)

s ds+
∫ t

0
A(2,i)

s dBs, i = 1,2, (1.46)

and f (t,x1,x2) be a function whose second order partial derivatives are continuous.
Then for s < t,

f (t,X (1)
t ,X (2)

t ) − f (s,X (1)
s ,X (2)

s )

=
∫ t

s
f (y,X (1)

y ,X (2)
y )dy+

2

∑
i=1

∫ t

s
fi(y,X

(1)
y ,X (2)

y )dX (i)
y

+
1
2

3

∑
i=2

3

∑
j=2

∫ t

s
fi j(y,X

(1)
y ,X (2)

y )A(2,i)
y A(2, j)

y dy. (1.47)

Here fi(t,x1,x2), fi j(t,x1,x2) are the partial derivatives of f (t,x1,x2) with respect
to the ith, the ith and jth variables, respectively.

Theorem 1.7 (Duncan et al. (2000)) Ito lemma for FBM

If f : R→R is a twice continuously differentiable function with bounded derivatives
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to order two, then

f (BH
T )− f (BH

0 ) =
∫ T

0
f ′(BH

s )dBH
s +H

∫ T

0
s2H−1 f ′′(BH

s )ds. (1.48)

1.7 Mixed fractional Brownian motion

Let a and b be two real constants such that (a,b) 6= (0,0).

Definition 1.36 A MFBM with parameters a,b, and H is a process MH =
MH

t (a,b), t ≥ 0 = MH
t t, t ≥ 0, defined on the probability space (Ω,F ,P) by

MH
t = MH

t (a,b) = aBt +bBH
t , ∀t ∈ R+ (1.49)

where (Bt)t∈R+ is a BM and (BH
t )t∈R+ is an independent FBM with Hurst pa-

rameter H (Duncan et al. (2000); Cheridito (2001a); Mishura (2008); Zili (2006);
Marinucci and Robinson (1999)).

Lemma 1.1 The MFBM has the following properties

(i) MH is a centered Gaussian process,

(ii) for all t ∈ R+,E((MH
t (a,b))2) = a2t +b2t2H ,

(iii) one has that

Cov
(

MH
t (a,b),MH

s (a,b)
)

= a2(t ∧ s)+
1
2

b2
[
t2H + s2H −|t− s|2H

]
,∀s, t ∈ R+, (1.50)

where t ∧ s = 1/2(t + s+ |t− s|),

(iv) the increments of the MFBM are stationary (Zili (2006)).

Lemma 1.2 For any h > 0,{MH
ht (a,b)} , {M

H
t (ah

1
2 ,bhH)}. This property will be

called the mixed-self-similarity (Zili (2006)).

Theorem 1.8 For all H ∈ (0,1)−{ 1
2},a ∈R and b ∈R−{0},(MH

t (a,b))t∈R is not
a Markovian process (Zili (2006)).
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Remark 1.6 Let X and Y be two random variables defined on the same probability
space (Ω,F ,P).We denote the correlation coefficient ρ(X ,Y ) by

ρ(X ,Y ) =
cov(X ,Y )√

var(X)var(Y )
. (1.51)

Corollary 1.4 For all a∈R and b∈R−{0}, the increments of (MH
t (a,b))t∈R+ are

positively correlated if 1
2 < H < 1, uncorrelated if H = 1

2 , and negatively correlated
if 0 < H < 1

2 (Zili (2006)).

Definition 1.37 Let {Xt , t ∈ R+} be a process with stationary trajectories and
(r(n))n∈N the sequence defined by

∀n ∈ N, r(n) = E(Xn+1X1). (1.52)

We recall that the process X is called long-range dependent if and only if

∑
n∈N

r(n) = ∞. (1.53)

Remark 1.7 Since {Xt , t ∈ R+} is a process with stationary trajectories

∀s ∈ R+,∀n ∈ N, r(n) = E(Xn+sXs). (1.54)

Lemma 1.3 For all a ∈ R and b ∈ R−{0}, the increments of (MH
t (a,b))t∈R+ are

long-range dependent if and only if H > 1
2 (Zili (2006)).

We see that ∑n∈N r(n) =+∞ if and only if 2H−2>−1; that is, if and only if H > 1
2 .

Lemma 1.4 Holder continuity

For all T > 0 and γ < 1
2 ∧H, the MFBM has a modification which sample paths

have a Holder-continuity, with order γ , on the interval [0,T ] (Zili (2006)).

Definition 1.38 A random function g(x) is said to be O( f (x)), if there exists a fixed

N > 0 such that
∣∣∣ g(x)

f (x)

∣∣∣≤ N for enough small x .
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1.8 Greeks

Greeks summarize how option prices change with respect to underlying variables and
are critically important in asset pricing and risk management. It can be used to re-
balance the portfolio to achieve desired exposure to a certain risk. More importantly,
knowing the Greek, a particular exposure can be hedged from adverse changes in the
market by using appropriate amount of other related financial instruments. Unlike
option prices, which can be observed in the market, Greeks can not be observed and
have to be calculated given a model assumption. Typically, the Greeks are computed
using a partial differentiation of the price formula (Higham (2004); Cvitanić and
Zapatero (2004); Lyuu (2001); Shokrollahi et al. (2015)).

Definition 1.39 Delta

Delta (∆) of an option defined as

∆ =
change in option price
change in underlying

. (1.55)

The sensitivity of the option to the underlying finance is assessed by Delta.

Definition 1.40 Gamma

Gamma (Γ) calculated the immediate changes of the delta in terms of partial alter-
ations, which occur in the underlying stock price. It is the second derivative of the
option value respect to the underlying asset.

Γ =
change in delta

change in underlying
. (1.56)

Definition 1.41 Theta

Theta (Θ) is defined as

Θ =− change in option price
change in time to maturity

. (1.57)

Theta measures the sensitivity of the value of the option to the change of time to
maturity. If the asset price is constant, consequently the option will change by theta
with time.

Definition 1.42 Vega

The Vega (υ) , assesses the sensitivity to volatility, which expresses as the amount of
money per stock gain or lose as volatility increases or decreases 1 percent. It is the
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derivative of the value of the option in terms of the volatility of the stock price .

υ =
change in option price

change in volatility
. (1.58)

Definition 1.43 Rho

Rho (ρ) refers to the rate of option alteration with respect to the rate of interest.

ρ =
change in option price
change in interestrate

. (1.59)

1.9 Objectives of the thesis

The main objectives of this thesis are as follows:

• To propose a satisfactory model for currency options pricing to get discontinu-
ous or jumps in financial markets that play a significant role in stocks markets.

• To achieve pricing currency options into a problem of equivalent of fair insur-
ance premium by combine the MFBM and jump processes.

• To valuate European currency options in discrete time setting case by using
delta hedging strategy, and MFBM model.

• To price European option by using the MFBM when the physical time t are
replaced by inverse subordinator process in the presence and absence of trans-
action costs.

• To create a new model for pricing currency options when the underlying asset
follows time-changed MFBM model.

• To obtain the Greeks for our proposed models.

• To show the impact of Hurst parameter H, transaction costs, and time-step on
proposed pricing formulas.

1.10 Outline of thesis

Black-Scholes (Black and Scholes (1973)) put forward option pricing in 1973, which
leads to be studied by different scholars (Dravid et al. (1993); Ho et al. (1995); Toft
and Reiner (1997); Kwok and Wong (2000); Duan and Wei (1999)) claim that two
issues in stock markets are not able to be presented clearly in this option pricing
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introduced by BS in accordance with BM. These concepts refer to asymmetric lep-
tokurtic features and the volatility smile. In view of this, the BS model was improved
by Garman and Kohlhagen (Garman and Kohlhagen (1983)) in order to assess Euro-
pean currency options by considering two prominent features;

(1) The market volatility estimation of an underlying as obvious as price and time
functioning void of referring to the characteristics of a particular investor di-
rectly. These characteristics could be functions of utility, measures of risk
aversion, or yield expecting.

(2) Strategy of self-replicating or hedging.

However, it is significant to note that the mispriced currency options by the GK
model were also substantiated in some studies (Cookson (1992)). The most impor-
tant reason of inappropriateness of this model for stock markets is the fact that the
currencies are different from stocks so that the currency behavior is not captured by
GBM (Ekvall et al. (1997)). To tackle this problem, regarding pricing currency op-
tions, various models were recommended by modifying the GK model (Rosenberg
(1998); Sarwar and Krehbiel (2000); Bollen and Rasiel (2003); Jorion (1988)).

In view of this, the independency of logarithmic returns of the exchange rate was
pointed out in all these studies along with the distribution of normal random vari-
ables. In addition, the empirical studies reveal that the logarithmic returns dissemi-
nations in the asset markets widely manifest excess kurtosis with high possibility of
mass around the origin and in the tails, and indicate low possibility in the flanks in
comparison with normal distribution of data. It means that financial return series in-
clude the properties, which are not normal, independent, linear and are self-similar,
with heavy tails. Both autocorrelations and cross-correlations and also volatility
clustering are considered as among these properties.

In this regard, two fundamental features are considered in FBM and MFBM namely
self-similarity and long-range dependence. Thus, employing these process is more
feasible in terms of capturing the behavior from financial asset . Although, FBM
is neither a semi-martingale nor a Markov process then, employing the conventional
stochastic calculus for analyzing it is impossible. It is fortunate that the Wick product
was utilized by Xiao et al. (Xiao et al. (2011)) instead of the path wise product for
describing a fractional stochastic integral in which mean is zero. This was considered
as an appropriate feature both theoretically and practically.

These motivate us to employ the FBM and the MFBM to achieve the valuation Eu-
ropean options and European currency options as stochastic models driven by BM
and FBM processes.

The rest of this thesis divided in five chapters as follows.

In Chapter 2, some historical development of BS model will be pointed out and other
models to be extended in this thesis will be described.
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In Chapter 3, the combination of MFBM process and the Poisson jump process to
capture jumps or discontinuities, fluctuations will be considered and the long mem-
ory property will be take into account.

In Chapter 4, in return series the time scaling and long-range correlation which have
an influence on currency option pricing with and without transaction costs are in-
dicated. The option pricing problem on the MFBM model with transaction costs is
considered and a closed form representation of the currency option pricing formula
is given.

In Chapter 5, in order to describe properly financial data exhibiting periods of con-
stant values, the subdiffusive strategy based on the MFBM is considered in order to
identify financial data with the periods of the constant prices.

Conclusion and perspectives are finally outlined in Chapter 6.
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