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TYPE 2 DIABETES MELLITUS

By

EMENYONU SANDRA CHIAKA

April 2016

Chairman : Associate professor Mohd Bakri Adam, PhD
Institute : Institute For Mathematical Research

Logistic regression model has long been known and it is commonly used in analysing a
binary outcome or dependent variable and connects the binary dependent variable to several
independent variables. Estimates of the coefficients for the variables are obtained via the
method of maximum likelihood based on the frequentist point of view. However, Bayesian
analysis allows the incorporation of the prior information and the coefficients of the logistic
regression model are estimated by assuming prior distribution for each of the coefficient of
interest, which then combines with the likelihood function for the posterior distribution to be
obtained.

The Bayesian logistic regression methods made use of the metropolis hasting (Random walk
algorithm) and the Gibbs sampler with the incorporation of non-informative flat prior and
non-informative non-flat prior distributions to obtain the posterior distribution for each co-
efficient of the variables. Although we incorporated the flat prior distribution, it has been
shown to be widely used in different fields of study. However, this work also incorporated
a non-flat prior, which is our main research and to the best of our knowledge has not been
incorporated on any T2DM dataset in Malaysia.

This study evaluates the risk factors such as age, ethnicity, gender, physical activity, hyper-
tension, body mass index, family history of diabetes and waist circumference. The coeffi-
cients of the variables mentioned above were estimated by the method of maximum likeli-
hood and significant variables were further identified. The significant variables determined
by maximum likelihood method were then estimated using the BLR method. The BLR ap-
proach via Gibbs sampler and the random walk metropolis algorithm suggests that family
history of diabetes, waist circumference and the body mass index are the significant risk
factors associated with the type 2 diabetes mellitus. The model results also show a slight
decrease in the posterior standard deviation associated with the parameters generated from
the Bayesian analysis with the non-flat prior distribution compared to the results generated
from the Bayesian analysis incorporating the non-informative prior. Having seen that the
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difference between the models is not much, consequently from all indications, all the models
are good and they exhibited model fit.

ii



© C
OPYRIG

HT U
PM

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi
keperluan untuk ijazah Master Sains

MODEL LOGISTIK REGRASI BAYESIAN TERHADAP FAKTOR RISIKO
KENCING MANIS JENIS 2

Oleh

EMENYONU SANDRA CHIAKA

April 2016

Pengerusi : Profesor Madya Mohd Bakri Adam, PhD
Institut : Institut Penyelidikan Matematik

Model regrasi logistik telah lama dikenali dan ia biasanya digunakan bagi menganalisis
hasil binari atau pembolehubah bersandar dan menghubungkan pembolehubah bersandar bi-
nari kepada beberapa pembolehubah bebas. Anggaran pekali bagi pembolehubah diperolehi
melalui kaedah kebarangkalian maksimum berdasarkan daripada pemerhatian yang telah di-
guna pakai sebelum ini. Walau bagaimanapun, analisis Bayesian membolehkan penggabun-
gan maklumat prior dan pekali model regrasi logistik dianggar dengan pengandaian taburan
prior bagi setiap pekali, yang kemudiannya digabungkan dengan fungsi kebarangkalian un-
tuk mendapatkan taburan posterior.

Kaedah Bayesian regrasi logistik menggunakan metropolis hasting (algoritma berjalan se-
cara rawak) dan Gibbs sampler yang menggabungkan taburan prior rata tidak bermaklumat
dan prior tidak rata yang tidak bermaklumat untuk mendapatkan taburan posterior bagi se-
tiap pekali pembolehubah. Meskipun kajian ini telah menggunakan prior rata, namun ia
juga telah menunjukkan penggunaannya secara meluas dalam pelbagai bidang pengajian.
Walau bagaimanapun, kajian ini juga berkait dengan prior tidak rata dimana ia merupakan
penyelidikan utama kami dan daripada pengetahuan kami ianya masih belum digunakan di
mana-mana dataset T2DM di Malaysia.

Kajian ini menilai faktor-faktor risiko seperti umur, etnik, jantina, aktiviti fizikal, tekanan
darah tinggi, indeks jisim badan, sejarah keluarga diabetes dan lilitan pinggang. Pekali
pembolehubah yang dinyatakan di atas telah dianggarkan dengan menggunakan kaedah ke-
barangkalian maksimum dan seterusnya pembolehubah yang berperanan penting akan dike-
nal pasti dengan lebih teliti. Pembolehubah yang berperanan penting ini ditentukan den-
gan kaedah kebarangkalian maksimum yang kemudiannya dianggar menggunakan kaedah
BLR. Pendekatan BLR melalui Gibbs sampler dan algoritma berjalan secara rawak menun-
jukkan bahawa sejarah keluarga diabetes, lilitan pinggang dan indeks jisim badan adalah
faktor risiko utama yang berkait rapat dengan penyakit kencing manis jenis 2. Hasil keputu-
san daripada model juga menunjukkan terdapat sedikit penurunan pada sisihan piawai bagi
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posterior yang berhubung kait dengan parameter yang dihasilkan daripada analisis Bayesian
dengan taburan prior tidak-rata berbanding dengan keputusan yang dihasilkan daripada anal-
isis Bayesian yang menggabungkan prior tidak-bermaklumat. Setelah melihat kepada per-
bezaan yang tidak ketara di antara model-model, dengan kesinambungan dari semua petun-
juk, semua model adalah berkeadaan baik dan ia telah menunjukkan model yang sesuai.
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CHAPTER 1

INTRODUCTION

1.1 Section

Alberti et al. (1998) define diabetes mellitus as a class of metabolic disorders characterized
by excess sugar in the blood over a long period of time which is caused by inadequate se-
cretion of insulin, insulin activity or the two. In a study on global prevalence of diabetes,
Wild et al. (2004) estimate the total number of people with type 2 diabetes mellitus (T2DM)
in the year 2000 at 171 million and anticipate it to rise to 366 million in 2030. The rise in
the prevalence of diabetes has been of great concern globally but is higher in the developing
nations compared to the developed nations. This rapid rise in the prevalence of diabetes has
been reported to be more in Asia, especially the South East Asian countries like Malaysia.
With Mafauzy (2006) revealing that the prevalence of diabetes in Malaysia within the period
of 1986 to 1996 showed a rise from 6.3 percent to 8.2 percent. Further predictions by the
world health organization, suggests that there will be a total number of 2.48 million people
with diabetes by 2030 as compared to 2000, where a figure of 0.94 million was estimated
thus, showing a 164 percent increase in prevalance rate. Similarly, Mafauzy et al. (2011)
predict that by 2025, the prevalence of diabetes will be higher by 170 percent in the devel-
oping world, compared to a 42 percent increase in prevalence rate in the developed nations.
In conclusion, T2DM is seen to be the commonest form of diabetes which has taken hold
of over 90% of the diabetic community through out the world and the fast upswing in the
number of people with diabetes is prominent in the urban and rural regions Valliyot et al.
(2013).

Diabetes consists of type 1 diabetes, type 2 diabetes mellitus, and gestational diabetes mel-
litus (GDM). For type 1, which is known as insulin dependent occurs when no insulin is
produced at all because the insulin producing cell in the pancreas has been destroyed. While
the T2DM occurs when the body either does not produce enough insulin or the insulin being
produced cannot be used by the body, also known as insulin resistance. GDM occurs during
pregnancy, but can be resolved after the baby has been delivered, and if not taken care of,
can result to type 2 diabetes. Moreover, diabetes type 2 has different symptoms. Ameri-
can diabetes association et al. (2013) reveal that the symptoms of high blood sugar include
polyuria which is frequent urination, polydipsia, which is an increase in thirst, polyphagia
also known as increased hunger, weight loss and blurred vision, and these symptoms of the
type 2 diabetes are shown in Figure 1.1.

Diagnosis of diabetes can be done through a test of Glucose level. Organization (1999) inves-
tigates several ways for the measurement of glucose which have been built, and the standard
measurement for diabetes have been reconsidered for more than ten years. Consequently the
following test are used to this effect.

• Fasting Plasma Glucose Test: The fasting plasma glucose test (fasting blood sugar)
measures the glucose level from a blood sample of an individual for atleast eight hours
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Figure 1.1: Symptoms of type 2 diabetes mellitus (T2DM)
(Mikael Häggström, 2014)

of not eating. It is frequently used to check for prediabetes and diabetes. National
diabetes data group et al. (1979) reveal that both fasting plasma glucose and the 2-hour
plasma glucose concentration have been approved to check for diabetes and impaired
glucose tolerance (IGT) since the year 1979.

• Glycated Haemoglobin (HbA1C): Nathan et al. (2007) show that HbAIC measures
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the amount of glucose in the red blood cells for the last 2 -3 months and can be used
to detect the presence of diabetes.

• Oral Glucose Tolerance Test (OGTT) measures the blood glucose after a person fasts
not less than eight hours, then 2 hours after the person consumes glucose dissolved in
water. American diabetes association et al. (2013) recommend the test to be done as
reported by the world health organisation, using a glucose solution which contains 75
grams of anhydrous glucose dissolved in water. This test can be used in diagnosing
pre-diabetes and diabetes.

Confirmation using a second test should be carried out on a different day, if the test result
indicates that a subject has diabetes. Reason being that, the repeated test serves as a con-
firmatory test, which when done is checked with the previous test result to know if the two
different test results available are above the diagnostic cut-off points and having seen that
affirms the diagnosis of diabetes.

This study evaluates both the frequentist and Bayesian approaches on logistic regression
model. Frequentist Logistic regression model has long been known and it is commonly used
in analyzing a binary outcome. However, one of the major difference between the Bayesian
and the frequentist is that, the Bayesian allows the incorporation of prior information.

The estimation of the coefficients of the variables being considered, will be estimated via the
method of maximum likelihood and Bayesian logistic regression method making use of the
Gibbs sampler and the Random walk Metropolis algorithm. Further, these variables which
include both the significant and non-significant being considered in the present study, have
been considered in some literatures but mostly from the frequentist point of view. Although,
some of these variables, in different studies were found to be significant risk factors of type
2 diabetes mellitus. Therefore, we decided to consider these variables in our work to see if
they are also significant risk factors of type 2 diabetes mellitus.

On the other hand several fields of study in different countries have applied the Bayesian
logistic regression model via the Gibbs sampler and the Random walk metropolis algorithm,
incorporating mostly the non- informative prior (flat) distribution. However, there have not
been many studies on the risk factor of type 2 diabetes mellitus employing the Bayesian
logistic regression model via the Gibbs sampler and the Random walk metropolis algorithm,
assuming a non-flat prior distribution. In as much as the flat prior will be incorporated, it has
been shown to be widely used in different fields of study. However, this work suggests a new
prior distribution, which is our main research and to the best of our knowledge has not been
incorporated on any T2DM dataset in Malaysia.

In other words, the Bayesian logistic regression method incorporating our suggested prior
distribution will be applied on the significant risk factors associated with type 2 diabetes
melitus to obtain the posterior distribution for each parameter of the variables.

Therefore, our research’s main contributions are

• estimating the parameters of the variables of T2DM, that is those factors that can
influence the development of type 2 diabetes mellitus,
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• different methods were employed in estimating of these risk factors and these are the
Frequentist and the Bayesian methods,

• the frequentist approach made use of the method of maximum likelihood, while the
Bayesian analysis was via two MCMC approaches incorporating the flat and non-flat
prior distribution. for the non-flat prior distribution, a weakly informative prior was
specified which is our newly suggested prior for the estimation of the coefficients of
varaibles of T2DM.

1.2 Problem Statement

The Frequentist Logistic Regression (FLR) method has been applied in different fields of
study. However, the Bayesian Logistic Regression (BLR) method can also be used to anal-
yse various distributions. One of the key advantage of the Bayesian over Frequentist ap-
proach is the incorporation of the prior information. Further, the non-informative flat prior
distribution has been incorporated and applied to different fields of research. For instance,
Bayesian logistic regresssion model via Random walk metropolis algorithm incorporating a
non-informative prior distribution has been applied in economic related field, like the study
carried out by Acquah (2013). Similarly, the Bayesian logistic regression method has also
been applied in environmental related field using a non-informative prior distribution. This
Bayesian analysis was performed via the Gibbs sampler as reported by Das et al. (2012).
However, to the best of the author’s knowledge, there have not been studies incorporating
non-flat prior distributions on T2DM dataset in Malaysia. Thus, this research aims at carry-
ing out the Bayesian analysis via the Metropolis algorithm and the Gibbs sampler incorpo-
rating our newly suggested prior distributions.

1.3 Objectives of the Research

The objectives of this study are

• to determine risk factors associated with T2DM using maximum likelihood estimation,

• to determine risk factors associated with type 2 diabetes mellitus via the Gibbs sampler
using flat and non-flat prior distribution, and

• to determine risk factors associated with type 2 diabetes mellitus via Random walk
metropolis algorithm using flat and non-flat prior distribution.

1.4 Expected Outcome

After the completion of this research, we expect to achieve the following:

1. The development of model from this research can be used in real life situations in
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determining probability. More so, the systematic use of prior information can improve
long term accuracy.

2. The result will provide information on the application of Bayesian logistic regression
method incorporating a non-informative prior and a non-flat prior distribution in sev-
eral fields of research.

3. This research can enable analyst and decision makers to establishing a consistent set
of decision about the assesment of risks and how to manage them properly.

1.5 Limitations of the Study

Due to time and financial constraints, two Markov Chain Monte Carlo (MCMC) methods of
estimation were considered, also few variables were chosen in this study, as the capacity to
explore other variables and the use of other MCMC approaches being considered in other
studies were limited.

1.6 Organization of the Thesis

The thesis is classified under five chapters. Chapter 1 deals with the background of the
thesis, objective, expected outcome and limitations of the study. Relevant literature reviews
including different approaches used in this thesis are discussed in Chapter 2. Chapter 3
explains the mathematical methods applied, data type, data source and procedures for the
data analysis. Chapter 4 introduces the Bayesian inference. Chapter 5 includes results and
discussion. While the findings, conclusion and future work are in Chapter 6.
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